Nuclear physics across energy scales

Engineering shape of QGP droplets by comparing flow in small symmetric-asymmetric collisions

Jiangyong Jia Stony Brook University

2507.16162 + STAR prelim data

Wuhan September 19-21,2025

Collectivity in heavy-ion collisions

- Flow is hydrodynamic response to initial conditions.
- Initial conditions is a snapshot of the nuclear structure

Collectivity in small systems

Cannot be turned off in small systems, seems driven by final-state response. But hydrodynamics is not the unique explanation.

Geometry engineering in p/d/He+Au collisions

Strategy: Test final-state response by varying initial geometry strongly

Asymmetric systems sensitive to both nuclear structure and subnucleon structure

Geometry engineering in p/d/He+Au collisions

Strategy: Test final-state response by varying initial geometry strongly

Asymmetric systems sensitive to both nuclear structure and subnucleon structure

Disentangle two sources by comparing p+A with small symmetric systems, e.g. ¹⁶O+¹⁶O

NB: Nuclear structures of small systems are well constrained from ab. Initio calculations.

Case study: d+Au vs O+O

$$d_{\scriptscriptstyle \perp} = 1/\sqrt{[x^2][y^2]}$$

dAu $ε_2$ dominated by positions of two nucleons: large $ε_2$ in all evts → narrow p($ε_2$) → $ε_2$ {4}≈ $ε_2$ {2}

dAu ε_3 and OO $\varepsilon_2 \varepsilon_3$ dominate by nucleon fluctuation,

dAu $d_{\perp} = 1$ /area is more compact, \Rightarrow more radial flow in dAu.

Source distribution $p(N_s/\langle N_s \rangle)$ is broader in OO

Case study: d+Au vs O+O

$$d_{\scriptscriptstyle \perp} = 1/\sqrt{\left[x^2\right]\left[y^2\right]}$$

 $dAu \ \epsilon_2$ dominated by positions of two nucleons: large ε_2 in all evts \rightarrow narrow p(ε_2) $\rightarrow \varepsilon_2$ {4} $\approx \varepsilon_2$ {2} not affected much by subnucleon fluctuations

 $dAu \ \epsilon_3 \ and \ OO \ \epsilon_2 \ \epsilon_3 \ dominate by nucleon$ fluctuation, and influences by subnucleon fluctuations are more comparable.

 $dAu d_{\perp} = 1/area$ is more compact, even more compact with subnucleon fluctuations → more radial flow in dAu and quark glauber.

Source distribution $p(N_s/\langle N_s \rangle)$ is broader in OO

Quark-Glauber

$$arepsilon_2^{d ext{Au}}>arepsilon_2^{ ext{OO}} \ arepsilon_3^{d ext{Au}}pprox arepsilon_3^{ ext{OO}}$$

$$d_\perp^{d{
m Au}}>d_\perp^{{
m OO}}$$

Glauber model result

p/d/He+Au: shape determined by p(source) in Au, insensitive to subnucleon O+O: shape determined by p(source) in O, sensitive to subnucleon

Pressure gradient ($d_{\perp} = 1/\text{area}$) and its fluctuations

$$d_{\scriptscriptstyle \perp} = 1/\sqrt{\left[x^2\right]\left[y^2\right]}$$

Mean: Larger $\langle d_{\perp} \rangle \rightarrow$ Larger $\langle [p_{\mathrm{T}}] \rangle$

Pressure gradient ($d_{\perp} = 1/\text{area}$) and its fluctuations

Expected p_T fluctuations →

- nucleon-Glauber: p/d/He+Au agree but higher than OO
- quark-Glauber: clear ordering in all systems

ε_2 and fluctuations

$$egin{aligned} arepsilon_2\{2\} &= \sqrt{\left\langle arepsilon_2^2
ight
angle} \ arepsilon_2\{4\} &= \sqrt[4]{2 {\left\langle arepsilon_2^2
ight
angle}^2 - {\left\langle arepsilon_2^4
ight
angle}} \end{aligned}$$

Indeed:
$$\varepsilon_2^{d\mathrm{Au}} > \varepsilon_2^{\mathrm{OO}}$$

$$egin{aligned} arepsilon_2 \{4\}^{d ext{Au}} &\sim arepsilon_2 \{2\}^{d ext{Au}} \ arepsilon_2 \{4\}^{ ext{OO}} &< arepsilon_2 \{2\}^{ ext{OO}} \end{aligned}$$

ε_2 and fluctuations

$$egin{aligned} arepsilon_2\{2\} &= \sqrt{\left\langle arepsilon_2^2
ight
angle} \ arepsilon_2\{4\} &= \sqrt[4]{2 {\left\langle arepsilon_2^2
ight
angle}^2 - {\left\langle arepsilon_2^4
ight
angle}} \end{aligned}$$

Indeed:
$$\varepsilon_2^{d\mathrm{Au}} > \varepsilon_2^{\mathrm{OO}}$$

$$egin{aligned} arepsilon_2 \{4\}^{d ext{Au}} &\sim arepsilon_2 \{2\}^{d ext{Au}} \ arepsilon_2 \{4\}^{ ext{OO}} &< arepsilon_2 \{2\}^{ ext{OO}} \end{aligned}$$

 pAu is most sensitive to subnucleon fluctuations

ε_2 and fluctuations

$$egin{aligned} arepsilon_2\{2\} &= \sqrt{\left\langle arepsilon_2^2
ight
angle} \ arepsilon_2\{4\} &= \sqrt[4]{2 {\left\langle arepsilon_2^2
ight
angle}^2 - {\left\langle arepsilon_2^4
ight
angle}} \end{aligned}$$

Indeed:
$$\varepsilon_2^{d\mathrm{Au}} > \varepsilon_2^{\mathrm{OO}}$$

$$egin{aligned} arepsilon_2 \{4\}^{d ext{Au}} &\sim arepsilon_2 \{2\}^{d ext{Au}} \ arepsilon_2 \{4\}^{ ext{OO}} &< arepsilon_2 \{2\}^{ ext{OO}} \end{aligned}$$

- pAu is most sensitive to subnucleon fluctuations
- dAu, ³HeAu, OO have little sensitivity

Scaling behavior of the fluctuation components

Isolate the fluctuation component of ε_2 :

$$\delta_{arepsilon_2}^2 = arepsilon_2 \{2\}^2 - arepsilon_2 \{4\}^2$$

and compared with ε_3 {2}, which is also dominated by fluctuations.

- Nucleon-Glauber: 20-30% level deviations observed.
- Quark-Glauber : Universal scaling among systems within 10%!

d+Au and O+O flow data $\langle v_n^2 \rangle = \langle v_n^2 \rangle^{\text{obs}} - f \times \langle v_n^2 \rangle^{\text{obs,LM}}$

$$\langle v_n^2 \rangle = \langle v_n^2 \rangle^{\text{ODS}} - f \times \langle v_n^2 \rangle^{\text{ODS}, IM}$$

Non-flow subtraction

Rich behaviors consistent with our expectation from non-flow and eccentricities

Rich behaviors consistent with our expectation from non-flow and eccentricities Agreement with 3D-Glauber+Music+UrQMD hydro model tuned to AuAu data

Final-state response coefficients

 $k_n = v_n/\varepsilon_n$ represents the ability of medium to generate flow

Controlled largely by N_{ch}.

dAu and OO share common scaling when considering subnucleon fluctuations

Final-state response coefficients

 $k_n = v_n/\epsilon_n$ represents the ability of medium to generate flow

Controlled largely by N_{ch}.

dAu and OO share common scaling when considering subnucleon fluctuations

Some sensitivity to ab.initio models for nucleon configs of ¹⁶O NLEFT, PGCM, AFDMC.

Elliptic flow fluctuations

$$v_2^{d\mathrm{Au}}\{4\} \lesssim v_2^{d\mathrm{Au}} \{2\} \text{ reflects}$$
 $\mathbf{\epsilon}_2^{d\mathrm{Au}}\{4\} \lesssim \mathbf{\epsilon}_2^{d\mathrm{Au}} \{2\}$

$$\frac{v_2^{d\mathrm{Au}}\{4\}}{v_2^{d\mathrm{Au}}\{2\}} \approx \frac{\varepsilon_2^{d\mathrm{Au}}\{4\}}{\varepsilon_2^{d\mathrm{Au}}\{2\}} \approx 0.9$$

$$v_2^{00}\{4\} < v_2^{00} \{2\} \text{ reflects}$$
 $\mathbf{\epsilon}_2^{00}\{4\} \lesssim \mathbf{\epsilon}_2^{00} \{2\} \longrightarrow$

$$\frac{v_2^{00}\{4\}}{v_2^{00}\{2\}} \approx \frac{\varepsilon_2^{00}\{4\}}{\varepsilon_2^{00}\{2\}} \sim 0.6$$

Elliptic flow fluctuations

$$v_2^{d\mathrm{Au}}\{4\} \lesssim v_2^{d\mathrm{Au}} \{2\} \text{ reflects}$$
 $\mathbf{\epsilon}_2^{d\mathrm{Au}}\{4\} \lesssim \mathbf{\epsilon}_2^{d\mathrm{Au}} \{2\} \longrightarrow$

$$\frac{v_2^{d\mathrm{Au}}\{4\}}{v_2^{d\mathrm{Au}}\{2\}} \approx \frac{\varepsilon_2^{d\mathrm{Au}}\{4\}}{\varepsilon_2^{d\mathrm{Au}}\{2\}} \approx 0.9$$

$$v_2^{\rm OO}\{4\} < v_2^{\rm OO}\ \{2\}\ {
m reflects}$$
 ${f \epsilon}_2^{\rm OO}\{4\} \lesssim {f \epsilon}_2^{\rm OO}\ \{2\} \longrightarrow {f v}_2^{\rm OO}\{4\} \approx rac{{f \epsilon}_2^{\rm OO}\{4\}}{{f \epsilon}_2^{\rm OO}\{2\}} \sim 0.6$

Hydro model tuned to AuAu data can reproduce most of the trends, consistent with creation of QGP droplet in these systems

Elliptic flow fluctuations

$$v_2^{d\text{Au}}\{4\} \lesssim v_2^{d\text{Au}}\{2\}$$
 reflects $\mathbf{\epsilon}_2^{d\text{Au}}\{4\} \lesssim \mathbf{\epsilon}_2^{d\text{Au}}\{2\}$ \longrightarrow $v_2^{d\text{Au}}\{4\}$ $\varepsilon_2^{d\text{Au}}\{4\}$

$$rac{v_2^{d ext{Au}}\{4\}}{v_2^{d ext{Au}}\{2\}} pprox rac{arepsilon_2^{d ext{Au}}\{4\}}{arepsilon_2^{d ext{Au}}\{2\}} pprox 0.9$$

$$v_2^{00}{4} < v_2^{00}{2}$$
 {2} reflects $\mathbf{\epsilon}_2^{00}{4} \lesssim \mathbf{\epsilon}_2^{00}{2}$

$$rac{v_2^{
m OO}\{4\}}{v_2^{
m OO}\{2\}}pproxrac{arepsilon_2^{
m OO}\{4\}}{arepsilon_2^{
m OO}\{2\}}\sim 0.6$$

Ratio ε_2^{00} {4}/ ε_2^{00} {2} sensitive to ab initio models, could survive to $v_2^{d\text{Au}}$ {4}/ $v_2^{d\text{Au}}$ {2}.

Scaling behavior of flow fluctuations

Isolate the fluctuation component of v_2 : $\delta_{v_2}^2 = v_2\{2\}^2 - v_2\{4\}^2$

Within the large uncertainties, the two systems are not very different

Scaling behavior of flow fluctuations

Isolate the fluctuation component of v_2 : $\delta_{v_2}^2 = v_2\{2\}^2 - v_2\{4\}^2$

Within the large uncertainties, the two systems are not very different

Similar N_{ch} dependence as $v_3\{2\}$, but differ by a factor of 9/4

Conformal scaling 1312.6770

Teaney& Yan 1206.1905: viscous correction for v_n scales as n².

Summary

- Demonstrated the ability to engineer the shape of QGP droplets by comparing v_2 and v_3 in symmetric OO collisions with asymmetric dAu collisions.
 - Provide a lever arm to test the effects of nuclear structure and subnucleonic fluctuations on the initial geometry.
- $v_2^{dAu} > v_2^{OO}$ and $v_3^{dAu} \approx v_3^{OO}$ consistent with the expected ordering in eccentricities for quark Glauber model
- v₂ in OO has larger fluctuation than dAu, also are sensitive between different ab. Initio models.
- Both nuclear structure and subnucleonic fluctuations are required to explain the data
- Results are consistent with hydro-model tuned to Au+Au data, providing strong evidence that the droplets created in these small systems have properties similar to those in large systems.