

Emergence and quantification of collective effects across collision systems

PRECISION FRONTIER OF QCD MATTER:
INFERENCE AND UNCERTAINTY
QUANTIFICATION. CCNU WUHAN
4.9.2025

Jasper Parkkila

Talk ouline

- 1. Collective-like effects in heavy-ion collisions, theory and experiment
- 2. Transport properties from LHC and RHIC observables
- 3. Small system collective-like effects
- 4. Signatures of medium
- 4. Light-ion mid-point results

Origin of collectivity in experiment and theory

Spatial anisotropy

Initial condition models

Momentum anisotropy

hydrodynamics

▶ Experiment

- Strongly-interacting **medium** is formed in collisions according to several experimental indicators
- This medium is fluid-like, implied by **anisotropic** particle momentum pattern of the hadronic products
- The anisotropic expansion is a result of **collective** behaviour, and is very prominent in heavy-ion system

▶ Theory

- Hydrodynamics is a mainstream description of the medium
- The system undergoes a fluid-like expansion under the pressure gradients of the initial stage geometry
- Successful description of wide range of experimental observables
- Medium properties characterized by shear and bulk resistance to evolution over time

$$T^{\mu\nu}=eu^{\mu}u^{\nu}-(P+\Pi)\Delta^{\mu\nu}+\pi^{\mu\nu},\quad \sigma_{\mu}T^{\mu\nu}=0$$

Transport properties of the hydrodynamic theory

▶ Specific shear viscosity

$$\frac{\eta}{s}(T) = \left(\frac{\eta}{s}\right)_{\min} + \left(\frac{\eta}{s}\right)_{\text{slope}} (T - T_{\text{c}}) \left(\frac{T}{T_{\text{c}}}\right)^{(\eta/s)_{\text{crv}}}$$

▶ Specific bulk viscosity

$$rac{\zeta}{s}(T) = rac{(\zeta/s)_{ ext{max}}}{1+\left(rac{T-(\zeta/s)_{ ext{T}_{ ext{peak}}}}{(\zeta/s)_{ ext{width}}}
ight)^2}$$

Parameter	Description	
$T_{ m c}$	Temperature of const. $\eta/s(T)$, $T < T_{\rm c}$	
$n/s(T_{ m c})$	Minimum $\eta/s(T)$	
$(\eta/s)_{\mathrm{slope}}$	Slope of $\eta/s(T)$ above $T_{ m c}$	
$(\eta/s)_{ m crv}$	Curvature of $\eta/s(T)$ above $T_{ m c}$	
$(\zeta/s)_{T_{peak}}$	Temperature of maximum $\zeta/s(T)$	
$(\zeta/s)_{ m max}$	Maximum $\zeta/s(T)$	
$(\zeta/s)_{ m width}$	Width of $\zeta/s(T)$ peak	
$T_{ m switch}$	Switching / particlization temperature	
N(E)	Overall normalization for collision energy ${\cal E}$	
p	Entropy deposition parameter	
w	Nucleon width	
$\sigma_{ m k}$	Std. dev. of nucleon multiplicity fluctuations	
$d_{ m min}^3$	Minimum volume per nucleon	
$ au_{ m fs}$	Free-streaming time	

Phenomelogical initial conditions

[
Parameter	Description		
N(E)	Overall normalization for collision energy E		
p	Entropy deposition parameter		
w	Nucleon width		
$\sigma_{ m k}$	Std. dev. of nucleon multiplicity fluctuations		
$d_{ m min}^3$	Minimum volume per nucleon		
$ au_{ m fs}$	Free-streaming time		

PRC. **C92** (2015) 011901 **x** [fm]

$$rac{\mathrm{d}E}{\mathrm{d}x_{\perp}\,\mathrm{d}\eta_{s}} = \mathrm{Norm} imes \left(rac{T_{\mathrm{A}} + T_{\mathrm{B}}}{2}
ight)^{1/p}$$

$$T_{
m A,B} = \int {
m d}z
ho_{
m A,B}(x\pm b/2,y,z)$$

$$\rho_{\rm nucleon}(x) = \frac{1}{\left(2\pi w^2\right)^{3/2}} \exp(-|x|^2/2w^2)$$

Working principle of parameter estimation

Bayes' theorem

$$P(H|E) = \frac{P(E|H) \cdot P(H)}{P(E)}$$

$$P(E) = \sum_{i=1}^{n} P(E|H_i)P(H_i)$$

Posterior: P(H|E): prob. of H given E (experimental data)

- Find optimal set of model parameters that best reproduce the experimental data.
- Utilize constraints, such as flow observables, to help narrow down the $\eta/s(T)$ etc.
- Massive computational cost: need to probe the entire 14-parameter space with sufficient statistics

Experimental quantification

- Experimentally, only final-stage particles and their attributes can be measured
- How can the collective-like effects be experimentally quantified?

• Two-particle azimuthal correlations: measurement of the polar angle $\Delta \varphi$ and pseudorapidity $\Delta \eta$ between all pairs of charged particles coming from the collision. What sort of correlations can be observed?

Two-particle correlation: typical general features in $(\Delta \eta, \Delta \varphi)$

ALICE, PLB. 719 (2013) 29-41

Particles from the same jet at low $\Delta\eta\Delta\varphi$ form the near-side peak

Particles from back-to-back jets at $\Delta \varphi \sim \pi$ form the away-side ridge

pp event in STAR experiment

Long-range correlations

 Collective-like effects manifest themselves as the double-ridge structure in the long-range correlations

• The double-ridge emerges when a large *elliptic* harmonic component is present: characterizes the elliptic expansion

Modes of expansion are chacterized through the flow coefficients v_n : $\frac{\mathrm{d}N}{\mathrm{d}\Delta\varphi} \propto 1 + \sum_{n=1}^{\infty} v_n^2 \cos(\Delta\varphi).$ 10-**ALICE** 0 - 5% 40 - 50% 10^{-3} Pb-Pb $\sqrt{s_{NN}}$ = 5.02 TeV $0.4 < |\eta| < 0.8$ $0.2 < p_T < 5.0 \, \text{GeV/c}$ n

Steffen A. Bass et al., Nature Physics (2019)

JETSCAPE Trento+MUSIC+SMASH

- A number of studies done by 2021 utilizing mostly low-harmonic and 2.76 TeV observables
- Still rather large uncertainty for both $\eta/s(T)$ and $z\eta/s(T)$. Can uncertainty be improved?
- Duke and JETSCAPE provide open source setups for hydrodynamics and bayesian parameter estimation good starting point phenomelogy work
- Started with JETSCAPE, soon move over to Duke setup

Our arsenal of observables from ALICE

Name	Symbol	Sensitivity- stochastic approach
(High harmonic) Flow coefficients	v_n	Average $\langle \eta/s \rangle$, $\langle \zeta/s \rangle$
Non-linear flow mode coefficients	$\chi_{n,mk}$	$\eta/s(T)$ at the freeze-out
Symmetry-plane correlations	$ ho_{n,mk}$	$\eta/s(T)$ temperature dependence
(Normalized) symmetric cumulants	$\begin{array}{c} \text{(N)SC}(k,l,m) \\ \langle v_m^2 v_n^2 \rangle \end{array}$	
Asymmetric cumulants	$\begin{array}{c} \mathrm{AC}_{\mathbf{a},\mathbf{b}}(k,l,m) \\ \langle v_m^{2\cdot\mathbf{a}}v_n^{2\cdot\mathbf{b}} \rangle \end{array}$	
$N_{ m ch}$ spectra and avg. transverse momentum	$N_{p^\pm}/\mathrm{d}\eta, \langle p_\mathrm{T} angle$	$T_{ m switch}$ and $ au_{ m fs}$

J.E. Parkkila, et. al, Phys. Lett. B 835 (2022) 137485

- More advanced multi-particle observables beyond the v_n present unique sensitivity to various stages of the evolution
- More sensitive observables have more constraining power
- Observables should be independent of from other

Parameter estimation using advanced azimuthal correlations

Our latest calibration includes data from LHC Pb–Pb at 5.02 + 2.76 TeV and RHIC Au–Au at 200 GeV.

- Parameters well constrained despite 3 collision systems and many observables
- Larger uncertainty than
 Pb-Pb alone (2022 study)
- Model limitations, choice of centrality etc.

- M. Virta, J.E. Parkkila, D.J. Kim, PRC. 111 (2025) 044903
- J.E. Parkkila, **et. al**, Phys. Lett. B **835** (2022) 137485

Collective-like effects in various collision systems

• This signal is present across various collision system sizes

- Long-range correlation emerges during the early stages
- In heavy-ion systems this is the medium response to initial stage geometry
- Light-ion: likely medium response
- p-Pb and pp: medium-like, but might be something else
- In small systems the origin is unclear (QGP? Multi-parton scattering? Ropes? Initial-stage effect?)

Long-range correlations in pp: basic findings

- Prominent long-range near-side ridge in high multiplicity ($N_{\rm ch} > 110$) collisions
- Small signal in minimum bias (0–100%)
- How small can the system get and still exhibit these signals?
- Several theoretical approaches with or without medium

Ridge-yield as quantification for collective-like effects

• Near-side ridge clearly visible in high-multiplicity events

- Find the baseline and $|\Delta \varphi_{\min}|$ by fitting $F(\Delta \varphi) = A \Big(1 + 2 \sum_{n=1}^3 v_n^{2, \mathrm{cent}} \cos(n \Delta \varphi)\Big) + C_{\mathrm{ZYAM}}$ to the signal
- Measured in $1.4 < |\Delta \eta| < 1.8$ to suppress the short-range non-flow correlations
- $p_{\rm T}>1.0~{
 m GeV}/c$ (trig and assoc) to avoid near-side jet broadening into $|\Delta\eta|>1.4$

Ridge yield in e⁺e⁻ collisions

pp system details are intricate. Study the simpler processes involved in e⁺e⁻ annihilations (point-like collision: no uncertainties on initial geometry or parton distribution function description)

- No yield in the lowest multiplicities $N_{
 m ch} < 10$
- Would we get similarly small values in pp as in e^+e^- or are the two systems intrinsically different?

Ridge yield in low-multiplicity pp

PRL. **132** (2024) 172302

- Non-zero yield even in very low multiplicity collisions (95% C.L)
- First quantitative constraints of yield in smallest hadronic collisions
- 5–6 σ larger yield in pp compared to e^+e^- collisions
- A comparison to e⁺e⁻ can provide insight to what processes might or do not contribute to the yield
- A reference point-like collision can also help understand the magnitude of initial stage effects

Flow in pp

- Significant flow v_2 and v_3 measured in pp and pPb
- Even mass ordering is observed
- Evident that everything from small to large systems flows

J.E. Parkkila

Search for jet quenching effects in small systems

• Even though flow signatures are observed, no sign of jet quenching in small systems (ALICE, JHEP **05** (2024) 041)

How about multiplicity dependence in pp collisions?

- 1. hadron-hadron correlations? (presented today)
- 2. hadron-jet correlations (JHEP **05** (2024) 229)
- 3. intra-jet correlations (Eur.Phys.J **C84** (2024) 1079)
- ▶ Multiplicity dependence of di-hadron correlations

Robust test against Pb-Pb reference

Quantification of jet modification

Aim to quantify the modification of the jet correlation shape over various multiplicity bins.

Fit a generalized Gaussian over $\Delta \eta$ -projection of the correlation function over $\Delta \varphi \in [-1.3, 1.3]$.

$$A + \frac{1}{2\alpha\Gamma(1/\beta)} \exp\left[-\left(\frac{|x|}{\alpha}\right)^{\beta}\right],$$

where

$$\sigma = \sqrt{\frac{\alpha^2 \Gamma(3/\beta)}{\Gamma(1/\beta)}}$$

Broadening

Greater $\sigma_{\Delta\eta}$ toward larger (higher multiplicity) collisions. This can signal the presence of jet quenching, and therefore, likely medium.

Broadening of jets in Pb-Pb collisions

- Broadening of the jet fragmentation peak in various kinematic regions observed in heavy-ion collisions.
- Abnormal and wider in $\Delta\eta$ direction than $\Delta\varphi$

Multiplicity dependence of σ_{Δ_i} in pp 13 TeV: width comparison

- Multiplicity dependence decreases for higher $p_{\rm T}$ and higher multiplicity
 - But could it be because of multiplicity estimator bias?
- Forward multiplicity estimator results have broader jets and weaker multiplicity dependence across almost all $p_{\rm T}$ -bins
- Clear ordering in the magnitude \rightarrow narrower peaks towards higher $p_{\rm T}$
- No signs of jet quenching in pp

JHEP **03** (2025) 194

Model comparisons in pp

- Models overestimate for the lower- p_{T} but better description for higher- p_{T}
- Trend is captured by most models
- The multiplicity dependence is weaker for higher- p_T
- Non-trivial $p_{\rm T}$ and multiplicity dependence in the models which contains "Jets" + "Flow"
- Caution with your interpretation, introduced biases while producing flow (e.g, EPOS and PYTHIA8-Shoving)
- Not trivial to extract flow from some models (see S. Ji et al., PRC 108 (2023) 034909)

Jet quenching in light-ion systems: 00?

Expect p–Pb and OO fall into transition region $\tau_{\rm Hydro}/R \approx 1$ where system is expected to encounter final state interactions, but is also out-of-equilibrium for a significant part of its lifetime. No hint in p–Pb but a sweet spot to oberve jet quenching signal in OO.

Centrality dependent jet-shape modification in OO

No public preliminary

Jet-shape modification in OO – comparison to Pb-Pb

No public preliminary

Jet-shape modification in OO - comparison to pp reference

No public preliminary

Summary

- QGP is created in heavy-ion collisions at the LHC and its evolution governed by relativistic hydrodynamics
- Higher harmonic and independent advanced multi-particle correlations can improve the parameter estimation outcomes
- Flow-like signals are measured even in the smallest collision systems
- However, no jet quenching signals observed in pp

Backup

Two-particle correlations: experimental representation

Two-particle correlation function between trigger and associated particles $(p_{T, \rm trig} > p_{T, \rm assoc})$

$$\frac{1}{N_{\rm trig}^*} \frac{\mathrm{d}^2 N_{\rm pair}}{\mathrm{d}\Delta\eta\Delta\varphi}(\Delta\eta,\Delta\varphi) = N_{\rm pair}^{*,\rm mixed}(0,0) \frac{N_{\rm pair}^{*,\rm same}(\Delta\eta,\Delta\varphi)}{N_{\rm pair}^{*,\rm mixed}(\Delta\eta,\Delta\varphi)}.$$

(Same- and Mixed-event correlation function, and the corrected outcome.)

The two-particle correlation method is used to study azimuthal angle distributions of the emitted charged particles, and in turn probe collective-like effects and jet fragmentation interplay with potential medium.

Conversion of ALEPH multiplicity

- Estimate the limits of uncertainty on the conversion of the multiplicity
- Target: multiplicity defined by accepted particles within $|\eta|<1.0,\,p_{\rm T}>0.2\frac{\rm GeV}{c}$
- Multiplicity conversion between different systems and experiments is done using PYTHIA
 - 1. Simulate pp at $\sqrt{s}=13$ TeV in both experimental acceptances. Multiplicity ratio to obtain $\alpha_{\rm A}$
 - 2. Simulate e⁺e⁻ at $\sqrt{s}=91$ GeV in both experimental acceptances. Multiplicity ratio to obtain $\alpha_{\rm B}$

Method	Experiment	Corr. factor $\alpha_{\text{A/B}}$
PYTHIA	ALEPH pp 13 TeV, ALEPH e ⁺ e ⁻ 91 GeV	0.57 (A) 0.78 (B)
Flat $dN/d\eta$	ALEPH	0.63

Experiment	$ \eta_{ m max} $	$p_{ m T,min}$	\sqrt{s}
ALICE pp	1.0	0.2	13 TeV
ALEPH e ⁺ e ⁻	1.738	0.2	91 GeV

Low multiplicity pp ridge yield model comparisons

- No ridge from Monash, as expected
- Models with collectivity mechanisms underestimate the ridge yield
- Model ridge yield calculated at large $2<|\Delta\eta|<4$ to avoid the over-estimated jet fragmentation width

PRL. **132** (2024) 172302

Matter in early universe

- Early Universe immediately after Big Bang: free quarks and gluons not confined to hadrons
- Can be created small nuclei-sized droplets at the LHC in heavy-ion collisions
- Study of this matter can improve the understanding on a strongly-interacting system as well as the conditions in early Universe