Probing Quark-Gluon Plasma in Light-Ion Collisions with ATLAS

Qipeng Hu (胡启鹏)

University of Science and Technology of China (USTC)

September 20, Wuhan

Tip-tip configuration

跨能标核物理眼前学术研讨会

Nuclear Physics Across Energy Scales

2025 LHC light ion run preparation

Thanks to the dedicated efforts of the CERN TH and LHC Injector teams, O+O and Ne+Ne collisions were placed on CERN management's agenda after Light Ion workshop

Intensive experimental preparations began in spring 2025

- Worked hard to convince the HEP community that ~0.5 nb⁻¹ of O+O data would yield impactful physics
- Spent weeks anticipating "what if" scenarios and planning for possible challenges
- Insisted the choice of 5.36 TeV to match with pp
- Delivered prompt estimates of impact of beam transmutation

ATLAS DAQ Operations

Most complicated runs I ever experienced

First stable p+O: ~5:50 am

First stable Ne+Ne: ~4:20 pm

What followed was the most intricate heavy-ion operation I had ever participated in

Best runs I ever experienced

- Excellent machine performance throughout the run
- High detector availability and reliability
- Grateful to the many colleagues who worked tirelessly, often overnight

ATLAS trigger strategy

- Minimum-bias event triggering with TRT
- Unbiased down to very low multiplicities
- Significantly better performance than other ATLAS minimum-bias triggers (MBTS, ZDC, etc.)

O+O and Ne+Ne Centrality

- Centrality from Forward Calorimeter energy sum (0–80%)
- Glauber analysis with improved light-ion geometry and fluctuations (Loizides, arXiv:2507.05853)
- · Event-by-event fluctuations play a larger role in light-ion collisions in most central collisions (long tails)

Why light ions at LHC — QGP physics

Two key signatures of the QGP: azimuthal anisotropy and jet quenching

Why light ions at LHC — QGP physics

Heavy Ions: Pb+Pb, Xe+Xe

Small system: p+Pb, p+p

- p+Pb remains inconclusive for QGP formation, with no evidence of jet quenching
- Light-ion collisions offer new opportunities to gain insight
- Help explore the boundary conditions for QGP formation

JHEP 07(2025)118

Why light ions at LHC — Probing nuclear structure

 Assuming QGP formed, most central events can be used to probe deformed nuclear structure

Giuliano Giacalone et al. PRL 135 (2025) 012302 Jiangyong Jia, arXiv:2501.16071

First sets of ATLAS measurements in O+O and Ne+Ne

arXiv:2509.05171

ATLAS-CONF-2025-010

Flow harmonics in O+O and Ne+Ne

Non-flow sources

Standard 2-particle correlation analysis with $\Delta \eta$ gap:

$$C(\Delta\phi) = C_0 \left(1 + 2\sum_{n=1}^{\infty} v_{n,n}(p_{\rm T}^a, p_{\rm T}^b) \cos(n\Delta\phi) \right)$$
$$v_n(p_{\rm T}^b) = \frac{v_{n,n}(p_{\rm T}^a, p_{\rm T}^b)}{v_n(p_{\rm T}^a)} = \frac{v_{n,n}(p_{\rm T}^a, p_{\rm T}^b)}{\sqrt{v_{n,n}(p_{\rm T}^a, p_{\rm T}^a)}}$$

Standard 4-particle cumulant analysis with 2 subevents:

$$c_n\{2\} = \langle\langle\{2\}_n\rangle\rangle,$$

$$c_n\{4\} = \langle\langle\{4\}_n\rangle\rangle - 2\langle\langle\{2\}_n\rangle\rangle^2$$

$$v_n\{4\} = \sqrt[4]{-c_n\{4\}}$$

- Detector effects are corrected in constructing the observables
 - Residual non-flow effects are further subtracted or investigated

Non-flow in two-particle correlations — template fit

Impact of non-flow subtraction

p_T dependence

- Direct Fourier decomposition: $v_n^{\text{2PC}}\{2\}$
- Template fit: $v_n^{\text{sub}}\{2\}$

Effect of subtraction (strongly p_T dependent):

$$v_2\{2\}\downarrow$$
, $v_3\{2\}\uparrow$, $v_4\{2\}\downarrow$

Centrality dependence

- $v_n^{\text{sub}}\{2\}$ is chosen as the central results
- When integrated over wide p_T range (0.5 ~ 5 GeV), the impact of non-flow is small

Non-flow in 4 particle cumulant — subevent method

Non-flow at high p_T

IPGlasma+Hydro+PGCM: (Heikki Mantysaari et al, PRL135 (2025) 022302)

- "Theory-1" vs "Theory-2" correspond to how much anisotropy from the glasma stage is retained in the hydro initialization
- ATLAS data provide input to further improve models

Other aux figures of the paper can be found at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2025-02/

Measured v_n vs. model

- Flow signals in O+O and Ne+Ne resemble those seen in heavy-ion collisions
- Characteristic ordering observed: $v_2 > v_3 > v_4$
- · Comparison with Hydro+IPGlasma+PGCM models clearly indicates a collective (hydrodynamical) response

Comparison of different ion collisions

- Flow in Ne+Ne consistently larger than in O+O
- Light ions vs. heavy ions in centralities:
 - Light ion v_2 is much flatter
 - Light ion v₃ decreases from central to peripheral
 - Stronger fluctuation contributions in light ions
- · Light ions vs. heavy ions in multiplicities:
 - O+O v₂ converges with p+Pb
 - Light ion v_3 align with heavy ion

Ne+Ne/O+O vs. model calculations

Compare to PGCM + hydro + different hydro initial conditions:

- Trento: provides a better description of centrality dependence in central events
- IPGlasma: fails to reproduce the observed central-event trend

Giacolone et al, PRL 135 (2025) 012302 Mantysaari et al, PRL 135 (2025) 022302

Comparison of different experiments

- Overall good consistency across experiments
- Small difference between experiments could arise from different selections

ATLAS: arXiv:2509.05171 ALICE: arXiv:2509.06428

CMS: PAS HIN-25-009

Dijet momentum balance in O+O collisions

- Leading jet: $63 < p_T < 251$ GeV
- Sub-leading jet: $p_T > 20$ GeV
- Jet rapidities: |y| < 2.1
- dijet alignment: $|\Delta \phi| > 7\pi/8$
- Unfolded in $(p_{\mathrm{T}}^1,\,p_{\mathrm{T}}^2)$ to remove detector effects

Jet reconstruction in O+O

- Jet energy resolution (JER) dominated by underlying-event (UE) energy density
- Much smaller UE in O+O enabled jet measurements down to 20 GeV

Central Pb+Pb at 40 GeV: 0.45

Central O+O at 40 GeV: 0.16

pp at 40 GeV: 0.15

Adding 0-10% O+O distributions

- pp and peripheral O+O (60-80%) show similar distributions
- Central O+O (0–10%) events exhibit clear differences compared to pp and peripheral O+O

Adding 0-10% O+O distributions

- Ratios make the difference more visible
- pp ~ peripheral O+O within uncertainties
- · Central O+O shows clear relative suppression of subleading jets, similar to heavy ion collisions

Centrality dependence

- In each x_J interval, data points are laterally shifted by centrality for visibility
- A smooth, systematic centrality dependence is observed from low $p_{\rm T}$ to high $p_{\rm T}$

Central

High leading p_T

Light and heavy ions with matched event activity

· Across different collision systems, dijets experience a similar medium once event activity (forward energy) is matched — independent of nuclear size or geometry

Summary of ATLAS results

- **Flow results**: qualitatively consistent with hydrodynamical response; v_n ratios reveal sensitivity to nuclear geometry (20Ne vs 16O)
- **Dijet results**: direct evidence of quenching in smallest symmetric ion system to date; systematics to be further reduced in final publication. Single jet, gamma-tagged jet results forthcoming

While we cannot yet conclude that QGP is definitively formed in O+O and Ne+Ne collisions, the medium produced in these light ion systems exhibits behavior strikingly similar to that in heavy ion collisions

Light Ions, Big Impact

Start of **2025 O+O** data taken: **July 4**, 2025

First flow results:

- ATLAS paper submitted Sep 8, 2025
- CMS preliminary Sep 8, 2025
- ALICE paper submitted Sep 9, 2025

2010 Pb+Pb data taken: Nov 7 - Dec 6

First results released:

- ALICE flow submitted: Nov 11, 2010
- ALICE multiplicity submitted: Nov 11, 2010
- ATLAS dijet submitted: Nov 29, 2010
- CMS dijet submitted: Feb 9, 2011

- The momentum carried forward into a dedicated CERN Jamboree event
- The last time with such excitement was after the very first Pb+Pb collisions

Keep the momentum

Starting to wonder if Pb+Pb or p+Pb still the best option for 2026

- Wouldn't it be good to have another light ion run with species lighter or heavier than ¹⁶O?
- Perhaps even **better**: a run with two ion species one lighter and one heavier than ¹⁶O?

Light ion workshop Reyes Fernandez, 11.11.2024

2026-LHC-v0.5

Backup Slides

Centrality vs. multiplicity

Correlation between

Two particle correlation

Two particle correlation vs. four particle cumulant

Flow systematics

Source	harmonic order	0-40%	40–70%
		[%]	[%]
1. MC closure	v ₂ -v ₄	1	1
	v_2	0.5	0.5
2. Track selection	v_3	0.75	0.75
	v_4	1.5	1.5
3. Tracking efficiency	v ₂ -v ₄	0.25	0.25
	v_2	0.2	0.2–0.6
4. Centrality definition	v_3	0.2 - 1.0	1–2
	v_4	0.2	0.2–0.6
5. Residual pileup	v ₂ -v ₄	0.2	0.2
	v_2	0.25	0.25
6. Event-mixing	v_3	0.5	0.5
	v_4	1	1
	v_2	0.5	0.5–3
7. Peripheral reference	v_3	0.75–3.5	3.5–12
	v_4	1.0–4.5	4.5–20
8. Flattening procedure	<i>v</i> ₂ – <i>v</i> ₃	0.25	0.25

Dijet momentum balance systematics

