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„Admitting to a problem is the first step toward 
finding a solution.“

— John Perkins



 Scattering experiments

Measure S-matrix (i.e., the asymptotic form of the scattering wave function):

Ψ(+)
⃗p

( ⃗r ) ⟶ ei ⃗p⋅ ⃗r + fp( ̂r)
eipr

r



 Femtoscopy experiments

Measure correlation functions. The Koonin-Pratt model:

C(p) = ∫ S( ⃗r ) Ψ(+)
⃗p

( ⃗r )
2

d3rS( ⃗r )

Source term: Needs to be modeled (!)

Goal: Extract the strong interaction between hadrons by measuring C(p)
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Measurable effects of the strong interaction: S-matrix, nuclear spectra, resonances, EoS,…
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Some examples of non-observable quantities in nuclear physics:
— deuteron D-state probability  J. Friar PRC 20 (1979) 
— matter radii, i.e.,   (but: charge, axial, … radii are, of course, observable) 
— strong proton-proton scattering length  P. Sauer PRL 32 (74), J. Gegelia EPJA 19 (2004)  


— nuclear wave functions 
— off-shell effects 
— …
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Non-observable quantities can be still very useful if one can control scheme dependence: 
— nuclear forces and currents in chiral EFT  EE, Hammer, Meißner, RMP 81 (2009) 
— LECs in the effective pion Lagrangian  FLAG Review 
— quark masses  PDG 
— …
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The source function  is assumed universal (otherwise cannot probe the interaction…)S( ⃗r )
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( ⃗r )
2
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One can always change a basis on the Hilbert space by means of a UT:

⟨Ψ(+)
⃗p

| ̂S |Ψ(+)
⃗p

⟩ = (⟨Ψ(+)
⃗p

| Û†) (Û ̂SÛ†) (Û |Ψ(+)
⃗p

⟩) = ⟨Ψ′￼
(+)

⃗p | ̂S′￼|Ψ′￼
(+)

⃗p ⟩̂S′￼

Observable quantities ( , asymptotics of the w.f.) do not depend on the basis, while  
not-observable ones (wave functions, nuclear forces, the source term) generally do… 

C(p)

  assuming a universal source, , introduces potentially large model dependence!⇒ ̂S′￼= ̂S

The source function  is assumed universal (otherwise cannot probe the interaction…)S( ⃗r )

for  S( ⃗r′￼, ⃗r ) ≡ ⟨ ⃗r′￼| ̂S | ⃗r ⟩ = δ( ⃗r′￼− ⃗r ) S( ⃗r )

= ⟨Ψ(+)
⃗p

| ̂S |Ψ(+)
⃗p

⟩



 Gedankenexperiment
How severe is this model dependence in practice?

Let’s do Gedankenexperiment: ALICE & Bob analyze a femtoscopy measurement… 
(two distinguishable spin-less particles, no Coulomb)
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Let’s do Gedankenexperiment: ALICE & Bob analyze a femtoscopy measurement… 
(two distinguishable spin-less particles, no Coulomb)

Scattering wave functions can be obtained from the half-shell K/T-matrix. With little 
algebra, one finds:

C(k) = ⟨Ψ(+)
−k | ̂S12 |Ψ(+)

−k⟩ = ∑
l

2l + 1
4π

cos2 δl(k) [Sl
kk + Kl

kp ∘ Sl
pk + Sl

kp ∘ Kl
pk + Kl

kp ∘ Sl
pp′￼∘ Kl

p′￼k]

Al
pp′￼∘ Bl

p′￼p′￼′￼ ≡ ∫
∞

0
p′￼2dp′￼Al

pp′￼
2μ

k2 − p′￼2 Bl
p′￼p′￼′￼Sl

pp′￼≡ ⟨pl | ̂S12 |p′￼l⟩, Kl
pk = Kl

kp ≡ ⟨pl | K̂ |kl⟩,where



 Gedankenexperiment
How severe is this model dependence in practice?

Let’s do Gedankenexperiment: ALICE & Bob analyze a femtoscopy measurement… 
(two distinguishable spin-less particles, no Coulomb)

The interaction is taken as the chiral EFT@N4LO+ projected on spin-  states:0
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For the source term, the (usual) static local Gaussian form is chosen:

 S( ⃗r ) =
1

(2πr2
0)3/2

e−r2/(4r2
0 ) ⟶ S( ⃗q) ≡ ⟨ ⃗p′￼| ̂S | ⃗p⟩ = e−q2r2

0
FT

= ⃗p′￼− ⃗p choose:  fmr0 = 1.5
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Let’s do Gedankenexperiment: ALICE & Bob analyze a femtoscopy measurement… 
(two distinguishable spin-less particles, no Coulomb)
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 Gedankenexperiment
Bob knows that physics is independent on the choice of basis in the Hilbert space.  

He uses states ,  where  ,  .|ΨBob⟩ = Û |ΨAlice⟩ Û = 1 − 2 |g⟩⟨g | ⟨g |g⟩ = 1
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Bob knows that physics is independent on the choice of basis in the Hilbert space.  

He uses states ,  where  ,  .|ΨBob⟩ = Û |ΨAlice⟩ Û = 1 − 2 |g⟩⟨g | ⟨g |g⟩ = 1

α = 1 fm−1 α = 0.7 fm−1

g( ⃗r ) ≡ ⟨ ⃗r |g⟩ = C r (1 − βr) e−αr Peter Sauer, PRL 32 (74) Specifically, choose
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FIG. 2. (Color online). S-wave momentum-space matrix el-
ements of the potential in units of GeV�2 (left column) and
of the dimensionless source term (right column) as chosen by
Alice (upper row) and seen by Bob (middle and bottom rows).

Here, �0(k) is the S-wave phase shift. The wave-function
 (r, k) can be obtained from the half-shell T-matrix, see
e.g. Ref. [21]. However, to avoid numerical integrations
of strongly oscillating functions, it is more convenient to
directly compute the matrix element in Eq. (2) in the
partial-wave momentum-space basis. For a spherically
symmetric source, we find (see also Ref. [22]):

C(k) =
X

l

2l + 1

4⇡
cos2 �l(k)

h
S
l
kk +K

l
kp � Sl

pk

+ S
l
kp �Kl

pk +K
l
kp � Sl

pp0 �Kl
p0k

i
, (8)

where we have introduced a short-hand notation S
l
pp0 ⌘

hpl|Ŝ12|p0li, Kl
pk = K

l
kp ⌘ hpl|K̂|kli and

A
l
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Z 1

0

p
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dp

0
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l
pp0

2µ

k2 � p02
B

l
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Here, µ is the reduced mass and �
R

denotes the Cauchy
principal value integral. The half-shell K-matrix can be
easily calculated for arbitrary short-range interactions by
solving the Lippmann-Schwinger integral equation

K
l
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l
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l
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FIG. 3. (Color online). Correlation functions calculated by
Alice and Bob. The results of Alice are shown by open cir-
cles. Red dash-dotted and dash-double-dotted lines show the
correlation functions calculated by Bob using the interactions
VBob-I and VBob-II, respectively, and the source term S

Alice
12

(assumed to be universal). The overlapping blue dotted and
dashed lines show the results of Bob using the properly trans-
formed source terms SBob-I

12 and S
Bob-II
12 , respectively.

using standard numerical methods. The on-shell K-
matrix is related to the S-matrix via Sl(k) = e

2i�l(k) =
1 � 2i⇡µkKl

kk. We note in passing that Eq. (8) can be
brought to the form of Eq. (6) if the source term is local
and the interaction vanishes in all l 6= 0 channels. The
correlation function calculated by Alice using Eq. (8) is
shown by open circles in Fig. 3. We have also checked
these results by using Eq. (1) directly.
On the other hand, Bob performs his analysis using

a di↵erent basis in the Hilbert space with | Bobi =
Û | Alicei, where the unitary operator is taken as a rank-1
separable form

Û = 1� 2|gihg|, hg|gi = 1 , (11)

and |gi is chosen following Ref. [23] as

g(r) ⌘ hr|gi = Cr(1� �r)e�↵r
, (12)

with C the normalization constant fixed fromR
dr
⇥
g(r)

⇤2
= 1. The parameter ↵ specifies the in-

verse range of the transformation, while �
�1 gives the

position of the node in the profile function g(r). The
interaction VAlice in Bob’s convention has the form

V̂Bob = Û

✓
p̂
2

2µ
+ V̂Alice

◆
Û

† � p̂
2

2µ
, (13)

where p̂ is the cms momentum operator. It can eas-
ily be calculated numerically in momentum space. No-
tice that the considered transformation acts only in the
S-wave. To be specific, consider two di↵erent transfor-
mations corresponding to the parameters ↵ = 1.0 fm�1,
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✓
p̂
2

2µ
+ V̂Alice

◆
Û
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FIG. 3. (Color online). Correlation functions calculated by
Alice and Bob. The results of Alice are shown by open cir-
cles. Red dash-dotted and dash-double-dotted lines show the
correlation functions calculated by Bob using the interactions
VBob-I and VBob-II, respectively, and the source term S

Alice
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(assumed to be universal). The overlapping blue dotted and
dashed lines show the results of Bob using the properly trans-
formed source terms SBob-I
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using standard numerical methods. The on-shell K-
matrix is related to the S-matrix via Sl(k) = e

2i�l(k) =
1 � 2i⇡µkKl

kk. We note in passing that Eq. (8) can be
brought to the form of Eq. (6) if the source term is local
and the interaction vanishes in all l 6= 0 channels. The
correlation function calculated by Alice using Eq. (8) is
shown by open circles in Fig. 3. We have also checked
these results by using Eq. (1) directly.
On the other hand, Bob performs his analysis using

a di↵erent basis in the Hilbert space with | Bobi =
Û | Alicei, where the unitary operator is taken as a rank-1
separable form

Û = 1� 2|gihg|, hg|gi = 1 , (11)

and |gi is chosen following Ref. [23] as

g(r) ⌘ hr|gi = Cr(1� �r)e�↵r
, (12)

with C the normalization constant fixed fromR
dr
⇥
g(r)

⇤2
= 1. The parameter ↵ specifies the in-

verse range of the transformation, while �
�1 gives the

position of the node in the profile function g(r). The
interaction VAlice in Bob’s convention has the form

V̂Bob = Û
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◆
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† � p̂
2

2µ
, (13)

where p̂ is the cms momentum operator. It can eas-
ily be calculated numerically in momentum space. No-
tice that the considered transformation acts only in the
S-wave. To be specific, consider two di↵erent transfor-
mations corresponding to the parameters ↵ = 1.0 fm�1,
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FIG. 2. (Color online). S-wave momentum-space matrix el-
ements of the potential in units of GeV�2 (left column) and
of the dimensionless source term (right column) as chosen by
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Here, �0(k) is the S-wave phase shift. The wave-function
 (r, k) can be obtained from the half-shell T-matrix, see
e.g. Ref. [21]. However, to avoid numerical integrations
of strongly oscillating functions, it is more convenient to
directly compute the matrix element in Eq. (2) in the
partial-wave momentum-space basis. For a spherically
symmetric source, we find (see also Ref. [22]):
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2i�l(k) =
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kk. We note in passing that Eq. (8) can be
brought to the form of Eq. (6) if the source term is local
and the interaction vanishes in all l 6= 0 channels. The
correlation function calculated by Alice using Eq. (8) is
shown by open circles in Fig. 3. We have also checked
these results by using Eq. (1) directly.
On the other hand, Bob performs his analysis using

a di↵erent basis in the Hilbert space with | Bobi =
Û | Alicei, where the unitary operator is taken as a rank-1
separable form

Û = 1� 2|gihg|, hg|gi = 1 , (11)

and |gi is chosen following Ref. [23] as
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with C the normalization constant fixed fromR
dr
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= 1. The parameter ↵ specifies the in-
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where p̂ is the cms momentum operator. It can eas-
ily be calculated numerically in momentum space. No-
tice that the considered transformation acts only in the
S-wave. To be specific, consider two di↵erent transfor-
mations corresponding to the parameters ↵ = 1.0 fm�1,
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Here, �0(k) is the S-wave phase shift. The wave-function
 (r, k) can be obtained from the half-shell T-matrix, see
e.g. Ref. [21]. However, to avoid numerical integrations
of strongly oscillating functions, it is more convenient to
directly compute the matrix element in Eq. (2) in the
partial-wave momentum-space basis. For a spherically
symmetric source, we find (see also Ref. [22]):
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(assumed to be universal). The overlapping blue dotted and
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using standard numerical methods. The on-shell K-
matrix is related to the S-matrix via Sl(k) = e

2i�l(k) =
1 � 2i⇡µkKl

kk. We note in passing that Eq. (8) can be
brought to the form of Eq. (6) if the source term is local
and the interaction vanishes in all l 6= 0 channels. The
correlation function calculated by Alice using Eq. (8) is
shown by open circles in Fig. 3. We have also checked
these results by using Eq. (1) directly.
On the other hand, Bob performs his analysis using

a di↵erent basis in the Hilbert space with | Bobi =
Û | Alicei, where the unitary operator is taken as a rank-1
separable form

Û = 1� 2|gihg|, hg|gi = 1 , (11)

and |gi is chosen following Ref. [23] as

g(r) ⌘ hr|gi = Cr(1� �r)e�↵r
, (12)

with C the normalization constant fixed fromR
dr
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g(r)

⇤2
= 1. The parameter ↵ specifies the in-

verse range of the transformation, while �
�1 gives the

position of the node in the profile function g(r). The
interaction VAlice in Bob’s convention has the form
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◆
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, (13)

where p̂ is the cms momentum operator. It can eas-
ily be calculated numerically in momentum space. No-
tice that the considered transformation acts only in the
S-wave. To be specific, consider two di↵erent transfor-
mations corresponding to the parameters ↵ = 1.0 fm�1,
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ements of the potential in units of GeV�2 (left column) and
of the dimensionless source term (right column) as chosen by
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Here, �0(k) is the S-wave phase shift. The wave-function
 (r, k) can be obtained from the half-shell T-matrix, see
e.g. Ref. [21]. However, to avoid numerical integrations
of strongly oscillating functions, it is more convenient to
directly compute the matrix element in Eq. (2) in the
partial-wave momentum-space basis. For a spherically
symmetric source, we find (see also Ref. [22]):
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denotes the Cauchy
principal value integral. The half-shell K-matrix can be
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(assumed to be universal). The overlapping blue dotted and
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using standard numerical methods. The on-shell K-
matrix is related to the S-matrix via Sl(k) = e

2i�l(k) =
1 � 2i⇡µkKl

kk. We note in passing that Eq. (8) can be
brought to the form of Eq. (6) if the source term is local
and the interaction vanishes in all l 6= 0 channels. The
correlation function calculated by Alice using Eq. (8) is
shown by open circles in Fig. 3. We have also checked
these results by using Eq. (1) directly.
On the other hand, Bob performs his analysis using

a di↵erent basis in the Hilbert space with | Bobi =
Û | Alicei, where the unitary operator is taken as a rank-1
separable form

Û = 1� 2|gihg|, hg|gi = 1 , (11)

and |gi is chosen following Ref. [23] as

g(r) ⌘ hr|gi = Cr(1� �r)e�↵r
, (12)

with C the normalization constant fixed fromR
dr
⇥
g(r)

⇤2
= 1. The parameter ↵ specifies the in-

verse range of the transformation, while �
�1 gives the

position of the node in the profile function g(r). The
interaction VAlice in Bob’s convention has the form
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◆
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, (13)

where p̂ is the cms momentum operator. It can eas-
ily be calculated numerically in momentum space. No-
tice that the considered transformation acts only in the
S-wave. To be specific, consider two di↵erent transfor-
mations corresponding to the parameters ↵ = 1.0 fm�1,
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ements of the potential in units of GeV�2 (left column) and
of the dimensionless source term (right column) as chosen by
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Here, �0(k) is the S-wave phase shift. The wave-function
 (r, k) can be obtained from the half-shell T-matrix, see
e.g. Ref. [21]. However, to avoid numerical integrations
of strongly oscillating functions, it is more convenient to
directly compute the matrix element in Eq. (2) in the
partial-wave momentum-space basis. For a spherically
symmetric source, we find (see also Ref. [22]):
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hpl|Ŝ12|p0li, Kl
pk = K

l
kp ⌘ hpl|K̂|kli and

A
l
pp0 �Bl

p0p00 ⌘ �
Z 1

0

p
02
dp

0
A

l
pp0

2µ

k2 � p02
B

l
p0p00 . (9)
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denotes the Cauchy
principal value integral. The half-shell K-matrix can be
easily calculated for arbitrary short-range interactions by
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FIG. 3. (Color online). Correlation functions calculated by
Alice and Bob. The results of Alice are shown by open cir-
cles. Red dash-dotted and dash-double-dotted lines show the
correlation functions calculated by Bob using the interactions
VBob-I and VBob-II, respectively, and the source term S

Alice
12

(assumed to be universal). The overlapping blue dotted and
dashed lines show the results of Bob using the properly trans-
formed source terms SBob-I

12 and S
Bob-II
12 , respectively.

using standard numerical methods. The on-shell K-
matrix is related to the S-matrix via Sl(k) = e

2i�l(k) =
1 � 2i⇡µkKl

kk. We note in passing that Eq. (8) can be
brought to the form of Eq. (6) if the source term is local
and the interaction vanishes in all l 6= 0 channels. The
correlation function calculated by Alice using Eq. (8) is
shown by open circles in Fig. 3. We have also checked
these results by using Eq. (1) directly.
On the other hand, Bob performs his analysis using

a di↵erent basis in the Hilbert space with | Bobi =
Û | Alicei, where the unitary operator is taken as a rank-1
separable form

Û = 1� 2|gihg|, hg|gi = 1 , (11)

and |gi is chosen following Ref. [23] as

g(r) ⌘ hr|gi = Cr(1� �r)e�↵r
, (12)

with C the normalization constant fixed fromR
dr
⇥
g(r)

⇤2
= 1. The parameter ↵ specifies the in-

verse range of the transformation, while �
�1 gives the

position of the node in the profile function g(r). The
interaction VAlice in Bob’s convention has the form

V̂Bob = Û
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+ V̂Alice

◆
Û

† � p̂
2

2µ
, (13)

where p̂ is the cms momentum operator. It can eas-
ily be calculated numerically in momentum space. No-
tice that the considered transformation acts only in the
S-wave. To be specific, consider two di↵erent transfor-
mations corresponding to the parameters ↵ = 1.0 fm�1,

̂VBob = Û (Ĥ0 + ̂VAlice) Û† − Ĥ0In Bob’s notation, the potential takes the form:  
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However, the correlation functions calculated by Bob look differently  
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The solution is, of course, trivial:  
The source term needs to be translated  

to Bob’s convention!
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FIG. 2. (Color online). S-wave momentum-space matrix el-
ements of the potential in units of GeV�2 (left column) and
of the dimensionless source term (right column) as chosen by
Alice (upper row) and seen by Bob (middle and bottom rows).

Here, �0(k) is the S-wave phase shift. The wave-function
 (r, k) can be obtained from the half-shell T-matrix, see
e.g. Ref. [21]. However, to avoid numerical integrations
of strongly oscillating functions, it is more convenient to
directly compute the matrix element in Eq. (2) in the
partial-wave momentum-space basis. For a spherically
symmetric source, we find (see also Ref. [22]):
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FIG. 3. (Color online). Correlation functions calculated by
Alice and Bob. The results of Alice are shown by open cir-
cles. Red dash-dotted and dash-double-dotted lines show the
correlation functions calculated by Bob using the interactions
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(assumed to be universal). The overlapping blue dotted and
dashed lines show the results of Bob using the properly trans-
formed source terms SBob-I
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matrix is related to the S-matrix via Sl(k) = e
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kk. We note in passing that Eq. (8) can be
brought to the form of Eq. (6) if the source term is local
and the interaction vanishes in all l 6= 0 channels. The
correlation function calculated by Alice using Eq. (8) is
shown by open circles in Fig. 3. We have also checked
these results by using Eq. (1) directly.
On the other hand, Bob performs his analysis using

a di↵erent basis in the Hilbert space with | Bobi =
Û | Alicei, where the unitary operator is taken as a rank-1
separable form

Û = 1� 2|gihg|, hg|gi = 1 , (11)

and |gi is chosen following Ref. [23] as
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interaction VAlice in Bob’s convention has the form

V̂Bob = Û
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mations corresponding to the parameters ↵ = 1.0 fm�1,

3

0.1 0.2 0.3 0.400

0.1

0.2

0.3

0.4

0.1 0.2 0.3 0.4 0.50

VAlice SAlice12

VBob-I SBob-I12

VBob-II SBob-II12

0

0.1

0.2

0.3

0.4

0

0.1

0.2

0.3

0.4

0.5

10

5

0

-2

-4
-6

40

20

0

-5

-10

600

400

200

-5
-10

0

-15

 [GeV]p [GeV]p

 [G
eV

]
p� 

 [G
eV

]
p� 

 [G
eV

]
p� 

FIG. 2. (Color online). S-wave momentum-space matrix el-
ements of the potential in units of GeV�2 (left column) and
of the dimensionless source term (right column) as chosen by
Alice (upper row) and seen by Bob (middle and bottom rows).

Here, �0(k) is the S-wave phase shift. The wave-function
 (r, k) can be obtained from the half-shell T-matrix, see
e.g. Ref. [21]. However, to avoid numerical integrations
of strongly oscillating functions, it is more convenient to
directly compute the matrix element in Eq. (2) in the
partial-wave momentum-space basis. For a spherically
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these results by using Eq. (1) directly.
On the other hand, Bob performs his analysis using

a di↵erent basis in the Hilbert space with | Bobi =
Û | Alicei, where the unitary operator is taken as a rank-1
separable form

Û = 1� 2|gihg|, hg|gi = 1 , (11)

and |gi is chosen following Ref. [23] as
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with C the normalization constant fixed fromR
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Û

† � p̂
2

2µ
, (13)
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S-wave. To be specific, consider two di↵erent transfor-
mations corresponding to the parameters ↵ = 1.0 fm�1,
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FIG. 2. (Color online). S-wave momentum-space matrix el-
ements of the potential in units of GeV�2 (left column) and
of the dimensionless source term (right column) as chosen by
Alice (upper row) and seen by Bob (middle and bottom rows).

Here, �0(k) is the S-wave phase shift. The wave-function
 (r, k) can be obtained from the half-shell T-matrix, see
e.g. Ref. [21]. However, to avoid numerical integrations
of strongly oscillating functions, it is more convenient to
directly compute the matrix element in Eq. (2) in the
partial-wave momentum-space basis. For a spherically
symmetric source, we find (see also Ref. [22]):
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1 � 2i⇡µkKl

kk. We note in passing that Eq. (8) can be
brought to the form of Eq. (6) if the source term is local
and the interaction vanishes in all l 6= 0 channels. The
correlation function calculated by Alice using Eq. (8) is
shown by open circles in Fig. 3. We have also checked
these results by using Eq. (1) directly.
On the other hand, Bob performs his analysis using

a di↵erent basis in the Hilbert space with | Bobi =
Û | Alicei, where the unitary operator is taken as a rank-1
separable form

Û = 1� 2|gihg|, hg|gi = 1 , (11)

and |gi is chosen following Ref. [23] as
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with C the normalization constant fixed fromR
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= 1. The parameter ↵ specifies the in-
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where p̂ is the cms momentum operator. It can eas-
ily be calculated numerically in momentum space. No-
tice that the considered transformation acts only in the
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mations corresponding to the parameters ↵ = 1.0 fm�1,
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of the dimensionless source term (right column) as chosen by
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Here, �0(k) is the S-wave phase shift. The wave-function
 (r, k) can be obtained from the half-shell T-matrix, see
e.g. Ref. [21]. However, to avoid numerical integrations
of strongly oscillating functions, it is more convenient to
directly compute the matrix element in Eq. (2) in the
partial-wave momentum-space basis. For a spherically
symmetric source, we find (see also Ref. [22]):
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matrix is related to the S-matrix via Sl(k) = e

2i�l(k) =
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kk. We note in passing that Eq. (8) can be
brought to the form of Eq. (6) if the source term is local
and the interaction vanishes in all l 6= 0 channels. The
correlation function calculated by Alice using Eq. (8) is
shown by open circles in Fig. 3. We have also checked
these results by using Eq. (1) directly.
On the other hand, Bob performs his analysis using

a di↵erent basis in the Hilbert space with | Bobi =
Û | Alicei, where the unitary operator is taken as a rank-1
separable form

Û = 1� 2|gihg|, hg|gi = 1 , (11)

and |gi is chosen following Ref. [23] as
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with C the normalization constant fixed fromR
dr
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= 1. The parameter ↵ specifies the in-
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where p̂ is the cms momentum operator. It can eas-
ily be calculated numerically in momentum space. No-
tice that the considered transformation acts only in the
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mations corresponding to the parameters ↵ = 1.0 fm�1,
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FIG. 2. (Color online). S-wave momentum-space matrix el-
ements of the potential in units of GeV�2 (left column) and
of the dimensionless source term (right column) as chosen by
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Here, �0(k) is the S-wave phase shift. The wave-function
 (r, k) can be obtained from the half-shell T-matrix, see
e.g. Ref. [21]. However, to avoid numerical integrations
of strongly oscillating functions, it is more convenient to
directly compute the matrix element in Eq. (2) in the
partial-wave momentum-space basis. For a spherically
symmetric source, we find (see also Ref. [22]):
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VBob-I and VBob-II, respectively, and the source term S
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matrix is related to the S-matrix via Sl(k) = e

2i�l(k) =
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kk. We note in passing that Eq. (8) can be
brought to the form of Eq. (6) if the source term is local
and the interaction vanishes in all l 6= 0 channels. The
correlation function calculated by Alice using Eq. (8) is
shown by open circles in Fig. 3. We have also checked
these results by using Eq. (1) directly.
On the other hand, Bob performs his analysis using

a di↵erent basis in the Hilbert space with | Bobi =
Û | Alicei, where the unitary operator is taken as a rank-1
separable form

Û = 1� 2|gihg|, hg|gi = 1 , (11)

and |gi is chosen following Ref. [23] as
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with C the normalization constant fixed fromR
dr
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= 1. The parameter ↵ specifies the in-
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where p̂ is the cms momentum operator. It can eas-
ily be calculated numerically in momentum space. No-
tice that the considered transformation acts only in the
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mations corresponding to the parameters ↵ = 1.0 fm�1,

3

0.1 0.2 0.3 0.400

0.1

0.2

0.3

0.4

0.1 0.2 0.3 0.4 0.50

VAlice SAlice12

VBob-I SBob-I12

VBob-II SBob-II12

0

0.1

0.2

0.3

0.4

0

0.1

0.2

0.3

0.4

0.5

10

5

0

-2

-4
-6

40

20

0

-5

-10

600

400

200

-5
-10

0

-15

 [GeV]p [GeV]p

 [G
eV

]
p� 

 [G
eV

]
p� 

 [G
eV

]
p� 

FIG. 2. (Color online). S-wave momentum-space matrix el-
ements of the potential in units of GeV�2 (left column) and
of the dimensionless source term (right column) as chosen by
Alice (upper row) and seen by Bob (middle and bottom rows).

Here, �0(k) is the S-wave phase shift. The wave-function
 (r, k) can be obtained from the half-shell T-matrix, see
e.g. Ref. [21]. However, to avoid numerical integrations
of strongly oscillating functions, it is more convenient to
directly compute the matrix element in Eq. (2) in the
partial-wave momentum-space basis. For a spherically
symmetric source, we find (see also Ref. [22]):
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kk. We note in passing that Eq. (8) can be
brought to the form of Eq. (6) if the source term is local
and the interaction vanishes in all l 6= 0 channels. The
correlation function calculated by Alice using Eq. (8) is
shown by open circles in Fig. 3. We have also checked
these results by using Eq. (1) directly.
On the other hand, Bob performs his analysis using

a di↵erent basis in the Hilbert space with | Bobi =
Û | Alicei, where the unitary operator is taken as a rank-1
separable form

Û = 1� 2|gihg|, hg|gi = 1 , (11)
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ements of the potential in units of GeV�2 (left column) and
of the dimensionless source term (right column) as chosen by
Alice (upper row) and seen by Bob (middle and bottom rows).

Here, �0(k) is the S-wave phase shift. The wave-function
 (r, k) can be obtained from the half-shell T-matrix, see
e.g. Ref. [21]. However, to avoid numerical integrations
of strongly oscillating functions, it is more convenient to
directly compute the matrix element in Eq. (2) in the
partial-wave momentum-space basis. For a spherically
symmetric source, we find (see also Ref. [22]):
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cles. Red dash-dotted and dash-double-dotted lines show the
correlation functions calculated by Bob using the interactions
VBob-I and VBob-II, respectively, and the source term S

Alice
12

(assumed to be universal). The overlapping blue dotted and
dashed lines show the results of Bob using the properly trans-
formed source terms SBob-I

12 and S
Bob-II
12 , respectively.

using standard numerical methods. The on-shell K-
matrix is related to the S-matrix via Sl(k) = e

2i�l(k) =
1 � 2i⇡µkKl

kk. We note in passing that Eq. (8) can be
brought to the form of Eq. (6) if the source term is local
and the interaction vanishes in all l 6= 0 channels. The
correlation function calculated by Alice using Eq. (8) is
shown by open circles in Fig. 3. We have also checked
these results by using Eq. (1) directly.
On the other hand, Bob performs his analysis using

a di↵erent basis in the Hilbert space with | Bobi =
Û | Alicei, where the unitary operator is taken as a rank-1
separable form

Û = 1� 2|gihg|, hg|gi = 1 , (11)

and |gi is chosen following Ref. [23] as

g(r) ⌘ hr|gi = Cr(1� �r)e�↵r
, (12)

with C the normalization constant fixed fromR
dr
⇥
g(r)

⇤2
= 1. The parameter ↵ specifies the in-

verse range of the transformation, while �
�1 gives the

position of the node in the profile function g(r). The
interaction VAlice in Bob’s convention has the form

V̂Bob = Û

✓
p̂
2

2µ
+ V̂Alice

◆
Û

† � p̂
2

2µ
, (13)

where p̂ is the cms momentum operator. It can eas-
ily be calculated numerically in momentum space. No-
tice that the considered transformation acts only in the
S-wave. To be specific, consider two di↵erent transfor-
mations corresponding to the parameters ↵ = 1.0 fm�1,
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Proton-proton correlation functions



 Proton-proton scattering wave function 

The scattering wave function can be obtained using the Vincent-Phatak method:

strong 

interaction

 a ∼

 R
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interaction

 a ∼

 R

Screened Coulomb potential  with : VR
C(r) R ≫ a

 for , while  otherwise VR
C(r) = VC(r) r ≤ R VR

C(r) = 0

Matching the two solutions at  yields the 
full scattering wave function 

r = R

∼ jl(kr) + ∫ p2dp jl(pr)
Tj

s,l (p, k)
k2 − p2 + iϵ

1
kr

Fl(η, rk) +
1

2irk (Gl(η, rk) + iFl(η, rk))(e2iδl(k) − 1)
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FIG. S1. (Color online). The 1S0 proton-proton scattering wave function for k = 20 MeV. The results of Alice are shown
by open black circles. Red dash-dotted lines show the wave function obtained by applying the UT of Eq. (11) with the set-I
parameters directly on the wave function of Alice. Red crosses show the wave function calculated from the potential VBob-I
obtained using Eq. (S3). Green solid lines show the asymptotic behavior of the wave function in terms of Coulomb wave
functions and the phaseshift.

as done in the main text. More precisely, the unitarily transformed strong proton-proton potential used by Bob is
defined by

V̂Bob = Û

✓
p̂
2

2µ
+ V̂Alice + V̂

R
C

◆
Û

† � p̂
2

2µ
� V̂

R
C

. (S3)

The usage of the screened instead of the full Coulomb potential in the above equation is justified for the screening
radius chosen much larger than the range of the unitary transformation. For the transformation given in Eq. (11),
this condition corresponds to R � ↵

�1. To demonstrate numerical stability of our calculations, we show in Fig. S1
for one choice of parameters of the UT (set-I) that the two di↵erent ways of computing the transformed wave function
indeed lead to the same results. As expected, the unitarily transformed (Bob-I) and original (Alice) wave functions
di↵er substantially in the interior region but coincide at large distances. Therefore, extracting the phase shift from
the asymptotic (large-distance) behavior of the wave function yields identical results, regardless of whether or not the
UT is applied.

With the wave functions obtained as described above, it is now possible to compute correlation functions using
the Koonin-Pratt formula. In Fig. S2, we compare the proton-proton correlation functions computed by Alice and
Bob. As expected, if the source term is assumed to be universal and is not consistently transformed alongside the
wave function, significant di↵erences in the resulting correlation functions emerge, see the open circles and red lines.
This occurs despite the fact that all wave functions exhibit identical long-range behavior (as shown in the inset of
Fig. S1). These discrepancies highlight the importance of consistently treating both the wave function and the source
within the same unitary framework. In the same figure, we also show by blue lines the correlation function obtained
by unitarily transforming the wave function and simultaneously transforming the source term (thereby making the
source term non-local). The resulting correlation functions are in perfect agreement with the one calculated by Alice
reflecting the fact that UTs do not change observable quantities.

ΨAlice(r)

ΨBob−I(r) = [ÛI ΨAlice](r)

on-shell approximation

 can also be calculated from the transformed potential:ΨBob(r)

̂VBob = Û( ̂p2

2m
+ ̂VAlice + ̂VR

C)U† −
̂p2

2m
− VR

C
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Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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Concern: Potentially large scheme dependence in the 3N force! 



 Scheme dependence in chiral EFT

Generated a set of 27 N4LO+ potentials with   Doff
1S0, 3S1 = {±3, 0}, Doff

ϵ1 = {±1, 0}
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FIG. S1. (Color online). The results for the neutron-proton phase shifts and mixing angles calculated using the 27 N4LO+

potentials with di↵erent choices of the o↵-shell LECs specified in Eq. (S9) are shown by light-shaded blue bands. Phase shifts
and mixing angles obtained using the potential from Ref. [36] with D

o↵
1S0

= D
o↵
3S1

= D
o↵
✏1 = 0 are shown by orange lines. In all

cases, the cuto↵ is set to ⇤ = 450 MeV.

LECs switched o↵, the resulting N3LO LECs Di fulfill |Di|  2.7 ⇥ 104 GeV�6 for ⇤ = 450 MeV [19]. For the LEC
D

o↵
✏1 , the values Do↵

✏1 = ±3 turn out to cause unrealistically strong modifications of the deuteron D-state probability,
which would render the resulting potentials impractical for many-body applications [63]. We have therefore limited
ourselves to the values |Do↵

✏1 |  1.

For each of the 26 combinations of the o↵-shell LECs in Eq. (S9) beyond the already available one corresponding
to Eq. (S8), we have fitted the remaining LECs accompanying the NN contact interactions to the neutron-proton and
proton-proton scattering data up to Elab = 280 MeV, following the same protocol and using the same database as
employed in Refs. [36, 64]. We emphasize that when changing the values of the o↵-shell LECs and/or the LECs beyond
the considered expansion order, the LECs accompanying contact interactions at all orders must be refitted. This
procedure corresponds to implicit renormalization within the considered EFT framework and ensures that all results
are given in terms of physical parameters (i.e., experimental data for observables used in the fit) rather than bare LECs,
see Ref. [26] for details. For all considered cases, we found an essentially perfect description of the neutron-proton (np)
and proton-proton scattering data as reflected in the �

2
/datum-values in the range of �2

/datum = 1.003 . . . 1.007.
These results provide an important consistency check of our calculations and show, in particular, that the contributions
in Eq. (S5) that have been neglected at the considered accuracy level based on the power-counting arguments are
indeed numerically negligibly small.

In Fig. S1, we show the resulting np phase shifts and mixing angles in low partial waves. These results demonstrate
that the 27 potentials can indeed be regarded as essentially phase equivalent. The visible (but tiny) dependence of
the mixing angle ✏1 on the o↵-shell LECs reflects the fact that this particular observable is less well constrained by
the experimental data as compared to other phase shifts. For an estimation of the EFT truncation uncertainty and
other types of uncertainties see Refs. [26, 61, 64].

The predictions for the deuteron properties for the 27 N4LO+ potentials are collected in Table S1. The resulting
values for the S-state normalization observable AS and the asymptotic D/S-state ratio ⌘ show, similarly to the phase
shifts, a very small sensitivity to the o↵-shell LECs and agree with the experimental data within errors, see Ref. [61]
for the error analysis. On the other hand, the matter radius rm (i.e., the expectation value of the relative distance
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and mixing angles obtained using the potential from Ref. [36] with D
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✏1 = 0 are shown by orange lines. In all

cases, the cuto↵ is set to ⇤ = 450 MeV.

LECs switched o↵, the resulting N3LO LECs Di fulfill |Di|  2.7 ⇥ 104 GeV�6 for ⇤ = 450 MeV [19]. For the LEC
D

o↵
✏1 , the values Do↵

✏1 = ±3 turn out to cause unrealistically strong modifications of the deuteron D-state probability,
which would render the resulting potentials impractical for many-body applications [63]. We have therefore limited
ourselves to the values |Do↵

✏1 |  1.

For each of the 26 combinations of the o↵-shell LECs in Eq. (S9) beyond the already available one corresponding
to Eq. (S8), we have fitted the remaining LECs accompanying the NN contact interactions to the neutron-proton and
proton-proton scattering data up to Elab = 280 MeV, following the same protocol and using the same database as
employed in Refs. [36, 64]. We emphasize that when changing the values of the o↵-shell LECs and/or the LECs beyond
the considered expansion order, the LECs accompanying contact interactions at all orders must be refitted. This
procedure corresponds to implicit renormalization within the considered EFT framework and ensures that all results
are given in terms of physical parameters (i.e., experimental data for observables used in the fit) rather than bare LECs,
see Ref. [26] for details. For all considered cases, we found an essentially perfect description of the neutron-proton (np)
and proton-proton scattering data as reflected in the �
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/datum-values in the range of �2

/datum = 1.003 . . . 1.007.
These results provide an important consistency check of our calculations and show, in particular, that the contributions
in Eq. (S5) that have been neglected at the considered accuracy level based on the power-counting arguments are
indeed numerically negligibly small.

In Fig. S1, we show the resulting np phase shifts and mixing angles in low partial waves. These results demonstrate
that the 27 potentials can indeed be regarded as essentially phase equivalent. The visible (but tiny) dependence of
the mixing angle ✏1 on the o↵-shell LECs reflects the fact that this particular observable is less well constrained by
the experimental data as compared to other phase shifts. For an estimation of the EFT truncation uncertainty and
other types of uncertainties see Refs. [26, 61, 64].

The predictions for the deuteron properties for the 27 N4LO+ potentials are collected in Table S1. The resulting
values for the S-state normalization observable AS and the asymptotic D/S-state ratio ⌘ show, similarly to the phase
shifts, a very small sensitivity to the o↵-shell LECs and agree with the experimental data within errors, see Ref. [61]
for the error analysis. On the other hand, the matter radius rm (i.e., the expectation value of the relative distance



 Scheme dependence in chiral EFT

Generated a set of 27 N4LO+ potentials with   Doff
1S0, 3S1 = {±3, 0}, Doff

ϵ1 = {±1, 0}

im Menü über: 
Start > Absatz > 

Listenebene 

The 3 off-shell LECs do affect 3N observables!

NN Forces from Chiral EFT: New Vistas | Sven Heihoff6 

(…an illustration of the Polyzou-Glöckle Theorem, FBS 9 (1990) 97…)

So, which particular three-body force is going to be measured in femtoscopy experiments?
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FIG. S1. (Color online). The results for the neutron-proton phase shifts and mixing angles calculated using the 27 N4LO+

potentials with di↵erent choices of the o↵-shell LECs specified in Eq. (S9) are shown by light-shaded blue bands. Phase shifts
and mixing angles obtained using the potential from Ref. [36] with D

o↵
1S0

= D
o↵
3S1

= D
o↵
✏1 = 0 are shown by orange lines. In all

cases, the cuto↵ is set to ⇤ = 450 MeV.

LECs switched o↵, the resulting N3LO LECs Di fulfill |Di|  2.7 ⇥ 104 GeV�6 for ⇤ = 450 MeV [19]. For the LEC
D

o↵
✏1 , the values Do↵

✏1 = ±3 turn out to cause unrealistically strong modifications of the deuteron D-state probability,
which would render the resulting potentials impractical for many-body applications [63]. We have therefore limited
ourselves to the values |Do↵

✏1 |  1.

For each of the 26 combinations of the o↵-shell LECs in Eq. (S9) beyond the already available one corresponding
to Eq. (S8), we have fitted the remaining LECs accompanying the NN contact interactions to the neutron-proton and
proton-proton scattering data up to Elab = 280 MeV, following the same protocol and using the same database as
employed in Refs. [36, 64]. We emphasize that when changing the values of the o↵-shell LECs and/or the LECs beyond
the considered expansion order, the LECs accompanying contact interactions at all orders must be refitted. This
procedure corresponds to implicit renormalization within the considered EFT framework and ensures that all results
are given in terms of physical parameters (i.e., experimental data for observables used in the fit) rather than bare LECs,
see Ref. [26] for details. For all considered cases, we found an essentially perfect description of the neutron-proton (np)
and proton-proton scattering data as reflected in the �

2
/datum-values in the range of �2

/datum = 1.003 . . . 1.007.
These results provide an important consistency check of our calculations and show, in particular, that the contributions
in Eq. (S5) that have been neglected at the considered accuracy level based on the power-counting arguments are
indeed numerically negligibly small.

In Fig. S1, we show the resulting np phase shifts and mixing angles in low partial waves. These results demonstrate
that the 27 potentials can indeed be regarded as essentially phase equivalent. The visible (but tiny) dependence of
the mixing angle ✏1 on the o↵-shell LECs reflects the fact that this particular observable is less well constrained by
the experimental data as compared to other phase shifts. For an estimation of the EFT truncation uncertainty and
other types of uncertainties see Refs. [26, 61, 64].

The predictions for the deuteron properties for the 27 N4LO+ potentials are collected in Table S1. The resulting
values for the S-state normalization observable AS and the asymptotic D/S-state ratio ⌘ show, similarly to the phase
shifts, a very small sensitivity to the o↵-shell LECs and agree with the experimental data within errors, see Ref. [61]
for the error analysis. On the other hand, the matter radius rm (i.e., the expectation value of the relative distance



 Summary and outlook

Future

Thank you for your attention

Nuclear interactions are intrinsically scheme dependent.

They can be determined/measured provided one fixes the convention and can keep 
it consistently in all applications as done in EFT. (Can this be achieved in femtoscopy?)

The source is not universal and depends on the off-shell behavior of the interaction. 
Off-shell inconsistent treatment of the source and interaction leads to significant mo-
del dependence that should be taken into account.

This is especially problematic for three-body interactions.

More effort needed to quantitatively estimate uncertainty from modeling the source, 
perhaps using EFT-inspired methods. Can model dependence be reduced by 
imposing specific constraints on the interaction (e.g., pion dynamics)? 
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� = 0.25 fm�1 (set-I) and ↵ = 0.7 fm�1, � = 2.0 fm�1

(set-II). These transformations significantly a↵ect the S-
wave momentum-space matrix elements of the interac-
tion as shown in Fig. 2. Yet, physical observables are, of
course, independent of the choice of basis in the Hilbert
space. In particular, we have verified that the phase shifts
calculated from V̂Alice, V̂Bob-I and V̂Bob-II agree with each
other to machine precision, see Fig. 1. In contrast, the
correlation functions calculated by Bob under the as-
sumption of the universal source term, Ŝ

Bob
12

= Ŝ
Alice
12

,
are as expected di↵erent from the result found by Alice,
as depicted by the red lines in Fig. 3. To restore the re-
sult for C(k) obtained by Alice, the source term needs
to be brought into Bob’s convention by applying the UT,
Ŝ
Bob
12

= Û Ŝ
Alice
12

Û
†, see the right column of Fig. 2 and

blue lines in Fig. 3.
Scheme dependence in chiral EFT.—The above exam-

ple shows that o↵-shell ambiguities of the interaction po-
tentials can result in a large model dependence of the
correlation function if the source term is assumed to be
universal. On the other hand, realistic models of had-
ronic interactions are constrained by physical principles
like, e.g., pion-exchange dominance at large distances and
often share similarities when it comes to modeling of the
short-distance behavior. The remaining o↵-shell ambi-
guities may therefore be expected to be less pronounced
in practice. In this context, it is instructive to examine
how scheme dependence manifests itself in chiral EFT for
nuclear forces, [24–26], the most extensively studied and
best understood hadronic interactions. Leaving aside the
(significant) ambiguity from the choice of the regulator,
the inherent scheme dependence in nuclear chiral EFT
first shows up at fourth expansion order (N3LO), stem-
ming from the long-range relativistic corrections that de-
pend on two arbitrary phases [27, 28] and three short-
range interactions contributing to the 1S0, 3S1 and 3S1-
3D1 potentials [19]. The corresponding five parameters
can be chosen arbitrarily, subject to the naturalness con-
straint, and their values can be changed by applying suit-
able UTs, see Supplemental Material [29] for explicit ex-
pressions. Importantly, such UTs also induce many-body
interactions and exchange currents. This shows, once
again, that various scheme-dependent quantities such as
two-body interactions, three-body forces (3BFs) and ex-
change currents must be used consistently with each other
to avoid an uncontrollable model dependence.

The above power-counting-based arguments point to-
wards a mild scheme-dependence of NN interactions in
chiral EFT. However, the situation is di↵erent for 3BFs,
which provide small but important corrections to the
dominant pairwise forces and remain a challenging fron-
tier in nuclear physics [30], see also Refs. [31–33] for re-
cent attempts to explore 3BFs through femtoscopy. 3BFs
first appear at third order (N2LO) in chiral EFT, and
thus are much more sensitive to the above mentioned o↵-
shell ambiguities. To illustrate this point we have gener-
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FIG. 4. (Color online). Neutron-deuteron total cross section
(left) and the 3H binding energy (right) calculated using the
N4LO+ NN potential of Ref. [36] (orange lines). Light-shaded
blue bands show the results from the phase-equivalent but o↵-
shell di↵ering N4LO+ NN potentials as explained in the text.

ated a set of 27 NN N4LO+ potentials corresponding to
di↵erent choices of the o↵-shell short-range interactions,
see [29] for details. These potentials are nearly phase-
equivalent in the two-body sector and equally valid from
the EFT point of view. However, they lead to vastly
di↵erent predictions for three-nucleon observables as vi-
sualized in Fig. 4, which illustrates the well-known in-
herent scheme dependence of 3BFs [35]. In particular,
the required 3BF contributions to the 3H binding energy
can be both attractive and repulsive depending on the
o↵-shell behavior of the employed NN interaction.
Discussion and conclusions.—Hadronic correlations

measured in ultra-relativistic collisions are sensitive to
the strong interactions. However, probing final state in-
teractions by means of the Koonin-Pratt formula vio-
lates basic principles of quantum mechanics if the source
model is regarded to be universal. Using an example
of two strongly interacting distinguishable particles, we
have shown that o↵-shell ambiguities in the interaction
can then translate into a significant model dependence for
C(k). It is important to emphasize that the problematic
universality assumption is essential as its relaxation sac-
rifices the predictive power of the femtoscopy approach.
The sensitivity of C(k) to the o↵-shell behavior of the

strong force decreases for source radii r0 being large com-
pared to the interaction range since the large-distance
behavior of the wave function  (r, k) is unambiguously
determined by the S-matrix [4, 8, 37]. The interpreta-
tion of C(k) in terms of the average | (r, k)|2 then be-
comes no more inherently problematic. Large r0-values,
however, also reduce the strength of femtoscopic signals.
The source size in our example is, in fact, comparable to
or even larger than those typically used in the literature
[5, 6, 9, 13, 32]. Even smaller values for r0 were obtained
recently using a precise pion-kaon interaction [38].
Finally, we also discussed o↵-shell ambiguities of nu-

clear interactions in chiral EFT. While scheme-dependent



 
But where does scheme-dependence (off-shell effects) starts showing up in chiral EFT?

Back to reality…
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Figure 1: Chiral expansion of the nuclear forces. Solid and dashed lines refer to nucleons and
pions, respectively. Solid dots, filled circles, filled rectangles, filled diamonds and open rectangles
refer to the vertices of dimension ∆i = 0, ∆i = 1, ∆i = 2, ∆i = 3 and ∆i = 4, respectively.

the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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Some UTs are fixed from renormalizability requirement, but a lot of ambiguity remain:
— 2 phases in the relativistic corrections 
— 3 phases in the short-range interactions (+ 2 more that depend on the total momentum)

Concern: Potentially large scheme dependence in the 3N force! 
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the resulting contributions to the amplitude are enhanced by powers of mN/|p⃗ |, where mN refers
to the nucleon mass, as compared to estimates based on dimensional analysis and underlying the
derivation of Eq. (2.2). Fortunately, the contributions of the enhanced ladder-like diagrams can
be easily and efficiently resummed by solving the LS integral equation (or its generalizations in
the case of three- and more-nucleon systems) whose kernel involves all possible irreducible graphs
which obey the scaling according to Eq. (2.2) and are derivable in perturbation theory. This is the
essence of what is commonly referred to as Weinberg’s approach to nuclear chiral EFT. The set of
all possible irreducible contributions to the scattering amplitude can be viewed as the interaction
part of the nuclear Hamiltonian and comprises two-, three- and more-nucleon forces. The approach
outlined above is straightforwardly generalizable to reactions involving external sources and allows
one to derive exchange currents consistent with the nuclear forces.

It is a simple exercise to enumerate the various diagrams which may contribute to the nu-
clear force at a given order ν by looking at Feynman rules for the chiral Lagrangian and applying
Eq. (2.2), see Fig. 1. Here, it is understood that the shown diagrams only serve the purpose of
visualization of the corresponding contributions and do not have the meaning of Feynman graphs.
In particular, one needs to separate out the irreducible pieces in order to avoid double counting.
Notice further that while one can draw three-nucleon diagrams at next-to-leading order (NLO),
the resulting contributions are either reducible or suppressed by one power of Q/mN [25]. As an
immediate consequence of the chiral power counting in Eq. (2.2), one observes the suppression of
many-body forces [26], the feature, that has always been assumed but could be justified only in the
context of chiral EFT.
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tuned to the scatt. length tuned to the effective range tuned to the first shape parameter

  cannot be fixed from NN data  Hammer, Furnstahl ’00;  Beane, Savage ’01;  Reinert, Krebs, EE ’18⇒ Doff
1S0
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E.g.:  ⟨p′￼, 1S0 |Vcont | p, 1S0⟩ = C̃1S0 + C1S0(p′￼2 + p2) + D1S0 p2 p′￼2 + Doff
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tuned to the scatt. length tuned to the effective range tuned to the first shape parameter

  cannot be fixed from NN data  Hammer, Furnstahl ’00;  Beane, Savage ’01;  Reinert, Krebs, EE ’18⇒ Doff
1S0

Thus, it should be possible to eliminate the off-shell contacts via a suitable UT. Indeed:

   with   U = eγ1T1+γ2T2+γ3T3 T1 ∝ (p′￼1
2 + p′￼2

2 − p2
1 − p2

2 ), T2 ∝ (p′￼1
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1π + V (0)

cont + 𝒪(Q2)), Ti] + 𝒪(γ2
i )

induce off-shell NN contact interactions

induce N4LO 3NFs

(Notice: these UT will also induce contributions to the exchange currents.) 
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2 4 6 8 10 12 14

0.2

0.4

0.6
2 4 6 8 10 12 14

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

I II

α = 1 fm−1, β = 0.25 fm−1 α = 0.7 fm−1, β = 2.0 fm−1

 [fm]r

 [fm]r

  [
]

g(
r)

fm
−

3/
2

  [
]

g(
r)

fm
−

3/
2

g( ⃗r ) ≡ ⟨ ⃗r |g⟩ = C r (1 − βr) e−αr Peter Sauer, PRL 32 (74) Specifically, choose



 Gedankenexperiment
Bob knows that physics is independent on the choice of basis in the Hilbert space.  

He uses states ,  where  ,  .|ΨBob⟩ = Û |ΨAlice⟩ Û = 1 − 2 |g⟩⟨g | ⟨g |g⟩ = 1
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