

核探测与核电子学国家重点实验室 State Key Laboratory of Particle Detection and Electronics

Beam Test of Thin Gap RPC for trigger and precision tracking application

Liang Guan, HongYe Song, Zhiyong Zhang, Xiaolian Wang, Liang Han *University of Science and Technology of China*

- Motivation ATLAS Small Wheel Upgrade
- Thin Gap RPC and Beam test setup

♦ Efficiency

- ♦ Timing performance
- Spatial resolution study

♦ Conclusion

Motivation

ATLAS Small wheel upgrade

 Current SW needs to be replaced to withstand the harsh environment at future Luminosity ~ 10³⁴ cm⁻²s⁻¹

Motivation

One of the Proposed New Small Wheel thin gap RPC+ small MDT

- Current L1-trigger: ~70% fakes, ~2% P_T>20 GeV (fakes are mainly coming from EndCap |η|>1.05)
 - Exploit the good timing and sub mm spatial resolution from thin gap RPC to remove the carven background as soon as possible and as much as possible. (Quote R.Santonico's word)
 - Related R&D work is ongoing at USTC in collaboration with University of Michigan

Thin gap Resistive Plate Chamber

X-sectional view

Gas flow in the chamber

- Gas gap: 2 mm \rightarrow 1.2 mm
- Resistive plate: float glass with ~1 mm thickness
- Dimension: 1 m imes 0.36 m
- Gas flow zigzag through the chamber
- Gas: Freon/iC₄H₁₀/SF₆ 94.7/5/0.3
- Readout Strip/Pitch: 1 mm/1.27 mm. (read out both ends of strips)
- Front End Electronics: ATLAS MDT mezzanine cards

SPS H8 Beam Test Setup

Beam Test setup

Typical Signal (Avalanche Mode)

- HV=-6600V
- Signal read out from anode
- Amplitude without amplifier: few mV
- Prompt signal width < 5ns
- Prompt charge: few pC

General Performance

Raw ADC,TDC distribution

Hit Distribution from two ends (selected by small SCNT.)

Efficiency & Hit Multiplicity

Efficiency:

Events(hits!=0)/ # Small SCNT. Trig. Events

Hit Multiplicity: ADC>50 && t<115</p>

Timing Performance

SCN.T Corrected Time from two ends

T-A Correlation

Timing After Slew Correction

10

Spatial Resolution Study (I)

- **Residual Calculation** $\Delta Y = Y_{SMDT} Y_{RPC}$
- Predicted Hit position from MDT Y_{sMDT}=450*m+b

Three methods to reconstruct impact points on RPC

- Single Strip: Strip with Max. charge or Strip with Minimum time
- Centroid Finding: $Y_{RPC} = \sum (72 Strip_i)^* adc_i^* 1.27 / \sum adc_i$
- Only use fast timing information: Y_{RPC}=∑(72-Strip_i)*1.27/ # fired Strip
 2012国家重点实验室年会,北京
 11

Spatial Resolution Study (II)

No ADC,TDC calibration! Uncertainty from alignment and MDT precision ~100 μ m included

Spatial Resolution Study (III)

Spatial Resolution Study (IV)

Fast timing information for impact point location t< Minimum Hit Time+10 ns</p>

- CS=1 hit on the strip
- CS=2 hit in the middle of two
- CS=3 hit in the center strip
- Expected Resolution if CS=2 & 3 are favorable (Strip Pitch)/2v12

- Study of a thin gap RPC is motivated by the upgrade of ATLAS muon small wheel
- Beam test of the RPC with 1.2 mm gap shows good timing performance (less than 1.4 ns, measurement limited by Electronics precision)
- ♦ Low cluster size if read out from anode → good for trigger purpose
- Spatial resolution less than 200 μm could be achieved by using centroid method with 1.27 mm readout pitch
- The good timing information could be used for trigger and online fast precision tracking (<0.3mm).
- Further study is needed: Alignment (crucial), TDC, ADC calibration ...

Thank you !

backup

2012国家重点实验室年会,北京