

CEPC top coupling & top mass discussion

Huayu Liu huayuliu9499@163.com

Sun Yat-sen University 28/2/2025

Outline

- Detailed overview of top EW CP measurement at ILC
- Detailed overview of top EW CP measurement at FCC
- Overview of what we should do

Detailed overview of top EW CP measurement at ILC

- **>** Link
- ➤ Outline:
 - Introduction
 - Top quark production at the ILC
 - Event generation and technical remarks
 - Event selection
 - Measurement of the forward backward asymmetry
 - The slope of the helicity angle distribution
 - Precision of Form Factors
 - Summary and outlook

Detailed overview of top EW CP measurement at FCC

- > Link
- **➢** Outline:
 - INTRODUCTION
 - THEORETICAL FRAMEWORK
 - OPTIMAL-OBSERVABLE STATISTICAL ANALYSIS
 - SENSITIVITY TO TOP EW COUPLINGS
 - RESULTS AND DISCUSSION
 - SUMMARY AND OUTLOOK

Overview of what we should do

> Task path

- Similar to ILC
- Observable:
 - The cross section;
 - The forward backward asymmetry A_{FB}^t ;
 - The slope of the distribution of the helicity angle;
- Use fully polarized samples
- We want to take the differences in the beam condition as an uncertainty like what ILC does

This week update

- Original idea is:
 - using truth-level of the top to separate the polarized samples to two fully polarized samples.
 - After checking there is no such information.
- So, we may be should start from samples production?
 - Plan to generate fully polarized samples(two set of samples)
 - How? Any help is welcome!

The cross section and therefore its uncertainty scales with the polarisation can be calculated. The observables A_{FB}^t and λ_t vary only very mildly with the beam polarisation.

