

Form Factors for $B_c^* \rightarrow \eta_c + l\nu_l$ at NLO in QCD

Based on on-going work with Qin Chang, Ruilin Zhu, Zhen-Jun Xiao, et al.

2025年5月24日 第30届LHC Mini-Workshop会议@洛阳

Outline

1 Introduction

2 Calculation Procedure

B_c^* semileptonic decay and form factors

 $\succ c\overline{b}$ meson

1.1

- the only meson containing two different heavy flavors
- Bc(1S) discovered in 1998 through $B_c \rightarrow J/\psi + l\nu_l$

[CDF, PRL(1998)] [CMS, PRL(2019)] [LHCb, PRL(2019)]

- Bc*(1S) not yet observed due to low production rate and difficulty in detecting γ of B^{*}_c → B_c + γ
- Bc*(1S) weak decays (e.g. $B_c^* \rightarrow \eta_c + l\nu_l$) help search for Bc*(1S)

> Form factors (FFs)

- Building blocks for decay widths and branching fractions

 [HPQCD, 1611.01987]
 [HPQCD, PRD(2020)]
- Lattice QCD data available for $B_c \rightarrow J/\psi(\eta_c)$ FFs, not for B_c^* [Q.Chang,L.L.Chen,S.Xu, JPG(2018)]
- $B_c^* \rightarrow \eta_c$ FFs calculated by light-front quark model (LFQM), Bauer-Stech-Wirbel (BSW) model, QCD sum rules (QCDSR), [<u>P.R.R.Dhir, 1908.00242</u>] [<u>Y.Yang,et al., CPC(2023)</u>] [S.Y.Wang,et al., CPC(2024)]

Why NRQCD higher-order calculations

1.2

[G.T.Bodwin, E.Braaten, G.P.Lepage, PRD(1995)]

- Non-Relativistic Quantum Chromodynamics (NRQCD)
- Form factor = short-distance coefficient 🗙 wavefunction at origin

perturbative expansion in α_s

nonperturbative

- To test perturbative expansion convergence and renormalization scale dependence in NRQCD
- To obtain more precise theoretical predictions and test the Standard Model
- To study new physics by calculating (axial-)tensor form factors
- 2007-2022, $B_c \rightarrow J/\psi(\eta_c)$ (axial-)vector and (axial-)tensor FFs [G. Bell, 0705.3133] at next-to-leading order (NLO) [C.F.Qiao, R.Zhu, PRD(2013)] [W.Tao, Z.J.Xiao, R.Zhu, PRD(2022)]
- 2024-2025, $B_c^* \rightarrow J/\psi$ (axial-)vector and (axial-)tensor FFs at NLO

Outline

1 Introduction

2 Calculation Procedure

2.1

Definitions & Feynman diagrams for FFs

$$\left\langle \eta_{c} \left(p' \right) \left| \bar{b} \sigma_{\mu\nu} q^{\nu} c \right| B_{c}^{*} \left(\epsilon, p \right) \right\rangle = -\varepsilon_{\mu\nu\alpha\beta} \epsilon^{\nu} P^{\alpha} q^{\beta} T,$$

$$\left\langle \eta_{c} \left(p' \right) \left| \bar{b} \sigma_{\mu\nu} \gamma_{5} q^{\nu} c \right| B_{c}^{*} \left(\epsilon, p \right) \right\rangle$$

$$i \left(\epsilon_{\mu} - \frac{\epsilon \cdot q}{q^{2}} q_{\mu} \right) \left(m_{B_{c}^{*}}^{2} - m_{\eta_{c}}^{2} \right) T_{1}'$$

$$- i \epsilon \cdot q \left(P_{\mu} - \frac{m_{B_{c}^{*}}^{2} - m_{\eta_{c}}^{2}}{q^{2}} q_{\mu} \right) T_{2}',$$

$$q = p - p':$$

$$\text{transfer momentum}$$

00000

2.2 Express amplitudes as $A_0, B_0, C_{0,1}, D_0$ & calculate them

Outline

1 Introduction

2 Calculation Procedure

3.1 Analytical results for $B_c^* \rightarrow \eta_c$ form factors

> LO

 $\Psi_{B_c^*(\eta_c)}(0)$: $B_c^*(\eta_c)$ wavefunction at origin

$$V = \frac{16\sqrt{2}\pi\alpha_{s}C_{F}s^{2}(1+3x)(1+x)^{\frac{3}{2}}\Psi_{B_{c}^{*}}(0)\Psi_{\eta_{c}}(0)}{m_{b}^{3}x^{\frac{3}{2}}(1+s(x-2)x)^{2}}, \quad V = \frac{4s^{2}(1+3x)^{2}(x^{2}-1)T_{1}'}{1-s(6+4x-8x^{2})-s^{2}x(12+10x-8x^{2}-15x^{3})}, \quad V = \frac{1+3x}{1-s(1+x)^{2}}A_{0} = \frac{2s(1+3x)^{2}}{3+sx(6+7x)}A_{1} = 2A_{2}, \quad T_{2}' = T = \frac{1+s(4+6x+5x^{2})}{4s(1+x)^{2}}A_{0},$$

$$\Rightarrow \text{Asymptotic} \qquad T_{1}^{'NLO} = 1 + \frac{\alpha_{s}}{4\pi} \left\{ \left(\frac{11C_{A}}{3} - \frac{2n_{f}}{3}\right)\ln\frac{2sy^{2}}{x} - \frac{10n_{f}}{9} + \left(-\frac{2\ln x}{3} + \frac{2\ln 2}{3} + \frac{10}{9}\right)n_{b} + \frac{2s\ln x}{1-6s}\right) + \frac{2s\ln x}{1-6s} + \frac{2s\ln x}{1-6s} + \frac{2s\ln x}{1-6s} + \frac{12s\ln x}{1-6s} + \frac{2s\ln x}{1-6s} + \frac{2s\ln$$

$\mu \& q^2$ dependence of form factors

3.2

- NLO corrections reduce the renormalization scale dependence
- NLO corrections are sizable but convergent in low q^2 region
- The convergence breaks down at high q^2

3.3 NRQCD+Lattice+Z-series predictions in full q^2 range

$$F_{i,\text{NRQCD+lattice}}^{B_c^* \to \eta_c}(q^2) \approx \frac{1}{2} \sum_{j=1}^2 \frac{F_{i,\text{NRQCD}}^{B_c^* \to \eta_c}(q^2)}{F_{j,\text{NRQCD}}^{B_c \to \eta_c}(q^2)} F_{j,\text{lattice}}^{B_c \to \eta_c}(q^2), \quad F_i(q^2) = \frac{1}{1 - \frac{q^2}{m_R^2}} \sum_{n=0}^N \alpha_{i,n} \ z^n \ \left(q^2\right),$$

[HPQCD, 1611.01987] [Q.Chang,L.L.Chen,S.Xu, JPG(2018)] [P.R,R.Dhir, 1908.00242] [Y.Yang,et al., CPC(2023)] [S.Y.Wang,et al., CPC(2024)]

3.4

Decay Widths & Branching Fractions

$\frac{d\Gamma_L}{dq^2} =$	$= \left(\frac{q^2 - m_l^2}{q^2}\right)^2 \frac{\sqrt{\lambda(q^2)}G_F^2 V_{cb} ^2}{384m_{B_c^*}^3 \pi^3 q^2} \begin{cases} 3m_l^2 \lambda(q^2) A_0^2(q^2) \end{cases}$	[S.Y.Wang,et al., CPC(2024)] [T.Wang,et al., JPG(2018)] [Z.G.Wang, CTP(2014)]				
	$+ \left (m_{B_c^*}^2 - m_{\eta_c}^2 - q^2) (m_{B_c^*} + m_{\eta_c}) A_1(q^2) \right $		This work	LFQM $[4]$	BS [21]	QCDSR [8]
$\frac{d\Gamma_{\pm}}{dq^2} =$	$-\frac{\lambda(q^2)}{m_{B_c^*} + m_{\eta_c}} A_2(q^2) \Big ^2 \frac{m_l^2 + 2q^2}{4m_{\eta_c}^2} \Big\},$ = $\left(\frac{q^2 - m_l^2}{q^2}\right)^2 \frac{\sqrt{\lambda(q^2)}G_F^2 V_{cb} ^2}{384m_{B_c^*}^3 \pi^3} \left\{ (m_l^2 + 2q^2)\lambda(q^2) + \left \frac{V(q^2)}{m_{B_c^*} + m_{\eta_c}} \mp \frac{(m_{B_c^*} + m_{\eta_c})A_1(q^2)}{\sqrt{\lambda(q^2)}}\right ^2 \right\},$	$\frac{10^{14}}{\text{GeV}}\Gamma(B_c^* \to \eta_c e\nu_e)$	$2.541^{+0.494}_{-0.446}$	_	$0.966\substack{+0.094\\-0.084}$	$0.686\substack{+0.225\\-0.195}$
		$\frac{10^{14}}{\text{GeV}}\Gamma(B_c^* \to \eta_c \mu \nu_\mu)$	$2.529^{+0.489}_{-0.442}$	_	$0.963\substack{+0.094\\-0.084}$	$0.684^{+0.224}_{-0.195}$
		$\frac{10^{14}}{\text{GeV}}\Gamma(B_c^* \to \eta_c \tau \nu_{\tau})$	$0.688^{+0.104}_{-0.096}$	_	$0.290\substack{+0.029\\-0.026}$	$0.215\substack{+0.075\\-0.065}$
		$10^7 \mathcal{B}(B_c^* \to \eta_c e \nu_e)$	$4.235_{-0.743}^{+0.824}$	$4.48^{+1.14}_{-0.76}$	$4.20\substack{+0.41 \\ -0.37}$	_
		$10^7 \mathcal{B}(B_c^* \to \eta_c \mu \nu_\mu)$	$4.214_{-0.736}^{+0.816}$	$4.45_{-0.75}^{+1.14}$	$4.19\substack{+0.41 \\ -0.37}$	_
$\frac{d\Gamma_T}{1} =$	$=\frac{d\Gamma_{+}}{dq^{2}}+\frac{d\Gamma_{-}}{dq^{2}}, \frac{d\Gamma}{dq^{2}}=\frac{d\Gamma_{L}}{dq^{2}}+\frac{d\Gamma_{T}}{dq^{2}},$ $c^{(m_{B^{*}}-m_{R})^{2}} d\Gamma$	$10^7 \mathcal{B}(B_c^* \to \eta_c \tau \nu_\tau)$	$1.147^{+0.173}_{-0.161}$	$1.03\substack{+0.26 \\ -0.17}$	$1.26^{+0.13}_{-0.11}$	_
aq^2		\mathcal{R}_{η_c}	$0.271^{+0.107}_{-0.076}$	$0.229\substack{+0.059\\-0.059}$	0.300	_
$\Gamma(B_c^*$	$ ightarrow \eta_c l u_l) = \int_{m_l^2}^{\infty} \int_{m_l^2}^{\omega_c} \frac{d1}{dq^2} dq^2.$					

- ✓ Obtain complete and asymptotic analytical results for NLO QCD corrections to $B_c^* \rightarrow \eta_c$ (axial-)vector and (axial-)tensor form factors
- ✓ Find NLO corrections reduce renormalization scale dependence, and are sizable but convergent in low q^2 region
- ✓ Provide NRQCD+Lattice+Z-series predictions for $B_c^* \rightarrow \eta_c$ form factors across full physical q^2 range
- ✓ Calculate decay widths and branching fractions for $B_c^* \rightarrow \eta_c + l\nu_l$

Thank you!