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Outline
• Introduction and motivation: EFT, Matching, 

SMEFT, HEFT.


• The non-linear representation of general 
scalar extensions for HEFT matching


• Matching HEFT to the Real Higgs Triplet 
Extension


• Summary and discussion
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Why EFT
• Until now, Higgs and nothing in direct search of new 

particles.
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Supersymmetry Public Results

SM Effective

MΛ ∼ TeV

dσ/dM

1. Colliders of higher energy, e.g. muon collider,  direct search.

2. Colliders of high luminosity, e.g. CEPC, Indirect effects.

   a. Models (Thousands)  

   b. EFT (Model independent, data-driven) 

Next strategy of searching for new physics



Matching 

4

data analysis UV models
EFT

ℒSMEFT ⊃ ℒSM +
CH

Λ2
(H†H )3 +

CH□

Λ2
(H†H ) □ (H†H ) +

CHD

Λ2
(DμH†H ) (H†DμH ) + ⋯

/15Jaco ter Hoeve - ICHEP - 20/07/24

FCC-ee and CEPC
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MatchingSimulation, fitting

1. Construct a complete basis.


2. Data analysis: simulation and fitting.


3. Matching: relate the Wilson 
coefficients to the masses and 
couplings of UV models.   

[H. Sun, M.-L. Xiao, and J.-H. Yu, 2206.07722]



Two EFTs: SMEFT and HEFT

• SMEFT, linear realization of the Higgs and Goldstones, canonical dimension


• HEFT, nonlinear realization, chiral dimension

5

Both are invariant under   symmetry and contains SM fields. SU(3)c × SU(2)L × U(1)Y

HEFT is similar to chiral perturbation theory (  ) in scalar sector.χPT

Goldstones are embedded in the  matrix.

Power counting use chiral dimension. e.g. .

However, Higgs is a general scalar, not necessarily composite.

U
p2, p4

h, U ≡ exp ( iπiσi

vEW ), ℒLO
HEFT ⊃

1
2

DμhDμh − V(h) +
v2

EW

4
F(h)Tr(DμU†DμU) + ⋯

V(h) =
1
2

m2
h h2[1 + (1 + Δκ3)

h
vEW

+ ⋯], F(h) = 1 + 2(1 + Δa)
h

vEW
+ ⋯

H =
1

2 ( G+

v + h + iG0), ℒSMEFT ⊃
1
2

DμH†DμH +
m2

2
H†H − λ(H†H)2 +

CH

Λ2
(H†H)3 + ⋯

[H. Sun, M.-L. Xiao, and J.-H. Yu, 2206.07722]



A Geometric Picture
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SM doublet

The Standard Model EFT
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SMEFT: EFT where 4 

scalar d.o.f. are arranged 
into an SU(2) doublet 

(equivalently, O(4) 
fundamental; assuming 

custodial symmetry): O 2 O(4) � SU(2)⇥ U(1)where

“Electroweak symmetry is linearly realized.”

LSM =
1

2
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LSMEFT =
1
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Reminder: only worrying about scalars up to 2 derivatives…
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HEFT
SMEFT

SM

H =
1

2 (ϕ1 + iϕ2

ϕ3 + iϕ4) ⃗ϕ =

ϕ1

ϕ2

ϕ3

ϕ4

, ⃗ϕ → O ⃗ϕ , where O ∈ O(4) ⊃ SU(2) × U(1)

HEFT encompasses SMEFT 
R. Alonso, E. Jenkins, A. Manohar [1511.00724,1605.03602]

A Geometric Perspective
(Think O(4), but O(2) is easier to illustrate)

LHEFT =
1

2
(@h)2 +

1

2
[vF (h)]2(@~n)2 � V (h) +O

�
@4

�

SMEFT if O(4) fixed point on manifold → F(h) = 0 somewhere (say, h = -v)

2⇡vF

12

2⇡vF

HEFT not SMEFT: Case I
When there’s a hole s.t. h = -v is not on the manifold  

(no O(4) fixed point about which to expand in SMEFT coordinates)

[Alonso, Jenkins, Manohar 1605.03602]

LHEFT =
1

2
(@h)2 +

1

2
[vF (h)]2(@~n)2 � V (h) +O

�
@4

�

F (h) 6= 0Corresponds to everywhere
13

SMEFT/HEFT 

only HEFT 
from N. Craig, HEFT2021

vEW



•   Could a same UV model match to two EFTs, 

A. if possible, which EFT is better? 

B. if only HEFT works, why?  

  

•  The SMEFT matching is mature at one-loop level (diagrammatic 

method and functional method). How to make the HEFT matching 
simply and programmable?  

7

Matching a UV Model to HEFT
Through matching we would like to study,  

SMEFT matching procedure (Covariant Derivative Expansion)



 Real Higgs Triplet Extension of the SM (RHTE)
• A singlet extension, a second doublet extension (2HDM), 

next is triplet. 


• The custodial violation appears at tree level with a non-
zero VEV.  
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 [G. Buchala et al, 1608.03564, 2312.13885],  [S. Dawson et al, 2205.01561, 2311.16897],[F. Arco et al, 2307.15693]

The Model:   the SM plus a real  triplet with  SU(2)L Y = 0
Linear form

extension of custodial-symmetry-violation model. In this section, firstly we introduce linear
forms of the Lagrangian, which describe same UV model but have distinctions for matching.
Then we give a non-linear form, U representation, which separate out U matrix explicitly
and thus is feasible for HEFT matching. We further show a complete matching procedure.
Finally we introduce the tensor notation and generalize U representation to general scalar
multiplet extensions.

3.1 Linear forms

3.1.1 Doublet

Usually the Lagrangian of RHTE in scalar sector can be expressed as [55, 66, 101]

LRHTE(H,!) → (DµH)
†
(Dµ

H) + ↑Dµ!
†Dµ

!↓ ↔ V (H,!) , (3.1)

with

V (H,!) = Y 2

1 H
†
H+ Z1(H

†
H)

2
+ Y 2

2 ↑!
†
!↓+ Z2↑!

†
!↓

2

+Z3H
†
H↑!

†
!↓+ 2Y3H

†
!H , (3.2)

where ↑...↓ denotes the trace, Yis, i = 1, 2, 3 are dimensional parameters while Zis, i = 1, 2, 3

are dimensionless. H is the SM Higgs doublet and ! is the real triplet, which could be
expressed as

H =

(
G+

1→
2

(
vH + h+ iG0

)
)
, ! =

1

2
!iωi =

1

2

(
v! + !

0
↗
2!

+

↗
2!

↑
↔v! ↔ !

0

)
, i = 1, 2, 3,

(3.3)

where vH, v! are vacuum expectation values (VEVs) after spontaneously symmetry breaking
(SSB). G0 is a pseudoscalar which does not mix with the scalar h except for CP violation.
G+ is a charged scalar. !is constitute 3 triplet components, ωis are Pauli matrices. !

0
=

↔v! + !3 is the shifted field along VEV, !±
=

1→
2
(!1 ↘ i!2) are canonically normalized

charged scalars.
Due to two VEVs, G± and !

± should be mixed and give massless Goldstones and
massive charged Higgs, which are

(
G+

EW

H+

)
=

(
cos ε ↔ sin ε

sin ε cos ε

)(
G+

!
+

)
, (3.4)

where G+

EW
represents Goldstone “perpendicular” to electroweak vacuum, the tangent of

rotation angle is

tan ε = 2v!/vH. (3.5)

Under SU(2)L≃U(1)Y gauge symmetry, the doublet H and the real triplet ! transform
as

H ⇐ gL(ω) exp(
i

2
ϑY ) H , ! ⇐ gL(ω) ! gL(ω)

† , gL(ω) = exp(
i

2
ϑiωi), (3.6)

which explain why the potential has the trilinear interaction H
†
!H in Eq. (3.2) .

– 5 –

denotes trace< . . . > are dimensionless,  are dimensionalZis Yis

ℒRHTE(H, Σ) ⊃ DμH†DμH + ⟨DμΣ†DμΣ⟩ − V (H, Σ),

V (H, Σ) = Y2
1H†H + Z1(H†H)2 + Y2

2⟨Σ†Σ⟩ + Z2⟨Σ†Σ⟩2 + Z3H†H⟨Σ†Σ⟩ + 2Y3H†ΣH



Matching RHTE to SMEFT
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EoM of :   Σ

ℒΣ =
1
2

⃗Σ T(−DμDμ − Y2
2 − Z3 H†H) ⃗Σ + Y3

⃗Σ ⋅ H† ⃗σH −
1
4

Z2( ⃗Σ ⋅ ⃗Σ )2

⃗Σ c = −
1

−DμDμ − Y2
2 − Z3 H+H

Y3H+ ⃗σH +
1

−DμDμ − Y2
2 − Z3 H+H

Z2( ⃗Σ c ⋅ ⃗Σ c) ⃗Σ c

Expansion with 1/Y2
2

T. Corbett, A. Helset, A. Martin, M. Trott, [2102.02819]
J. Ellis, K. Mimasu, F. Zamperdri, [2304.06663]

(−DμDμ − Y2
2 − Z3 H†H) ⃗Σ c = − Y3H† ⃗σH + Z2( ⃗Σ c ⋅ ⃗Σ c) ⃗Σ c

ℒSMEFT =
1

2Y2
2

Y2
3H† ⃗σH ⋅ H† ⃗σH +

1
2

(H† ⃗σH)T 1
Y2

2
(−DμDμ − Z3H†H)

1
Y2

2
H† ⃗σH + ⋯

ℒRHTE(H, Σ) ⊃ DμH†DμH + ⟨DμΣ†DμΣ⟩ − V (H, Σ),

V (H, Σ) = Y2
1H†H + Z1(H†H)2 + Y2

2⟨Σ†Σ⟩ + Z2⟨Σ†Σ⟩2 + Z3H†H⟨Σ†Σ⟩ + 2Y3H†ΣH
mass

(if )Y2
2 ≫ v2

EW



Matching RHTE to HEFT
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extension of custodial-symmetry-violation model. In this section, firstly we introduce linear
forms of the Lagrangian, which describe same UV model but have distinctions for matching.
Then we give a non-linear form, U representation, which separate out U matrix explicitly
and thus is feasible for HEFT matching. We further show a complete matching procedure.
Finally we introduce the tensor notation and generalize U representation to general scalar
multiplet extensions.

3.1 Linear forms

3.1.1 Doublet

Usually the Lagrangian of RHTE in scalar sector can be expressed as [55, 66, 101]

LRHTE(H,!) → (DµH)
†
(Dµ

H) + ↑Dµ!
†Dµ

!↓ ↔ V (H,!) , (3.1)

with

V (H,!) = Y 2

1 H
†
H+ Z1(H

†
H)

2
+ Y 2

2 ↑!
†
!↓+ Z2↑!

†
!↓

2

+Z3H
†
H↑!

†
!↓+ 2Y3H

†
!H , (3.2)

where ↑...↓ denotes the trace, Yis, i = 1, 2, 3 are dimensional parameters while Zis, i = 1, 2, 3

are dimensionless. H is the SM Higgs doublet and ! is the real triplet, which could be
expressed as

H =

(
G+

1→
2

(
vH + h+ iG0

)
)
, ! =

1

2
!iωi =

1

2

(
v! + !

0
↗
2!

+

↗
2!

↑
↔v! ↔ !

0

)
, i = 1, 2, 3,

(3.3)

where vH, v! are vacuum expectation values (VEVs) after spontaneously symmetry breaking
(SSB). G0 is a pseudoscalar which does not mix with the scalar h except for CP violation.
G+ is a charged scalar. !is constitute 3 triplet components, ωis are Pauli matrices. !

0
=

↔v! + !3 is the shifted field along VEV, !±
=

1→
2
(!1 ↘ i!2) are canonically normalized

charged scalars.
Due to two VEVs, G± and !

± should be mixed and give massless Goldstones and
massive charged Higgs, which are

(
G+

EW

H+

)
=

(
cos ε ↔ sin ε

sin ε cos ε

)(
G+

!
+

)
, (3.4)

where G+

EW
represents Goldstone “perpendicular” to electroweak vacuum, the tangent of

rotation angle is

tan ε = 2v!/vH. (3.5)

Under SU(2)L≃U(1)Y gauge symmetry, the doublet H and the real triplet ! transform
as

H ⇐ gL(ω) exp(
i

2
ϑY ) H , ! ⇐ gL(ω) ! gL(ω)

† , gL(ω) = exp(
i

2
ϑiωi), (3.6)

which explain why the potential has the trilinear interaction H
†
!H in Eq. (3.2) .

– 5 –

1. Solve EoMs of .  

2.  Embed  into an exponential matrix form. ?!  It must be 

complicated.  

H±, K
G±

EW, G0

h, U ≡ exp ( iπiσi

vEW ), ℒLO
HEFT ⊃

1
2

DμhDμh − V(h) +
v2

EW

4
F(h)Tr(DμU†DμU) + ⋯

V(h) =
1
2

m2
hh2[1 + (1 + Δκ3)

h
vEW

+ ⋯], F(h) = 1 + 2(1 + Δa)
h

vEW
+ ⋯

RHTE in linear form

(h
K) = (cos γ −sin γ

sin γ cos γ ) (h0

Σ0)



Find a non-linear representation of the UV model for 
HEFT matching
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Non-linear Form
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extension of custodial-symmetry-violation model. In this section, firstly we introduce linear
forms of the Lagrangian, which describe same UV model but have distinctions for matching.
Then we give a non-linear form, U representation, which separate out U matrix explicitly
and thus is feasible for HEFT matching. We further show a complete matching procedure.
Finally we introduce the tensor notation and generalize U representation to general scalar
multiplet extensions.

3.1 Linear forms

3.1.1 Doublet

Usually the Lagrangian of RHTE in scalar sector can be expressed as [55, 66, 101]

LRHTE(H,!) → (DµH)
†
(Dµ

H) + ↑Dµ!
†Dµ

!↓ ↔ V (H,!) , (3.1)

with

V (H,!) = Y 2

1 H
†
H+ Z1(H

†
H)

2
+ Y 2

2 ↑!
†
!↓+ Z2↑!

†
!↓

2

+Z3H
†
H↑!

†
!↓+ 2Y3H

†
!H , (3.2)

where ↑...↓ denotes the trace, Yis, i = 1, 2, 3 are dimensional parameters while Zis, i = 1, 2, 3

are dimensionless. H is the SM Higgs doublet and ! is the real triplet, which could be
expressed as

H =

(
G+

1→
2

(
vH + h+ iG0

)
)
, ! =

1

2
!iωi =

1

2

(
v! + !

0
↗
2!

+

↗
2!

↑
↔v! ↔ !

0

)
, i = 1, 2, 3,

(3.3)

where vH, v! are vacuum expectation values (VEVs) after spontaneously symmetry breaking
(SSB). G0 is a pseudoscalar which does not mix with the scalar h except for CP violation.
G+ is a charged scalar. !is constitute 3 triplet components, ωis are Pauli matrices. !

0
=

↔v! + !3 is the shifted field along VEV, !±
=

1→
2
(!1 ↘ i!2) are canonically normalized

charged scalars.
Due to two VEVs, G± and !

± should be mixed and give massless Goldstones and
massive charged Higgs, which are

(
G+

EW

H+

)
=

(
cos ε ↔ sin ε

sin ε cos ε

)(
G+

!
+

)
, (3.4)

where G+

EW
represents Goldstone “perpendicular” to electroweak vacuum, the tangent of

rotation angle is

tan ε = 2v!/vH. (3.5)

Under SU(2)L≃U(1)Y gauge symmetry, the doublet H and the real triplet ! transform
as

H ⇐ gL(ω) exp(
i

2
ϑY ) H , ! ⇐ gL(ω) ! gL(ω)

† , gL(ω) = exp(
i

2
ϑiωi), (3.6)

which explain why the potential has the trilinear interaction H
†
!H in Eq. (3.2) .

– 5 –

1.

 The mass mixing between Goldstones  and  still exists.   π± Σ±

H = U
1

2 ( 0
vH + h0) , U ≡ exp ( iπiσi

vH )
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extension of custodial-symmetry-violation model. In this section, firstly we introduce linear
forms of the Lagrangian, which describe same UV model but have distinctions for matching.
Then we give a non-linear form, U representation, which separate out U matrix explicitly
and thus is feasible for HEFT matching. We further show a complete matching procedure.
Finally we introduce the tensor notation and generalize U representation to general scalar
multiplet extensions.

3.1 Linear forms

3.1.1 Doublet

Usually the Lagrangian of RHTE in scalar sector can be expressed as [55, 66, 101]

LRHTE(H,!) → (DµH)
†
(Dµ

H) + ↑Dµ!
†Dµ

!↓ ↔ V (H,!) , (3.1)

with

V (H,!) = Y 2

1 H
†
H+ Z1(H

†
H)

2
+ Y 2

2 ↑!
†
!↓+ Z2↑!

†
!↓

2

+Z3H
†
H↑!

†
!↓+ 2Y3H

†
!H , (3.2)

where ↑...↓ denotes the trace, Yis, i = 1, 2, 3 are dimensional parameters while Zis, i = 1, 2, 3

are dimensionless. H is the SM Higgs doublet and ! is the real triplet, which could be
expressed as

H =

(
G+

1→
2

(
vH + h+ iG0

)
)
, ! =

1

2
!iωi =

1

2

(
v! + !

0
↗
2!

+

↗
2!

↑
↔v! ↔ !

0

)
, i = 1, 2, 3,

(3.3)

where vH, v! are vacuum expectation values (VEVs) after spontaneously symmetry breaking
(SSB). G0 is a pseudoscalar which does not mix with the scalar h except for CP violation.
G+ is a charged scalar. !is constitute 3 triplet components, ωis are Pauli matrices. !

0
=

↔v! + !3 is the shifted field along VEV, !±
=

1→
2
(!1 ↘ i!2) are canonically normalized

charged scalars.
Due to two VEVs, G± and !

± should be mixed and give massless Goldstones and
massive charged Higgs, which are

(
G+

EW

H+

)
=

(
cos ε ↔ sin ε

sin ε cos ε

)(
G+

!
+

)
, (3.4)

where G+

EW
represents Goldstone “perpendicular” to electroweak vacuum, the tangent of

rotation angle is

tan ε = 2v!/vH. (3.5)

Under SU(2)L≃U(1)Y gauge symmetry, the doublet H and the real triplet ! transform
as

H ⇐ gL(ω) exp(
i

2
ϑY ) H , ! ⇐ gL(ω) ! gL(ω)

† , gL(ω) = exp(
i

2
ϑiωi), (3.6)

which explain why the potential has the trilinear interaction H
†
!H in Eq. (3.2) .

– 5 –

1.

 The mass mixing between Goldstones  and  still exists.   π± Σ±

H = U
1

2 ( 0
vH + h0) , U ≡ exp ( iπiσi

vH )

Good news:  disappears in potential, the mass mixing disappears. 

Bad news:  a term of kinetic mixing appears.

U

⟨DμΣ†DμΣ⟩ ⊃ − vΣϵ3jkDμϕjDμπk

2. H = U
1

2 ( 0
vH + h0) , U ≡ exp ( iπiσi

vH ) Σ = UΦU†, Φ =
1
2

ϕiσi =
1
2

vΣ + ϕ0 2ϕ+

2ϕ− −vΣ − ϕ0

2Y3H†ΣH

Non-linear Form
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extension of custodial-symmetry-violation model. In this section, firstly we introduce linear
forms of the Lagrangian, which describe same UV model but have distinctions for matching.
Then we give a non-linear form, U representation, which separate out U matrix explicitly
and thus is feasible for HEFT matching. We further show a complete matching procedure.
Finally we introduce the tensor notation and generalize U representation to general scalar
multiplet extensions.

3.1 Linear forms

3.1.1 Doublet

Usually the Lagrangian of RHTE in scalar sector can be expressed as [55, 66, 101]

LRHTE(H,!) → (DµH)
†
(Dµ

H) + ↑Dµ!
†Dµ

!↓ ↔ V (H,!) , (3.1)

with

V (H,!) = Y 2

1 H
†
H+ Z1(H

†
H)

2
+ Y 2

2 ↑!
†
!↓+ Z2↑!

†
!↓

2

+Z3H
†
H↑!

†
!↓+ 2Y3H

†
!H , (3.2)

where ↑...↓ denotes the trace, Yis, i = 1, 2, 3 are dimensional parameters while Zis, i = 1, 2, 3

are dimensionless. H is the SM Higgs doublet and ! is the real triplet, which could be
expressed as

H =

(
G+

1→
2

(
vH + h+ iG0

)
)
, ! =

1

2
!iωi =

1

2

(
v! + !

0
↗
2!

+

↗
2!

↑
↔v! ↔ !

0

)
, i = 1, 2, 3,

(3.3)

where vH, v! are vacuum expectation values (VEVs) after spontaneously symmetry breaking
(SSB). G0 is a pseudoscalar which does not mix with the scalar h except for CP violation.
G+ is a charged scalar. !is constitute 3 triplet components, ωis are Pauli matrices. !

0
=

↔v! + !3 is the shifted field along VEV, !±
=

1→
2
(!1 ↘ i!2) are canonically normalized

charged scalars.
Due to two VEVs, G± and !

± should be mixed and give massless Goldstones and
massive charged Higgs, which are

(
G+

EW

H+

)
=

(
cos ε ↔ sin ε

sin ε cos ε

)(
G+

!
+

)
, (3.4)

where G+

EW
represents Goldstone “perpendicular” to electroweak vacuum, the tangent of

rotation angle is

tan ε = 2v!/vH. (3.5)

Under SU(2)L≃U(1)Y gauge symmetry, the doublet H and the real triplet ! transform
as

H ⇐ gL(ω) exp(
i

2
ϑY ) H , ! ⇐ gL(ω) ! gL(ω)

† , gL(ω) = exp(
i

2
ϑiωi), (3.6)

which explain why the potential has the trilinear interaction H
†
!H in Eq. (3.2) .

– 5 –

1.

 The mass mixing between Goldstones  and  still exists.   π± Σ±

H = U
1

2 ( 0
vH + h0) , U ≡ exp ( iπiσi

vH )

Good news:  disappears in potential, the mass mixing disappears. 

Bad news:  a term of kinetic mixing appears.

U

⟨DμΣ†DμΣ⟩ ⊃ − vΣϵ3jkDμϕjDμπk /vEW

2. H = U
1

2 ( 0
vH + h0) , U ≡ exp ( iπiσi

vH ) Σ = UΦU†, Φ =
1
2

ϕiσi =
1
2

vΣ + ϕ0 2ϕ+

2ϕ− −vΣ − ϕ0

2Y3H†ΣH

H = U
1

2 ( χ±

vH + h0 + iχ0), U ≡ exp ( iπiσi

vEW )3. Σ = UΦU†, Φ =
1
2

ϕiσi =
1
2

vΣ + ϕ0 2ϕ+

2ϕ− −vΣ − ϕ0

χ± = 2
vΣ

vH
ϕ±, χ0 = 0 DμH†DμH ⊃ vHϵ3jkDμχjDμπk /(2vEW)

Both mass mixing and kinetic mixing disappear!

Non-linear Form

The  matrix is separated from heavy states, to “integrate out” heavy states and leave  in HEFT 
become straightforward.

U U
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A Diagrammatic View: Find the Correct U

Σ = UΦU†, Φ =
1
2

ϕiσi =
1
2

vΣ + ϕ0 2ϕ+

2ϕ− −vΣ − ϕ0

χ± = 2
vΣ

vH
ϕ±, χ0 = 0

vΣ ≠ 0

vEW : ̂eρ

U : ̂eθ

vH

vΣ

H = U
χ±

1

2
(vH + h0 + iχ0) , U ≡ exp ( iπiσi

vEW )

• Use “rotated” scalars.

• Cancel out kinetic mixing. 

(πis, h0, ϕ±, ϕ0)

Does these two rules suitable for a general  representations? 
E.g. a quadruplet, a quintet.

SU(2)



Quadruplet with Y = 3/2
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Θ111

3Θ112

3Θ122

Θ222

→

Θ3+

Θ++

Θ+

Θ0 Θijk = Ul
iU

m
j Un

k ϕlmn

Hi = Uj
i 𝔥j, 𝔥 =

χ+

1

2
(vH + h0 + iχ0)

ℒmix
Θ = 3⟨ϕ222⟩((U†DμU )2

1Dμϕ*122 − (U†DμU )1
2Dμϕ122 + (U†DμU )2

2(D
μϕ*222 − Dμϕ222)),

ℒmix
H = ⟨𝔥2⟩((U†DμU)2

1Dμ𝔥*1 − (U†DμU)1
2Dμ𝔥1 + (U†DμU)2

2(D
μ𝔥*2 − Dμ𝔥2)),

vH / 2

vΘ/ 2

⟨ϕ222⟩ = ⟨ϕ*222⟩ = vΘ/ 2, Im(ϕ222) = η4/ 2, ϕ122 = ϕ+/ 3

χ+ = −
3vΘ

vH
ϕ122 = −

3vΘ

vH
ϕ+, χ0 = −

3vΘ

vH
η4



General Scalar Extensions
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Neutral

+

In this non-linear representation,  and heavy states are separate. 
As HEFT matching is to “integrate out” heavy states and leave 
Goldstones in  form, under this representation the matching 
become straight and simple, further programmable.

U

U



HEFT matching of the real Higgs triplet extension (RHTE)
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The HEFT ( )ξ3
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p4

p2



Numerical Results (When  is Large)Y2
2
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V (H, Σ) = Y2
1H†H + Z1(H†H)2 + Y2

2⟨Σ†Σ⟩ + Z2⟨Σ†Σ⟩2 + Z3H†H⟨Σ†Σ⟩ + 2Y3H†ΣH

NOT FOR DISTRIBUTION JHEP_076P_0325 v1
of the BSM states can be as low as 495 GeV, or the equivalent value of Y2 → 470 GeV , when
ω approaches 0.02, indicating that the SMEFT converges slowly to the full model. This is
clearer in the right panel of Fig. 1. The divergence of the UV model (the black vertical
line) at around ω = 0.0196 is due to the presence of heavy scalars with masses below the
center-of-mass energy. Both the SMEFT and the HEFT lose the predictive power there.
Away from such a value of ω, both EFTs give similar approximations at the same order and
the second order, SMEFT-8 and HEFT(ω3), is a very good replication of the RHTE.

UV Model

HEFT(ξ2)

HEFT(ξ3)

SMEFT-6

SMEFT-8

0.005 0.010 0.015 0.020
ξ34.90

34.92

34.94

34.96

34.98

35.00

dσ/dθθ=θ0
hh→hh (pb)

s =300 GeV
θ0=π/4

UV Model

HEFT(ξ2)

HEFT(ξ3)

SMEFT-6

SMEFT-8

0.005 0.010 0.015 0.020
ξ

0.042

0.043

0.044

0.045

dσ/dθθ=θ0
hh→hh (pb)

s =800 GeV
θ0=π/8

Figure 2. Comparison between the UV model and the HEFT, the SMEFT dim-6 (SMEFT-6) and
the SMEFT dim-8 (SMEFT-8) approaches to it in the di!erential cross-section of hh ↑ hh, for a
center-of-mass energy

↓
s and a scattering angle ε0. On both panels, we take Y3 = 730.14 GeV,

Z2 = 1 and Z3 = 0.758, while all other parameters can be fixed by the SM inputs for a certain
value of ω.

We present similar plots but for a large value of Y3 (Y3 = 730.14 GeV) for di!erent
values of the center-of-mass energy (

↓
s = 300 GeV for the left panel and

↓
s = 800 GeV for

the right panel) in Fig. 2. In this case, both EFTs are still good replications of the RHTE
while the HEFT O(ω3) shows a better description for larger values of ω. The improvement
of the SMEFT can be understood by noticing that the lowest value of Y2 is around 2115

GeV, which is far above both the electroweak scale and collision energy, and makes the
SMEFT expansion under control.

We now discuss the scattering processes of WW ↑ hh and ZZ ↑ hh. The similar plots
are shown in Fig. 3 and Fig. 4. We only consider the longitudinal-mode scattering since 1)
the contributions from transverse modes can be neglected and 2) at the high energy limit
the longitudinal modes are just Goldstones required by the Goldstone equivalence theorem,
which are deeply related to the electroweak symmetry breaking. Similar characteristics hold
for WW ↑ hh and ZZ ↑ hh. The O(ω3) corrections significantly improve the quality of
the replication of the UV model in the HEFT and it provides the best approximation to
reproduce the UV predictions for both large and small values of the collision energy. it is
notable that the SMEFT yields a very poor replication when Y3 is small (top panels).

– 18 –

Y2 > 2TeV

HEFT converges faster,  which is same as in 
 processWW → hh, ZZ → hh

2504.02580, Yi Liao,  Xiao-Dong Ma, Yoshiki Uchida

The bare mass term of Σ



While Y2
2 ∼ 0
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 Y3 = 24.65 GeV, Z2 = 1, Z3 = 10

Power counting, 

SMEFT:  

HEFT:     

1/Y2
2

ξ or 1/m2
ϕ± Y2

2 = − Z3v2
H /2 + m2

ϕ± + 𝒪(ξ)

NOT FOR DISTRIBUTION JHEP_076P_0325 v1

UV Model

HEFT(ξ2)

HEFT(ξ3)

SMEFT-6(ξ2)

SMEFT-8(ξ3)

0.005 0.010 0.015 0.020
ξ

40

50

60

70

80

dσ/dθθ=θ0
hh→hh (pb)

s =300 GeV
θ0=π/4

UV Model

HEFT(ξ2)

HEFT(ξ3)

SMEFT-6(ξ2)

SMEFT-8(ξ3)

0.005 0.010 0.015 0.020
ξ

14

15

16

17

18

dσ/dθθ=θ0
WL WL→hh (pb)

s =300 GeV
θ0=π/4

UV Model

HEFT(ξ2)

HEFT(ξ3)

SMEFT-6(ξ2)

SMEFT-8(ξ3)

0.005 0.010 0.015 0.020
ξ

17

18

19

20

21

22

dσ/dθθ=θ0
ZL ZL→hh (pb)

s =300 GeV
θ0=π/4

Figure 6. The same as in Fig. 5, but with the SMEFT coe!cients truncated at a certain order of
ω. SMEFT-6(ω2) and SMEFT-8(ω2) represent that the corresponding SMEFT Wilson coe!cients
upto dim-6 and dim-8 operators are truncated at order O(ω2) and O(ω3) respectively.

which can systematically be extended to higher orders. The matching equations for the
parameters of the HEFT Lagrangian were discussed and given analytically.

We then investigated how accurately the HEFT matching reproduces the RHTE results
in the tree-level scatterings hh → hh, WW → hh and ZZ → hh compared to the SMEFT.
Generally this is a non-trivial question due to the di!erent power counting rules used in the
two EFTs. We found that the HEFT at O(ω2) reproduces the RHTE results in all these
scatterings with our choice of input parameters and power counting rules for two EFTs
(1/! for SMEFT and ω for HEFT). Especially at low collision energy, the convergence to
the RHTE can be significantly improved if higher orders of ω’s e!ects are included in the
HEFT while the second order of the SMEFT expansion is not enough. We also show an
explicit failure of the SMEFT in both a phase transition occurring and the characteristic
scale changing in UV theory. The phase transition is closely related to the fundamental
symmetry that should be used to build the EFT, which is already well known. That the

– 23 –

After a second expansion with   1/m2
ϕ±

The SMEFT’s regular part is 
consistent with the HEFT’s



Next Plan
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(Z1, Z2, Z3, Y3, vEW, ξ)Parameter set  1 m2
ϕ± =

Y3vH

2ξ
+ 2ξY3vH

Decoupling case  

(mh, mϕ±, mK, sinγ, vEW, ξ)Parameter set  2

While  approaches infinity,  could be kept as a 
constant, the real model triplet model will not decouple to 
the SM.


m2
ϕ± ξ

Non-decoupling case



Next Plan
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 1-loop ℒRHTE ⊃
1
2 (K ϕ1 ϕ2) 𝒳

K
ϕ1

ϕ2



Summary
• HEFT encompasses SMEFT.  Through matching a UV 

model to both HEFT and SMEFT, we study their distinction.


• We build a non-linear representation of general scalar 
extensions of the SM, which is great for HEFT matching in 
functional method. The key point is that by using “rotated” 
scalars, we separate the Goldstones’  matrix and heavy 
states in the UV model.


• We match the real Higgs triplet extension (RHTE) to both 
HEFT and SMEFT in the decoupling scenario. 


• Further research about non-decoupling effects and 1-loop 
matching is underway.

U
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Thank you for your 
attention!


