Three-loop QCD Mass Relation between MS and RISMOM Away From Chiral Limit

陈龙 (Long Chen)

30th mini-workshop on the frontiers of LHC 2025 年 5 月 23 - 5 月 26 日,洛阳

Based on on-going work with M. Niggetiedt

Regularization-Independent Renormalization: Why?

Quark masses are fundamental parameters of the Standard Model

Lattice-based approaches for determining quark masses:

- Lattice perturbation theory
- Regularization-independent (non-perturbative) renormalization
- Current-Current correlator method

Extension/Evolution: RIMOM \rightarrow **RISMOM** \rightarrow **RImSMOM**

$$\overline{\overline{m}}(\mu) = Z_m^{\overline{\text{MS}}/\text{RI}}(\alpha_s(\mu), \mu, \mu_s) Z_m^{\text{RI}}(\mu_s, a) m(a)$$

RI-ren. is very effective in suppressing the discretization (lattice-cutoff) errors in extrapolation to the *continuum* limit

Extension/Evolution: RIMOM \rightarrow **RISMOM** \rightarrow **RImSMOM**

Additional discretization error in Lattice calculation for observables with heavy quarks (c, b): $O(a^2 m_O^2)$

• The RImSMOM scheme is claimed to be useful for reducing this kind of systematic errors.

• Alternative methods include heavy-quark improved normalization scheme [Hai-Yang Du et al. (CLQCD), 24] .

Renormalization Conditions in RImSMOM

At the symmetric momentum configuration with $p^2 = q^2 = -\mu_s^2$ and nonzero renormalized quark propagator mass m_R [Boyle et al. 16, Debbio et al. 24],

$$Z_{q}: \quad \frac{1}{12p^{2}} \operatorname{Tr} \left[-iS_{R}(p)^{-1} p \right] = 1$$

$$Z_{m}: \quad \frac{1}{12m_{R}} \left\{ \operatorname{Tr} \left[S_{R}(p)^{-1} \right] + \frac{1}{2} \operatorname{Tr} \left[(iq \cdot \Lambda_{A,R}) \gamma_{5} \right] \right\} = 1$$

$$Z_{V}(=1): \quad \frac{1}{12q^{2}} \operatorname{Tr} \left[(q \cdot \Lambda_{V,R}) q \right] = 1$$

$$Z_{A}(=1): \quad \frac{1}{12q^{2}} \operatorname{Tr} \left[(q \cdot \Lambda_{A,R} + 2m_{R}\Lambda_{P,R}) \gamma_{5} q \right] = 1$$

$$Z_{P}(=Z_{m}): \quad \frac{1}{12i} \operatorname{Tr} \left[\Lambda_{P,R} \gamma_{5} \right] = 1$$

$$Z_{S}(=Z_{P}?): \quad \frac{1}{12} \operatorname{Tr} \left[\Lambda_{S,R} \right] + \frac{1}{6q^{2}} \operatorname{Tr} \left[2m_{R}\Lambda_{P,R} \gamma_{5} q \right] = 1$$

• $S_R(p)$ is the renormalized massive quark propagator

• $\Lambda_{\Gamma,R}$ is the renormalized amputated operator matrix element ($\Gamma = S, P, V, A$)

Generate Feynman Diagram Representations for Form Factors

• Feynman diagrams generated using DiaGen • Lorentz and Dirac algebra done using FORM • Full *č*-dependence in form factors kept at off-shell kinematics (non-singlet type only)

IBP Reduction and Evaluation of Master Integrals

- Due to **massive quark off-shell**, number of masters 1115 **more than doubled** compared to the cutting-edge 3-loop on-shell heavy-quark form factors [Fael et al. 2022]
- Optimize the master basis simply by minimizing the size of DE ("trial-and-error" \rightarrow 280 MB)
- Full reduction to this basis with symbolic ϵ and $m_s \equiv m^2/\mu_s^2$ takes (Kira+FireFly) "several weeks" on a machine with ~200 CPUs and 2T RAM

- ► Off-shell momenta + Massive propagator ⇒ (Diagrammatic) Large-Mass Expansion
- Piecewise (generalized) power-series expansion using DE (DESolver utility from AMFlow [Liu Ma 22])
- Boundary conditions obtained using AMFlow modified to take directly external ready-to-use DE (avoiding the most time-consuming step of setting up DE with symbolic *m_s*, critical @ 3-loop)

- Extending the previous result by two more loop order!
- The size of O(α³_s) is comparable to O(α²_s) in the typical scenario of m_c application
- A window where C_{MS/mSMOM} is 'smaller' than C_{MS/SMOM}, good for reducing systematic uncertainties
- $C_{\overline{MS}/mSMOM}$ depends on ξ , and ξ renormalization is needed for $\xi \neq 0$
- $C_{\overline{MS}/mSMOM}$'s dependence on μ satisfies the same RGE as \overline{MS} -mass

- Extending the previous result by **two more loop order**!
- The size of $\mathcal{O}(\alpha_s^3)$ is **comparable** to $\mathcal{O}(\alpha_s^2)$ in the typical scenario of m_c application
- A window where C_{MS/mSMOM} is 'smaller' than C_{MS/SMOM}, good for reducing systematic uncertainties
- $C_{\overline{MS}/mSMOM}$ depends on ξ , and ξ renormalization is needed for $\xi \neq 0$
- $C_{\overline{MS}/mSMOM}$'s dependence on μ satisfies the same RGE as \overline{MS} -mass

- Extending the previous result by **two more loop order**!
- The size of $\mathcal{O}(\alpha_s^3)$ is **comparable** to $\mathcal{O}(\alpha_s^2)$ in the typical scenario of m_c application
- A window where $C_{\overline{MS}/mSMOM}$ is 'smaller' than $C_{\overline{MS}/SMOM}$, good for reducing systematic uncertainties
- $C_{\overline{MS}/mSMOM}$ depends on ξ , and ξ renormalization is needed for $\xi \neq 0$
- $C_{\overline{MS}/mSMOM}$'s dependence on μ satisfies the same RGE as \overline{MS} -mass

- Extending the previous result by **two more loop order**!
- The size of $\mathcal{O}(\alpha_s^3)$ is **comparable** to $\mathcal{O}(\alpha_s^2)$ in the typical scenario of m_c application
- A window where $C_{\overline{MS}/mSMOM}$ is 'smaller' than $C_{\overline{MS}/SMOM}$, good for reducing systematic uncertainties
- $C_{\overline{MS}/mSMOM}$ depends on ξ , and ξ renormalization is needed for $\xi \neq 0$
- $C_{\overline{MS}/mSMOM}$'s dependence on μ satisfies the same RGE as \overline{MS} -mass

- Extending the previous result by **two more loop order**!
- The size of $\mathcal{O}(\alpha_s^3)$ is **comparable** to $\mathcal{O}(\alpha_s^2)$ in the typical scenario of m_c application
- A window where $C_{\overline{MS}/mSMOM}$ is 'smaller' than $C_{\overline{MS}/SMOM}$, good for reducing systematic uncertainties
- $C_{\overline{MS}/mSMOM}$ depends on ξ , and ξ renormalization is needed for $\xi \neq 0$
- C_{MS/mSMOM}'s dependence on μ satisfies the same RGE as MS-mass

RI(m)SMOM Conditions in DR Re-interpreted in a Weaker Sense

The original RI(m)SMOM conditions interpreted as **exact equations to all orders in** ϵ in Dimensional Regularization:

$$\frac{1}{12p^2} \operatorname{Tr} \left[-iS_R(p)^{-1} \not p \right] = 1, \quad Z_q$$
$$\frac{1}{12i} \operatorname{Tr} \left[\Lambda_{P,R} \gamma_5 \right] = 1, \quad Z_P = Z_m$$

solved for
$$Z \equiv 1 + \sum_{i=1}^{3} \sum_{j=-i}^{3-i} Z_{ij}(\mu_s, m_R, \mu, \xi) \alpha_s^i \epsilon^j + \mathcal{O}(\alpha_s^4)$$

We find that the following weak variant

solved for
$$\tilde{Z} \equiv 1 + \sum_{i=1}^{3} \sum_{j=-i}^{0} Z_{ij}(\mu_s, m_R, \mu, \xi) \alpha_s^i \epsilon^j + \mathcal{O}(\alpha_s^4)$$

lead to different, albeit simpler, Z_m , but the same $C_{\overline{MS}/mSMOM}(\mu_s, m_R, \mu, \xi) = Z_m^{RImSMOM}/\tilde{Z}_m!$

$C_{\overline{MS}/mSMOM}(\mu_s, m_R, \mu, \xi)$ Re-obtained in an Acrobatic Way

$$\frac{1}{12p^2} \operatorname{Tr} \left[-iS_R(p)^{-1} \not{p} \right] |_{\epsilon \to 0} = 1, \quad \tilde{Z}_q$$
$$\frac{1}{12i} \operatorname{Tr} \left[\Lambda_{P,R} \gamma_5 \right] |_{\epsilon \to 0} = 1, \quad \tilde{Z}_P = \tilde{Z}_m$$

solved for
$$\tilde{Z} \equiv 1 + \sum_{i=1}^{3} \sum_{j=-i}^{0} Z_{ij}(\mu_s, m_R, \mu, \xi) \alpha_s^i \epsilon^j + \mathcal{O}(\alpha_s^4)$$

• The normal way:

insert *Laurent* ϵ -expansions of S(p) and Λ_P and extract exact ϵ -free algebraic equations for Z_{ij} (truncated precisely to ϵ^0), solved exactly.

• An acrobatic way:

insert S(p) and Λ_P evaluated at numerical samples of $\epsilon_{[Liu, Ma 19, 22]}$, every single algebraic equation so-extracted for Z_{ij} is incorrect(!), miraculously, the same $C_{\overline{MS}/mSMOM}(\mu_s, m_R, \mu, \xi)$ is restored by extrapolation in $\epsilon \to 0$ (conceptually similar as extrapolation in *a* in Lattice)

RImSMOM's statement on $Z_S = Z_P(Z_m)$ **Revised**

• RISMOM

$$\frac{1}{12}\operatorname{Tr}\left[\Lambda_{\mathsf{S},\mathsf{R}}\right]\Big|_{m\to 0} = 1$$

 $Z_S = Z_P$ holds in this *chiral* limit $m \to 0$

RImSMOM

$$\frac{1}{12}\operatorname{Tr}\left[\Lambda_{\mathrm{S},R}\right] + \frac{1}{6q^2}\operatorname{Tr}\left[2m_R\Lambda_{\mathrm{P},R}\gamma_5 g\right] = 1$$

• We observe, however,

 $Z_S \neq Z_P$

in general (accidentally equal in Feynman-gauge @ 1-loop), but approach each other again in the *chiral* limit $m \rightarrow 0$

• Alternatively, we suggest to simply take

$$Z_S = Z_F$$

in the Scalar-Operator renormalization away from chiral limit (completely detached from the others), as part of the **definition of the revised RImSMOM prescription**.

Summary and Outlook

- \square We present the first 3-loop result for mass conversion factor $C_{\overline{MS}/mSMOM}(\mu/\mu_s, m_R/\mu_s)$ away from chiral limit (extending the previous result by two more loop orders)
- \square The $\mathcal{O}(\alpha_s^3)$ correction is quite **sizable** in the typical scenario of m_c -determination, but there exists a window where $C_{\overline{MS}/mSMOM}$ is **smaller** than RISMOM counterpart, good for reducing systematic uncertainties
- ☑ We have provided an alternative interpretation of the original RI(m)SMOM conditions in DR in a weaker sense (holding just in 4-dimensional limit rather than exactly in D dimensions)
- \square Furthermore, when solving the weaker variant of the RImSMOM conditions, an exact explicit truncation to ϵ^0 is not necessary.
- ☑ The original RImSMOM's claim on scalar-operator renormalization shall be **revised**.
- Extend to tensor operators, the effect of a second mass via the singlet-type diagrams...

Summary and Outlook

- \square We present the first 3-loop result for mass conversion factor $C_{\overline{MS}/mSMOM}(\mu/\mu_s, m_R/\mu_s)$ away from chiral limit (extending the previous result by two more loop orders)
- \square The $\mathcal{O}(\alpha_s^3)$ correction is quite **sizable** in the typical scenario of m_c -determination, but there exists a window where $C_{\overline{MS}/mSMOM}$ is **smaller** than RISMOM counterpart, good for reducing systematic uncertainties
- ☑ We have provided an alternative interpretation of the original RI(m)SMOM conditions in DR in a weaker sense (holding just in 4-dimensional limit rather than exactly in D dimensions)
- \square Furthermore, when solving the weaker variant of the RImSMOM conditions, an exact explicit truncation to ϵ^0 is not necessary.
- ☑ The original RImSMOM's claim on scalar-operator renormalization shall be **revised**.
- Extend to tensor operators, the effect of a second mass via the singlet-type diagrams...
 Thank you for listening!