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1. Collective-like effects in heavy-ion collisions, theory and experiment
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Origin of collectivity in experiment and theory
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Initial condition models ,

Relativistic

hydrodynamics

▹ Experiment

• Strongly-interacting medium is formed in collisions

according to several experimental indicators

• This medium is fluid-like, implied by anisotropic

particle momentum pattern of the hadronic products

• The anisotropic expansion is a result of collective

behaviour, and is very prominent in heavy-ion system

▹ Theory

• Hydrodynamics is a mainstream description of the

medium

• The system undergoes a fluid-like expansion under the

pressure gradients of the initial stage geometry

• Successful description of wide range of experimental

observables

• Medium properties characterized by shear and bulk

resistance to evolution over time

𝑇 𝜇𝜈 = 𝑒𝑢𝜇𝑢𝜈 − (𝑃 + Π)Δ𝜇𝜈 + 𝜋𝜇𝜈 , 𝜎𝜇𝑇 𝜇𝜈 = 0
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Transport properties of the hydrodynamic theory
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▹ Specific shear viscosity
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▹ Specific bulk viscosity

𝜁
𝑠
(𝑇 ) = (𝜁/𝑠)max

1 + (
𝑇−(𝜁/𝑠)Tpeak

(𝜁/𝑠)width
)
2

Parameter Description

𝑇c Temperature of const. 𝜂/𝑠(𝑇 ), 𝑇 < 𝑇c

𝑛/𝑠(𝑇c) Minimum 𝜂/𝑠(𝑇 )
(𝜂/𝑠)slope Slope of 𝜂/𝑠(𝑇 ) above 𝑇c

(𝜂/𝑠)crv Curvature of 𝜂/𝑠(𝑇 ) above 𝑇c

(𝜁/𝑠)Tpeak
Temperature of maximum 𝜁/𝑠(𝑇 )

(𝜁/𝑠)max Maximum 𝜁/𝑠(𝑇 )
(𝜁/𝑠)width Width of 𝜁/𝑠(𝑇 ) peak

𝑇switch Switching / particlization temperature

𝑁(𝐸) Overall normalization for collision energy 𝐸
𝑝 Entropy deposition parameter

𝑤 Nucleon width

𝜎k Std. dev. of nucleon multiplicity fluctuations

𝑑3min Minimum volume per nucleon

𝜏fs Free-streaming time
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Phenomelogical initial conditions

Parameter Description

𝑁(𝐸) Overall normalization for collision energy 𝐸
𝑝 Entropy deposition parameter

𝑤 Nucleon width

𝜎k Std. dev. of nucleon multiplicity fluctuations

𝑑3min Minimum volume per nucleon

𝜏fs Free-streaming time

PRC. C92 (2015) 011901

d𝐸
d𝑥⟂ d𝜂𝑠

= Norm ×(𝑇A + 𝑇B

2
)

1/𝑝

𝑇A,B = ∫d𝑧𝜌A,B(𝑥 ± 𝑏/2, 𝑦, 𝑧)

𝜌nucleon(𝑥) =
1

(2𝜋𝑤2)3/2
exp(−|𝑥|2/2𝑤2)
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Working principle of parameter estimation

Prior

Hydro

Calibrate

Extract

Measure

2 3 4 5 6 7 8 9

n

10−3

10−2

10−1

v n

Pb-Pb √sNN = 5.02 TeV
0.4 < |η| < 0.8
0.2 < pT < 5.0 GeV/c

ALICE
0 - 5%
40 - 50%

0.0

0.2

0.4

0.6

0.8

1.0

/s

Priori

0.00

0.02

0.04

0.06

0.08

0.10

/s

0.0 0.1 0.2 0.3 0.4 0.5
T (GeV)

0

2

4

/s
slo

pe
[G

eV
1 ] 0.58+0.89

0.58

0.0

0.1

0.2

/s
(T

c)

0.101+0.046
0.046

0.00

0.05

0.10

/s
m

ax

0.019+0.031
0.019

0 2 4

/sslope[GeV 1]

0.135

0.150

0.165

T s
wi

tc
h[

Ge
V]

0.0 0.1 0.2

/s(Tc)

0.00 0.05 0.10

/smax
0.135

0.150
0.165

Tswitch[GeV]

0.160+0.004
0.004

150 200 250 300
Temperature [MeV]

0.0

0.1

0.2

0.3

0.4

/s

1/4

Posterior median
90% credible region

𝑃(𝐻)

𝑃(𝐸)

Bayes’ theorem

𝑃(𝐻|𝐸) = 𝑃(𝐸|𝐻) ⋅ 𝑃 (𝐻)
𝑃(𝐸)

𝑃(𝐸) = ∑
𝑛

𝑖=1
𝑃(𝐸|𝐻𝑖)𝑃 (𝐻𝑖)

Posterior: 𝑃(𝐻|𝐸): prob. of 𝐻
given 𝐸 (experimental data)

• Find optimal set of model parameters

that best reproduce the experimental

data.

• Utilize constraints, such as flow

observables, to help narrow down the

𝜂/𝑠(𝑇 ) etc.

• Massive computational cost: need to

probe the entire 14-parameter space with

sufficient statistics
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Experimental quantification

• Experimentally, only final-stage particles and their attributes can be measured

• How can the collective-like effects be experimentally quantified?
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T
ra

n
sv

er
se

B
ea

m
-p

er
p

en
d

ic
u

la
r

• Two-particle azimuthal correlations: measurement of the polar angle Δ𝜑 and pseudorapidity Δ𝜂
between all pairs of charged particles coming from the collision. What sort of correlations can be

observed?
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Two-particle correlation: typical general features in (Δ𝜂,Δ𝜑)

Particles from the same jet at low

Δ𝜂Δ𝜑 form the near-side peak

pp event in STAR experiment

Particles from back-to-back jets at

Δ𝜑 ∼ 𝜋 form the away-side ridge

ALICE, PLB. 719 (2013) 29-41
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Long-range correlations

• Collective-like effects manifest themselves as the

double-ridge structure in the long-range

correlations
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• The double-ridge emerges when a large elliptic

harmonic component is present: characterizes the

elliptic expansion

Modes of expansion are chacterized through the

flow coefficients 𝑣𝑛:

d𝑁
dΔ𝜑

∝ 1 +∑
∞

𝑛=1
𝑣2𝑛 cos(Δ𝜑).
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Bayesian parameter estimation

Duke Trento+VISH(2+1D)+UrQMD
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• A number of studies done by 2021 utilizing mostly low-harmonic and 2.76 TeV observables

• Still rather large uncertainty for both 𝜂/𝑠(𝑇 ) and 𝑧𝜂/𝑠(𝑇 ). Can uncertainty be improved?

• Duke and JETSCAPE provide open source setups for hydrodynamics and bayesian parameter estimation –

good starting point phenomelogy work

• Started with JETSCAPE, soon move over to Duke setup
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Our arsenal of observables from ALICE
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J.E. Parkkila, et. al, Phys. Lett. B 835 (2022) 137485

Sensitivity map from the emulator

• More advanced multi-particle observables beyond

the 𝑣𝑛 present unique sensitivity to various stages

of the evolution

• More sensitive observables have more constraining

power

• Observables should be independent of from other
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Parameter estimation using advanced azimuthal correlations
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Our latest calibration

includes data from LHC

Pb–Pb at 5.02 + 2.76 TeV

and RHIC Au–Au at 200

GeV.

• Parameters well

constrained despite 3

collision systems and

many observables

• Larger uncertainty than

Pb–Pb alone (2022 study)

• Model limitations, choice

of centrality etc.

• M. Virta, J.E. Parkkila, D.J. Kim, PRC. 111 (2025) 044903

• J.E. Parkkila, et. al, Phys. Lett. B 835 (2022) 137485
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Collective-like effects in various collision systems

• This signal is present across various collision system sizes
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• Long-range correlation emerges during the early stages

• In heavy-ion systems this is the medium response to initial stage geometry

• Light-ion: likely medium response

• p–Pb and pp: medium-like, but might be something else

• In small systems the origin is unclear (QGP? Multi-parton scattering? Ropes? Initial-stage effect?)
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Long-range correlations in pp: basic findings0.00
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ALICE pp
√
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JHEP 05 (2021) 290

• Prominent long-range near-side ridge in high multiplicity (𝑁ch > 110) collisions

• Small signal in minimum bias (0–100%)

• How small can the system get and still exhibit these signals?

• Several theoretical approaches with or without medium
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Ridge-yield as quantification for collective-like effects

• Near-side ridge clearly visible in high-multiplicity events

ALI-PUB-574465
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ALICE pp s = 13 TeV

C( )
Fourier fit

F( ) a2 term
F( ) a3 term

2

∫dΔ𝜂

𝑌 ridge = ∫dΔ𝜑

• Find the baseline and |Δ𝜑min| by fitting 𝐹(Δ𝜑) = 𝐴(1 + 2∑3
𝑛=1 𝑣

2,cent
𝑛 cos(𝑛Δ𝜑)) + 𝐶ZYAM to the signal

• Measured in 1.4 < |Δ𝜂| < 1.8 to suppress the short-range non-flow correlations

• 𝑝T > 1.0 GeV/𝑐 (trig and assoc) to avoid near-side jet broadening into |Δ𝜂| > 1.4
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Ridge yield in e+e− collisions
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pp system details are intricate. Study the simpler

processes involved in e+e− annihilations (point-like

collision: no uncertainties on initial geometry or

parton distribution function description)

• No yield in the lowest multiplicities 𝑁ch < 10
• Would we get similarly small values in pp as in

e+e− or are the two systems intrinsically different?
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Ridge yield in low-multiplicity pp

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

Y r
id

ge

0 8 16 24 32 40 48
Nch

ALICE
pp s = 13 TeV

1 < pT, trig/assoc < 2 GeV/c
1.4 < | | < 1.8

MB

ALICE
ALEPH thrust
e+e  91 GeV
ALEPH thrust
e+e  183-209 GeV

95% CL

95% CL 

95% CL  

PRL. 132 (2024) 172302

• Non-zero yield even in very low

multiplicity collisions (95% C.L)

• First quantitative constraints of

yield in smallest hadronic

collisions

• 5–6𝜎 larger yield in pp compared

to e+e− collisions

• A comparison to e+e− can

provide insight to what processes

might or do not contribute to the

yield

• A reference point-like collision

can also help understand the

magnitude of initial stage effects
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Flow in pp
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• Significant flow 𝑣2 and 𝑣3 measured in

pp and pPb

• Even mass ordering is observed

• Evident that everything from small to

large systems flows
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Search for jet quenching effects in small systems

ALI-PUB-545018

Min. Bias

• Even though flow signatures are observed, no sign

of jet quenching in small systems (ALICE, JHEP 05

(2024) 041)

p⃗j2

p⃗j1

∆φ

∆η, ∆φ 1 . 1
Ntrig

d2Npair
d∆φ∆η

2 . ∆recoil = 1
Ntrig

d2Njet
dpT,jetd∆φ

3 . D(z) = 1
Njets

dN
dz

How about multiplicity dependence in pp collisions?

1. hadron-hadron correlations? (presented today)

2. hadron-jet correlations (JHEP 05 (2024) 229)

3. intra-jet correlations (Eur.Phys.J C84 (2024) 1079)

▹ Multiplicity dependence of di-hadron correlations

Robust test against Pb–Pb reference
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Quantification of jet modification

Aim to quantify the modification of the jet

correlation shape over various multiplicity bins.

ALI-PUB-578242

Fit a generalized Gaussian over Δ𝜂-projection of the

correlation function over Δ𝜑 ∈ [−1.3, 1.3].

𝐴+ 1
2𝛼Γ(1/𝛽)

exp[−(|𝑥|
𝛼
)

𝛽

],

where

𝜎 = √𝛼2Γ(3/𝛽)
Γ(1/𝛽)

Broadening

Greater 𝜎Δ𝜂 toward larger (higher multiplicity)

collisions. This can signal the presence of jet

quenching, and therefore, likely medium.

Collectivity in small and large systems J.E. Parkkila 20/33



Broadening of jets in Pb–Pb collisions
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• Broadening of the jet fragmentation peak in various kinematic regions observed in heavy-ion collisions.

• Abnormal and wider in Δ𝜂 direction than Δ𝜑
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Multiplicity dependence of 𝜎Δ𝜂 in pp 13 TeV: width comparison

ALI-PUB-578247

JHEP 03 (2025) 194

• Multiplicity dependence decreases for

higher 𝑝T and higher multiplicity

‣ But could it be because of multiplicity

estimator bias?

• Forward multiplicity estimator results

have broader jets and weaker multiplicity

dependence across almost all 𝑝T-bins

• Clear ordering in the magnitude →

narrower peaks towards higher 𝑝T

• No signs of jet quenching in pp
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Model comparisons in pp

ALI-DER-578820 ALI-DER-578825

• Models overestimate for the lower-𝑝T but better description for higher-𝑝T

• Trend is captured by most models

• The multiplicity dependence is weaker for higher-𝑝T

• Non-trivial 𝑝T and multiplicity dependence in the models which contains “Jets” + “Flow”

• Caution with your interpretation, introduced biases while producing flow (e.g, EPOS and PYTHIA8-Shoving)

• Not trivial to extract flow from some models (see S. Ji et al., PRC 108 (2023) 034909)
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Jet quenching in light-ion systems: OO?

Expect p–Pb and OO fall into transition region 𝜏Hydro/𝑅 ≈ 1 where system is expected to encounter final

state interactions, but is also out-of-equilibrium for a significant part of its lifetime. No hint in p–Pb but a

sweet spot to oberve jet quenching signal in OO.
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Centrality dependent jet-shape modification in OO

❗ No public preliminary
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Jet-shape modification in OO – comparison to Pb–Pb

❗ No public preliminary
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Jet-shape modification in OO - comparison to pp reference

❗ No public preliminary
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Summary

• QGP is created in heavy-ion collisions at the LHC and its evolution governed by relativistic hydrodynamics

• Higher harmonic and independent advanced multi-particle correlations can improve the parameter

estimation outcomes

• Flow-like signals are measured even in the smallest collision systems

• However, no jet quenching signals observed in pp

Collectivity in small and large systems J.E. Parkkila 28/33



Backup
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Two-particle correlations: experimental representation

Two-particle correlation function between trigger and associated particles (𝑝T,trig > 𝑝T,assoc)

1
𝑁 ∗

trig

d2𝑁pair

dΔ𝜂Δ𝜑
(Δ𝜂,Δ𝜑) = 𝑁 ∗,mixed

pair (0, 0)
𝑁 ∗,same

pair (Δ𝜂,Δ𝜑)
𝑁 ∗,mixed

pair (Δ𝜂,Δ𝜑)
.

ALI-PERF-575572 ALI-PERF-575576
ALI-PUB-574465

Same- and Mixed-event correlation function, and the corrected outcome.

The two-particle correlation method is used to study azimuthal angle distributions of the emitted charged

particles, and in turn probe collective-like effects and jet fragmentation interplay with potential medium.
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Conversion of ALEPH multiplicity

• Estimate the limits of uncertainty on the

conversion of the multiplicity

• Target: multiplicity defined by accepted particles

within |𝜂| < 1.0, 𝑝T > 0.2GeV
𝑐

• Multiplicity conversion between different systems

and experiments is done using PYTHIA

1. Simulate pp at 
√
𝑠 = 13 TeV in both

experimental acceptances. Multiplicity ratio to

obtain 𝛼A

2. Simulate e+e− at 
√
𝑠 = 91 GeV in both

experimental acceptances. Multiplicity ratio to

obtain 𝛼B

Method Experiment Corr. factor 𝛼A/B

PYTHIA
ALEPH pp 13 TeV,

ALEPH e+e− 91 GeV
0.57 (A) 0.78 (B)

Flat d𝑁/d𝜂 ALEPH 0.63

Experiment |𝜂max| 𝑝T,min

√
𝑠

ALICE pp 1.0 0.2 13 TeV

ALEPH e+e− 1.738 0.2 91 GeV
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Low multiplicity pp ridge yield model comparisons
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• No ridge from Monash, as

expected

• Models with collectivity

mechanisms underestimate the

ridge yield

• Model ridge yield calculated at

large 2 < |Δ𝜂| < 4 to avoid the

over-estimated jet fragmentation

width
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Matter in early universe

• Early Universe immediately after Big Bang: free

quarks and gluons not confined to hadrons

• Can be created small nuclei-sized droplets at the

LHC in heavy-ion collisions

• Study of this matter can improve the understanding

on a strongly-interacting system as well as the

conditions in early Universe
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