

SiPM需求及读出芯片方案

LI Huaishen On behalf of CEPC ChoMin ASIC Team

Feb. 19~20, 2025, Design Review of ASICs for CEPC

■ ECAL/HCAL/Muon 设计需求 SiPM参数、模拟&测试数据 ■参考芯片介绍 ■ ASIC指标、芯片架构 ■模块电路设计及进度

ECAL/HCAL/Muon设计需求

項日	指标			
坝日	ECAL	HCAL		
电荷测量动态范围*1	0.1MIPs(128fC) - 3000MIPs(3.84nC)	0.1MIPs(10pe) - 100MIPs(10000pe)		
时间测量动态范围				
电荷分辨率*2	30% @ 0.1MIPs; 10% @ 1MIPs; 1% @ 100MIPs	同ECAL		
时间分辨率*3	200ps @ 1MIPs; 100ps @ 12MIPs	不要求		
积分非线性(INL)	<sipm< td=""><td></td></sipm<>			
SiPM电容	45.9pF(待定)	50pF		
SiPM增益		5. 00E+05		
单通道平均事例率*4	13kHz/ch	BR:0.24kHz, EC:1.45kHz		
单通道最高事例率	230kHz	BR:6.2kHz, EC:46.3kHz		
典型信号特征 (不同幅度)		2, 3ns		
其他需要电子学实现的功能	1, Random trigger			
(例如刻度方式,随机触发,	2, SiPM bias voltage fine tuning:1V (?)			
SiPM偏压调节,慢控等)				
1,按晶体沉积能量计算,1MIPs	1,按晶体沉积能量计算,1MIPs - 200pe - 2.56pC,ECAL晶体双端读出,每端电荷量为1/2			
2,物理上不需要单光电子分辨,	刻度可能需要单光电子分辨			
3, 探测器总体时间分辨500ps,	电子学时间分辨小于总体时间分辨			

4, 事例率已经考虑本底的影响

MUON requirement

Readout design for ECAL and HCAL covers the requirements of Muon detector $N_{pe} < 100, \sigma_T < 0.5 ns$

- Use the ASIC scheme from ECAL or HCAL, and customize the FEE based on ASIC.
- Revise according to the constraints from cooling and mechanical structure of the detector Ref: page21, https://indico.ihep.ac.cn/event/23854/contributions/169297/attachments/82821/104811/Muon Detector IDRC review v2.pdf

设计需求---SiPM电流波形计算(以ECAL为例)

i(t)

max

•
$$Q = \int_0^\infty i * dt = I_0 * \frac{T_p}{2} + I_0 * \tau = I_0 * (\tau + \frac{T_p}{2})$$

0.1MIP=128fC, 3000MIPs=3.84nC

Assume $T_p = 40ns$, $\tau = 300ns$, for 0.1~3000MIPs (128fC~3.84nC)

- I₀=0.4uA~12mA
- Set SNR to 5, then $I_{noise} = 80$ nA
- For calibration channel, 1 p.e equals to 12.8fC, we use CSA
 - Set SNR to 10, then ENC=1.28fC
 - $-C_d = 45.9 pF,$

SiPM参数----以NDL SiPMs为例

NDL SiPMs: 6 μ m, 10 μ m, 15 μ m pixel, 3 \times 3 mm² active area

	EQR06 11-3030D-S	EQR10 11-3030D-S	EQR15 11-3030D-S	
Micro-cell Number	27191 / mm²	10000 / mm²	4444 / mm ²	
Operation Voltage	Voltage V _B + 8 V V _B + 12 V		V _B +8 V	
Peak PDE @420nm	30%	36%	45%	
Gain	8×10 ⁴	1.7×10 ⁵	4×10 ⁵	
DCR	276 kHz / mm ²	400 kHz / mm ²	250 kHz / mm ²	
Capacitance	5.1 pF / mm ²	3.5 pF / mm ²	5.6 pF / mm ²	
Single Photoelectron Waveform	EOR06 11-3030D-S 0.12 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Time (ns)	EQR10 11-3030D-S 0.035 0.030 0.025 0.020 0.015 0.000 0.015 0.000 0.005 0.000 0.005 0.000 Time (ns)	EQR15 11-3030D-S 0.04 0.05 0.04 0.02 0.04 0.02 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05 0.04 0.05	

SiPM参数---模拟数据(不同本底下)

Ref: https://indico.ihep.ac.cn/event/25007/contributions/180119/attachments/87762/113072/20250214_ThresholdEffect.pdf

一 上海交通大学 李政道研究町

Signal + DCR + BIB

<mark>SiPM DCR: 276KHz/mm2</mark> 在(

在0.6MHz BIB条件下,1MIP及以下的信号离散

NDL SiPM测试数据

BGO-SiPM tests with Cs-137

Reference: talk in Jan 2, 2025

- Several NDL-SiPMs tested with 2cm BGO using Cs-137 (662 keV gamma)
- BGO-SiPM waveforms: discrete spikes due to narrow NDL-SiPM pulses and long BGO scintillation time
 - Extremely difficult for SiPM readout ASIC: *trigger* and *shape* smooth waveforms

Ref: https://indico.ihep.ac.cn/event/25036/contributions/180358/attachments/87644/112887/2025_0207_NDL_SiPM_Discussions.pdf

NDL SiPM测试数据

Radioactive source tests

- Cs-137 source (662 keV)
- $1 \times 1 \times 2$ cm³ BGO crystal, 4 EQR06 SiPM gives higher light output
- · Advanced trigger method: only trigger events with large pulse width
 - Change capacitor: 100 pF, 200 pF, 330pF, 470pF

Crystal

https://indico.ihep.ac.cn/event/25007/contributions/180120/attachments/87763/113077/20250214_NDL%20SiPM%20Parallel%20Connection%20Tests.pdf 8

NDL SiPM测试数据

Energy spectrum of Cs-137

• As the capacitance increases, the waveform becomes smoother

• Similar energy resolution for these setups

ECAL/HCAL/Muon设计需求、ASIC指标

项目	指标			备注
坝白	ECAL	HCAL		
电荷测量动态范围*1	1MIPs(1.28pC) - 3000MIPs(3.84nC)	1MIPs(1.6pC) - 100MIPs(160pC)	1.28pC-3.84nC	ECAL按增益8*10e4, HCAL按10e5算
时间测量动态范围				
电荷分辨率*2	10% @ 1MIPs; 1% @ 100MIPs	同ECAL	<u>10%@1MIP</u>	信号不离散的条件下,ASIC自身的分辨
时间分辨率*3	200ps @ 1MIPs; 100ps @ 12MIPs	不要求	<u>200ps@1MIP</u>	信号不离散的条件下,ASIC自身的分辨
积分非线性 (INL)	<sipm< td=""><td></td><td></td><td></td></sipm<>			
SiPM电容	45.9pF	100pF	100pF	ASIC按100pF设计
SiPM增益	8.00E+04	1.00E+05	1.00E+05	
单通道平均事例率*4	13kHz/ch	小于ECAL	13KHz/ch	
单通道最高事例率	230kHz	小于ECAL	500KHz/ch	
典型信号特征 (不同幅度)		2, 3ns		
典型脉冲宽度	BGO decay time=300ns	Glass decay time=500ns	lus	HCAL按decay time乘以2.36计算
其他需要电子学实现的功能(例 1, Random trigger				
如刻度方式,随机触发,SiPM偏	2, SiPM bias voltage fine tuning:1V (?)			
压调节, <mark>慢</mark> 控等)			0.2V	
1,按晶体沉积能量计算,1MIPs - 200pe - 2.56pC, ECAL晶体双端读出,每端电荷量为1/2				
2,物理上不需要单光电子分辨,	刻度可能需要单光电子分辨			
3,探测器总体时间分辨500ps,电子学时间分辨小于总体时间分辨				
4, 事例率已经考虑本底的影响				

2025.021.4、2025.02.17分别与ECAL组、HCAL组讨论后,鉴于小于1MIP SiPM信号的离散性, 本次流片暂不考虑0.1~1MIP的信号,待ECAL/HCAL确定相应的SiPM型号、小信号波形后,再研究相应的读出电路

Figure 1. The block diagram of the DIET ASIC.

Figure 2. The block diagram of the analog front-end circuit.

. ₩—RST

Vref

VoutE

Adjustment

E-Integrator

Ref : DIET: a multi-channel SiPM readout ASIC for TOF-PET with individual energy and timing digitizer

SPIROC is a 36 channels readout ASIC for SiPM @HCAL for CALICE collaboration It is designed to auto-trigger on 1/3 p.e. (50 fC) and stores up to 15 samples in an analog memory before the events are digitized and readout.

TABLE I SPIROC MAIN SPECIFICATIONS

dynamic range	$80~{ m fC}-200~{ m pC}$
signal to noise ratio	\sim 7 (SiPM gain = 10 ⁶)
analog output INL	$<\pm1\%$
pedestal uniformity	$\sigma=2~{ m mV}$
crosstalk	$<\pm 0.3\%$
effective noise charge	$1.5\times 10^5 \; electrons$ @ 50pF (50ns shaping)
ADC resolution	0.6 mV (LSB)
timing resolution	100 ps
time walk @ 1/2 MIP	3ns
time jitter @ 1/2 MIP	$<\pm 2\mathrm{ns}$
trigger efficiency	100%@1/3 photon electron
trigger noise	8 mV
input DAC INL	$<\pm2\%$
input DAC range	0.5 – 4.5 V
threshold DAC range	2 V
threshold DAC INL	$\leq \pm 1\%$
power consumption	$25\mu W \text{ per channel}^1$

Ref: SPIROC: design and performances of a dedicated very front-end electronics for an ILC Analog Hadronic CALorimeter (AHCAL) prototype with SiPM read-out

ASIC指标---ECAL/HCAL/Muon

Parameters	Specifications	
Input Dynamic Range	1.28pC~3.84nC	
Energy Resolution	<u>10%@1MIP=1.28pC</u> , <i>C_{det}</i> =100pF	
Time Resolution	200ps@1MIP=1.28pC, C _{det} =100pF	
Max rate/ch	500KHz	
ADC	40MHz, 10-bit	
TDC Resolution	8bit	
TDC Bin Width	100ps	
Power consumption	<15mV/channel	
Readout Bandwidth	346Mb/s	
Voltage supply	1.2V	
Number of channels	4	

ChoMin ASIC单通道系统框图

2025.02.18更新,本次流片先不考虑0.1~1MIP的信号

模块电路设计----Current Buffer

两档设计,覆盖1-3000MIPs的动态范围 #1: 1-60MIPs (60倍) #2: 50-3000MIPs (60倍)

Current Buffer的电流跟随能力仿真

模块电路设计---Slow Shaper

shaper输出信号: Tp=120ns

下图为shaper的瞬态噪声仿真波形 shaper输出端的rms值为0.255 mV 等效到输入端为0.13 MIPs, 信噪比约为7.4

模块电路设计---Slow Shaper

Shaper输出的INL(1-60 MIPs)

INL好于0.2%

Shaper输出的INL线性度(50-3000 MIPs)

INL好于0.4%

模块电路设计---discriminator

迟滞窗口: 3mV 即0.6 MIPs Delay time: 4.3ns@2 MIPs

模块电路设计---开关电容采样

开关电容

采样深度为9,采样频率约为20MHz; 前沿3个采样点,后延6个采样点 当检测到比较器输出的stop信号时停止采样,信号被保存在电容 中由ADC量化

模块电路设计----calibration channel

20

.5 time (us)

Tuning DAC for SiPM bias

- 6-bit Current DAC for SiPM bias
- Only for the bias of Current Buffer, no demand of speed
- LSB=4uA

模块电路设计----TDC

模块电路设计----TDC仿真

模块电路设计----TDC layout & post-sim

细计数部分版图

TDC在三个工艺角表现出的转移曲线均在设计的预期之内, 三个工艺角最大的DNL为 1.4LSB,其他的工艺角的INL 和DNL均在1LSB以下。TDC的 细计数部分已经完成了版图 设计,并进行了部分后仿真。

模块电路设计----TDC post-sim

细计数模块的layout决定了TDC的精度,因此对TDC进行了部分后仿真,以
 找到延迟单元合适的偏置电压以及确定layout是否影响了TDC的精度

的TDC码字仿真@tt 27

 - 仿真结果表明,在延迟链采用后仿真参数的情况下,一个粗计数周期内的 转移曲线的最大INL为0.55,最大DNL为0.9,证明该部分layout符合设计要 求,ss,ff工艺角的数据正在仿真.

模块电路设计---SAR ADC

ADC采用单级SAR结构,采用分段电容技术以及失调自校正技术,按照12位ADC来设计,目标最终的<mark>ENOB为10bit</mark>, 在前仿有效位11.98bit,加*trannoise*噪声有效位为<mark>11.26bit</mark>,SNDR为69.52dB,SFDR为80.04dB,功耗为1.3mW, FOM值为20fJ。

模块电路设计---单转差放大器

开关电容采样电路输出为单端信号,与ADC连接时,需要单端转差分 按照20MHz为最大输入频率,输出ENOB目标为9bit 前仿真:Gain为50dB,单位增益带宽1.3GHz,相位裕度78度,功耗9-10mA, ENOB为9.36bit

模块电路设计---Encoder考虑

- 芯片包括4个通道
- 每通道1个TDC,单个TDC的数据为72bit
- 4通道共用1个ADC, 电容采样深度为9, 每通道2档, 数据为72bit
- TDC+ADC总数据为72bit*4+72bit=360bit
- 按500KHz事例率考虑,信号需要在500KHz条件下传到后端,因此输出时 钟的最低频率为180MHz
- 加上帧头/尾、通道编码, 拟采用346.4MHz的时钟传输数据

■ 采用数字模块设计encoder以及serializer串行输出

ASIC各项指标参数已经确定电路设计

- Current Buffer、slow shaper、discriminator:前仿真完成
- 开关电容采样电路: 前仿真完成, 与模拟部分的联合仿真完成
- Calibration CSA/shaper: 前仿真完成
- Tuning DAC: 前仿真完成, 暂未与Current Buffer联调
- TDC模块: 前仿真, 细计数部分的后仿真
- ADC模块:前仿真完成,暂未联合仿真
 单转差放大器:前仿真完成,暂未联合仿真
 4月份流片计划

- 各关键模块的验证、4通道芯片的验证

Backup Slides

时间窗为bunch spacing 346 / 69 / 23 ns 阈值为0.1mip		平均计数率 [KHz/cell]	最大计数率 [KHz/cell]	最大占空比 [%]	
带 4cm 以的果	ECAL Barrel	Higgs	4	87	
		LZ	43	1,130	
	ECAL Endcap	Higgs	9	469	
		LZ	66	1,368	
		Higgs	11	424	0.57
	ECAL Barrel	LZ	15	335	0.29
		HZ	77	2,104	0.29
		Higgs	45	2,870	2.4
	ECAL Endcap	LZ	65	6,699	0.78
15mm		HZ	334	34,528	1.1
不窃钢		Higgs	0.2	5.8	0.00046
	HCAL Barrel	LZ	0.7	12	0.00018
		HZ	2.2	44	0.00018
	HCAL Endcap	Higgs	5.3	221	0.013
		LZ	8.2	249	0.00458
		HZ	53	2,148	0.0085
	ECAL Barrel	Higgs	7	172	0.44
		LZ	11	212	0.16
		HZ	54	1,065	0.2
	ECAL Endcap	Higgs	23	1,746	1.74
		LZ	35	2,408	0.39
15mm		HZ	187	15,209	0.57
Ti+W	HCAL Barrel	Higgs	0.2	3.5	0.00052
		LZ	0.7	12	0.00012
		HZ	2.1	35	0.00015
	HCAL Endcap	Higgs	3.8	129	0.0084
		LZ	6	157	0.0037
		HZ	40	1,338	0.0063

Ref: https://indico.ihep.ac.cn/event/24786/contributions/178099/attachments/87639/112878/BIB_CAL_1.24.pdf

Current Buffer PSRR

