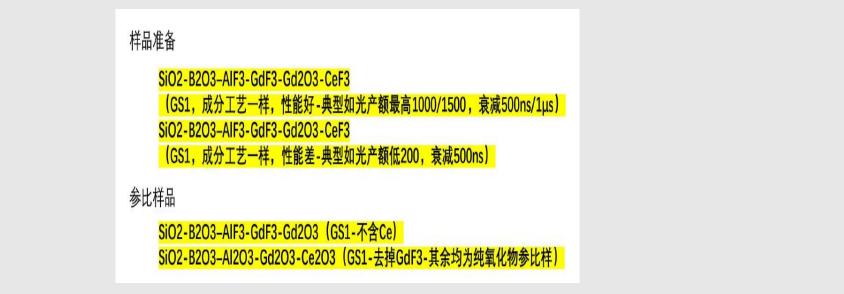
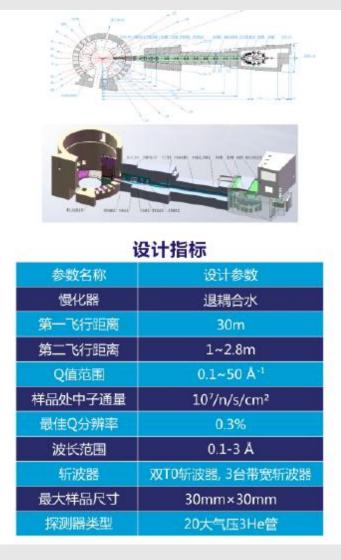
The Status of the HCAL


2025-02-18

WWW.IHEP.CAE.CR

Qian Sen, on behalf of the HCAL Group qians@ihep.ac.cn

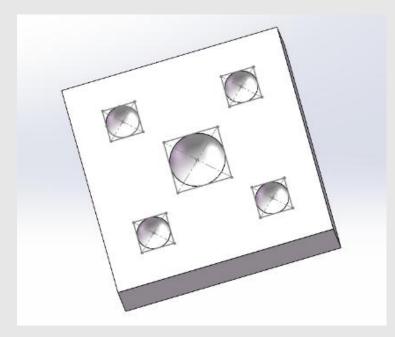
Current status of the GS-HCAL Glass Scintillator


Multi-Physics Instrument (多物理场谱仪)

□ the GS sample will be tested at CSNS for the construction;

□ the same sample will be tested at the Synchrotron radiation light source in Shanghai;

□ There is a speciall group (not all the mumber of GS group), will do this research work.

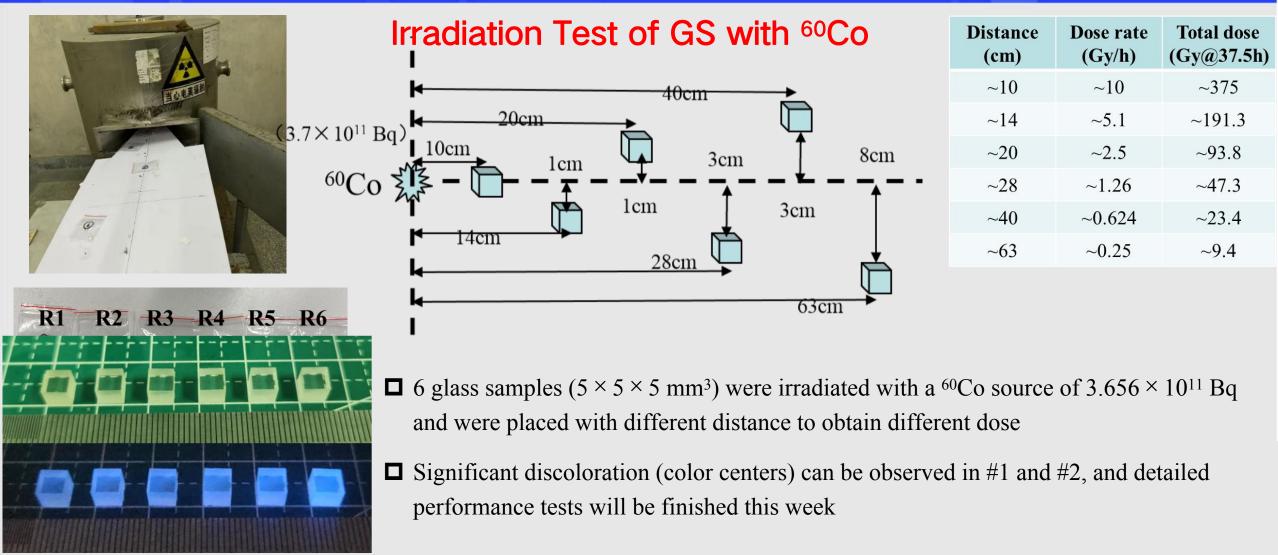

□ We will fixed the GS1 for the mass production at the end of this mounth;

□ There are three group member will do the mass production job;

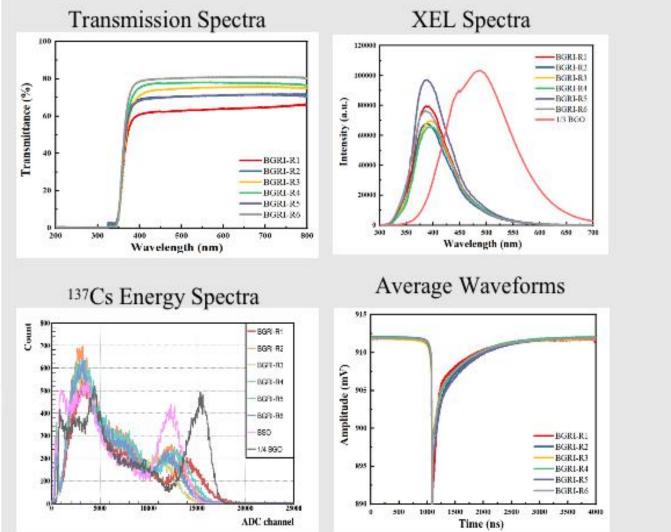
- 1. Beijing Glass Research Institute
- 2. Shanghai Institute of Optics and Fine Mechanics
- 3. China Building Materials Academy

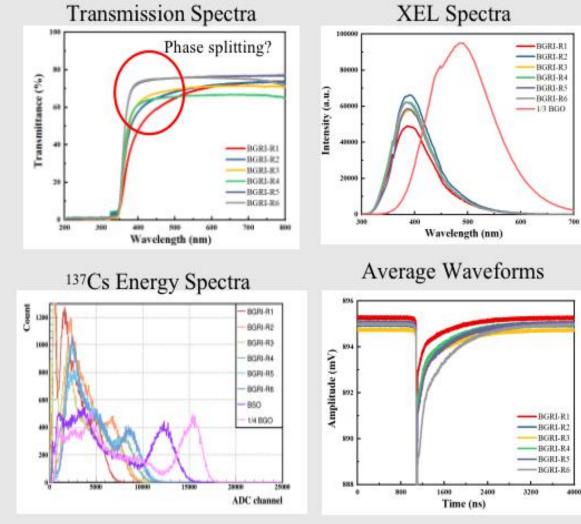
□ The 50pics GS samples will be produced before the TDR review meeting;

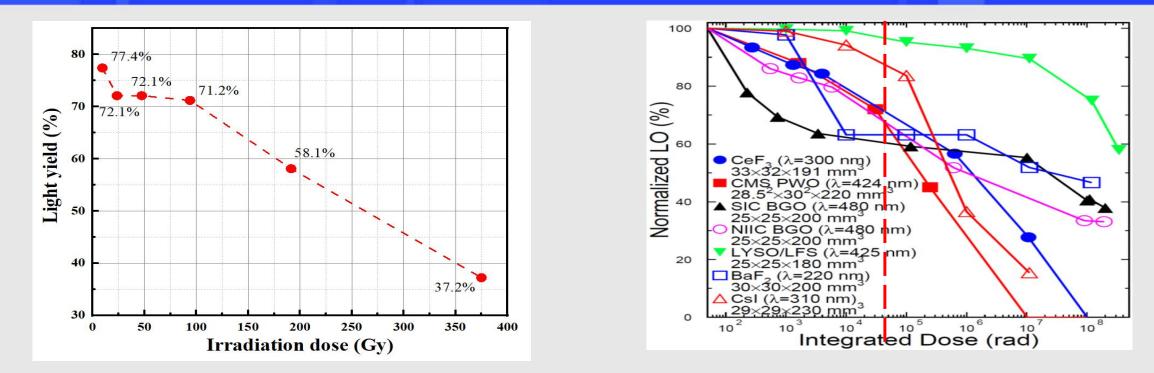
□ The GS sample holding the SiPM will be produced by the factory.


Current status of the GS-HCAL SiPM

- Visit the "Capital Photonics Technology (Tianjin)
 Co., Ltd." on 13th.Feb;
- To discuss the cooperation between the HCAL and SiPM company.
- CPT agree to join the HCAL group to develop and supply the new type of the SiPM with PDE~60%, pixel~40um;

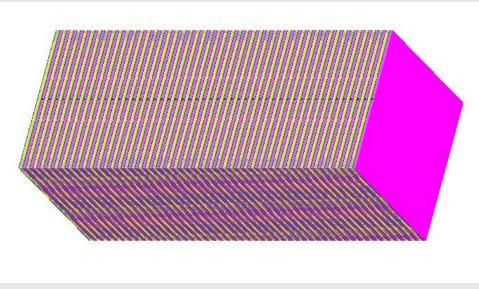

Current status of the GS-HCAL Glass Scintillator

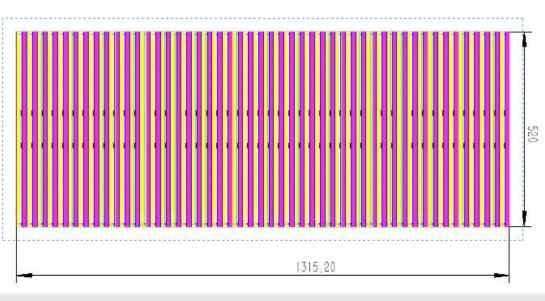

--by Hupeng


before irradiation

after irradiation

*F. Yang, L. Zhang and R.Y. Zhu, "Gamma-Ray Induced Radiation Damage Up to 340 Mrad in Various Scintillation Crystals"

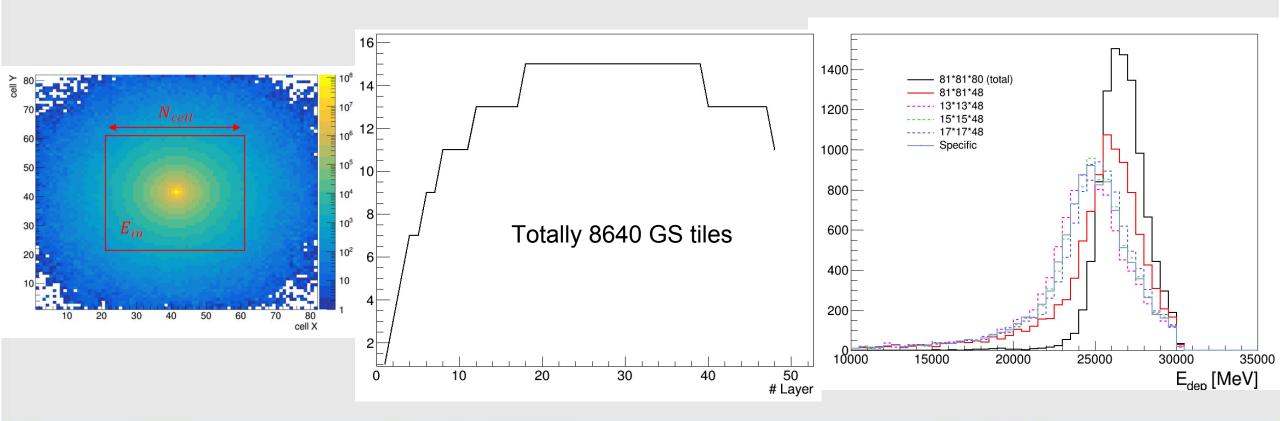



- The light output of the glass sample will be reduced to 37% of its original level after exposure to a dose of ~375 Gy, which is basically consistent with the proton irradiation results (~320 Gy in total 20 years.);
- The irradiation resistance of the crystal is much better than the GS, and the BGO can reserve ~60% light output after exposure to a dose of 400 Gy;
- □ The shape of irradiation resistance curve is different for crystals, but the trend for GS and BGO is similar
- □ The change of emission peak and decay time are not significant;
 - 7

Current status of the GS-HCAL Detector

- The Plan of the Prototype of GS-HCAL in the next two years (2025-2026).
 the CPM plan will be finished by Boxiang Yu and Jiawen Zhang.
- The Prototype of the HCAL was designed right now.

Prototype design



- Total: 48 layers
- Each layer: 13*13 glasses

• Verifying cooling scheme

Prototype scale optimization

- A trapezoid module:
 - ✓ Another criterion: lateral leakage $E_{out}/E_{total}^{48 \ layers} < 0.1\%$.
- Energy response
 - ✓ 8640 GS tiles relatively equivalent response to 15*15*48 module (10800 tiles).

Cooperation -- DRD6

- > Contact person per subtask: to be the link between the coordinators and the project community.
- 2025-02-16: to be the contact person for the ScintClassHCAL project. ----email by the WP1 convener Adrian. Irles;
- I will join the DRD6 Collaboration meeting on 1st.Apr to introduce the CEPC-GS-HCAL and invite more group to join us.

Hadronic sections	Task 1.2: Hadronic section with optical tiles		
	Subtask 1.2.1: AHCAL		Scintillating plastic tiles/Steel
	Subtask 1.2.2: ScintGlassHCAL		Heavy glass tiles/Steel
	Task 1.3: Hadronic section with gaseous readout		
	Subtask 1.3.1: T-SDHCAL		Resistive Plate Chambers/Steel
	Subtask 1.3.2: MPGD-HCAL		Multipattern Gas Detectors/Steel
	Subtask 1.3.3: ADRIANO3		Resistive Plate Chambers+Scintillating plastic tiles/ Heavy Glass

Backup

The Manpower of the HCAL

- 1. The PS-HCAL
 - Jianbei Liu, Haijun Yang, Boxiang Yu, Yunlong Zhang,,
- 2. The GS-HCAL: Sen Qian (IHEP)
 - Sub-system: 2 Conveners + others
 - Physics: Manqi Ruan(IHEP), Haijun Yang(SJU),
 - Software: Sengsen Sun(IHEP);
 - Design: Fangyi Guo(IHEP), Hengne Li(SCNU),
 - Glass Scintillator: Sen Qian(IHEP), Jing Ren(HEU), the GS collaboration Group
 - SiPM: Yuguang Xie(IHEP), Jifeng Han(SCU),
 - Electronics: Jingfan Chang(IHEP),
 - DAQ: Chen Boping(IHEP),
 - Mechanics: Yatian Pei(IHEP), Junsong Zhang
 - Detector: Boxiang Yu(IHEP), Yunlong Zhang (USTC),

The Manpower of the subsystem of GSHCAL

Physics: Manqi Ruan(IHEP), Haijun Yang (SJTU),

Software: Sengsen Sun(IHEP);

Design: Fangyi Guo(IHEP), Hengne Li(SCNU), Qingming Zhang(XJTU), Weizheng Song(IHEP), Peng Hu(261) Dejing Du(IHEP), Hongbing Diao(SUTC), Jiyuan Chen(SJTU),

--to design the GS-HCAL detector based on the CEPCSW;

Glass Scintillator: Sen Qian(IHEP), Jing Ren(HEU), the GS collaboration Group;

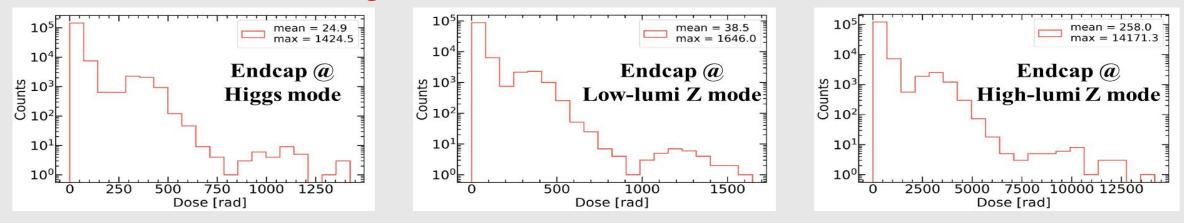
--R&D of the GS for CEPC-HCAL, a special group independent of CEPC;

SiPM: Yuguang Xie(IHEP), Jifeng Han(SCU), Guang Luo(SYSU),

--to do the research of SiPM for CEPC-HCAL, the electronics of SiPM for the GS performance test; Electronics: Jingfan Chang(IHEP),

--to design the ASIC and FEE for CEPC-HCAL; the power supply, the cables and so on;

DAQ: Chen Boping(IHEP),


Mechanics: Yatian Pei(IHEP), Junsong Zhang(IHEP), Shang Bofeng(ZZU)

--to design the Mechanics of the GS-CEPC-HCAL; also the cell, the module, the cooling system; Detector: Boxiang Yu(IHEP), Yunlong Zhang (USTC)

--to study the module of the GS-HCAL with GS and SiPM, the cosmic ray test, the beam test;

Current status of the GS-HCAL Simulation

Beam induced background simulation (V2)

Running Mode	Endcap @ Higgs mode	Endcap @ Low-lumi Z mode	Endcap @ High-lumi Z mode
Dose of 99% cells/year	< 5 Gy	< 5 Gy	< 50 Gy
Dose Mean/year	0.25 Gy	0.39 Gy	2.6 Gy
Dose Max/year	14.2 Gy	16.5 Gy	142 Gy

- Beam background for GSHCAL is mainly induced by gamma-rays and electrons
- The irradiation dose in different running modes for the Endcap has been obtained from the simulation and statistical parameters were summarized

14