

CEPC vertex Detector

Zhijun Liang (On behalf of the CEPC physics and detector group)

中國科學院為能物招加完施 Institute of High Energy Physics Chinese Academy of Sciences

- Introduction
- Requirements
- Technology survey and our choices
- Technical challenges
- R&D efforts and results
- Detailed design including electronics, cooling and mechanics
- Readout electronics & BEC
- Performance from simulation
- Research team and working plan
- Summary

Introduction: vertex detector

- Vertex detector optimized for first 10 year of operation (ZH, low lumi-Z)
 Motivation:
 - Aim to optimize impact parameter resolution and vertexing capability
 - Key detector for H \rightarrow cc and H \rightarrow gg physics, which is an important goal for CEPC

Vertex Requirement

- Inner most layer (b-layer) need to be positioned as close to beam pipe as possible

- Challenges: b-layer radius (11mm) is smaller compared with ALICE ITS3 (18mm)
- High data rate: (especially at Z pole , ~43MHz, 1Gbps per chip)
 - Challenges: 1Gbps per chip high data rate especially at Z pole
- Low material budget (less than 0.15%X0 per layer)
- Detector Cooling with air cooling (power consumption<=40 mW/cm²)
- Spatial Resolution (3-5 um)
- Radiation level (~1Mrad per year in average)

Technology survey and our choices

Vertex detector Technology selection

- Baseline: based on curved CMOS MAPS (Inspired by ALICE ITS3 design[1])
 - Advantage: 2~3 times smaller material budget compared to alternative (ladder)
- Alternative: Ladder design based on CMOS MAPS

[1] ALICE ITS3 TDR: https://cds.cern.ch/record/2890181

Baseline: bent MAPS

- 4 single layer of bent MAPS + 1 double layer ladder
 - Material budget is much lower than alternative option
- Use single bent MAPS for Inner layer (~0.15m²)
 - Low material budget 0.06%X0 per layer
 - Different rotation angle in each layer to reduce dead area Long barrel layout (no endcap disk)

layer	Radius	Material
Layer 1	11mm	0.06% X0
Layer 2	16.5mm	0.06% X0
Layer 3	22mm	0.06% X0
Layer 4	27.5mm	0.06% X0
Layer 5/6 (Ladders)	35-40 mm	0.33% X0
Total		0.57% X0

to cover $\cos \theta <=0.991$

Schematic diagram of the Inner layer placement of the vertex detector stitching scheme

Data rate estimation of vertex detector

> Data rate @1.3Gbps/cm² per chip for triggerless readout at low-lumi Z

Layer	Ave. Hit Rate MHz/cm ²	Max. Hit Rate MHz/cm ²	Ave. Hit Rate×C MHz/cm ²	Ave. Hit Rate×C MHz/cm ²	Ave. Data Rate Mbps/cm ²	Max. Data Rate Mbps/cm ²
Higgs:	DataRate = Hit	Rate $\times 32$ bit / pixel	× ClusterSize @(Bunch Spacing: 34	46ns, 53%Gap, 25	\times 25 μ m ² / pixel)
1	1.117	1.255	6.203	7.319	198.503	234.201
2	0.326	0.541	1.747	3.061	55.919	97.937
3	0.087	0.182	0.485	0.966	15.522	30.902
4	0.042	0.081	0.244	0.510	7.792	16.311
5	0.011	0.047	0.062	0.308	1.992	9.870
6	0.008	0.032	0.043	0.196	1.380	6.284
Low Lur	ni Z: DataRate =	HitRate $\times 32$ bit / j	pixel × ClusterSize	e @(Bunch Spacin	g: 69ns, 0%Gap, 2	$25 \times 25 \ \mu m^2 / \text{ pixel}$)
1	3.384	6.612	21.036	40.892	673.153	1308.556
2	0.384	0.608	2.469	4.388	79.000	140.410
3	0.154	0.326	1.057	2.620	33.834	83.853
4	0.097	0.229	0.658	2.401	21.050	76.834
5	0.015	0.038	0.098	0.246	3.141	7.887
6	0.012	0.025	0.075	0.173	2.393	5.527

Background Hit maps @ Low-lumi Z

8

0.16

0.14

hits MHz/Cell

0.08

0.06

0.06

0.05

hits MHz/Cell

0.01

Stitching design

Stitched

interface

8.409

0.055

RSU

17.277

20.000

17.277

4.154

17.277

1.385

Layer 1 has 8 repeated RSU.

Pixel

Width [mm]

Length [mm]

Matrix

8.409

3.296

Power supplies and I/Os are from left side.

Top level floor-plan for a sensor of layer1

Biasing

Block

0.053

3.333

Power

8.409

0.019

Switches

Matrix

readout

0.177

3.333

Stitched data interface Stitched data interface Sensor Block switches Power switche Power switche Power switch Power switch Sensor Sensor Sensor Sensor Sensor Block Block Block Block Block Power Stitched data interface Stitched Power switches ched data interface Power switches Power switches Power switches ower switches ower switches Block Block Block Block Block **Sensor Sensor Sensor Sensor Sensor** 20 mm LEB REB

RSU (Repeated Sensor Unit)

Ladder Electronics

- Layer 1-4 (stitching) : Stitching left-end Block
- Layer 5-6 (ladder) : flexible PCB
 - Signal, clock, control, power, ground will be handled by control board through flexible PCB

Figure 1.67: Proposed diagram of the Left-End Block (LEB). All data from RSUs of one moulde has to be transmitted to the LEB. 'N \times RSU' labeled in the right part of the diagram represents that different layers in the detector contains a varying number of RSUs.

Layer 5-6: flexible PCB

Chip design for ref- TDR and power consumption

Power consumption

- Fast priority digital readout for 40MHz at Z pole
- 65/55nm CIS technology
- Power consumption can reduced to $\sim 40 \text{mW/cm}^2$
- Air cooling feasibility study
 - Baseline layout can be cooled down to ~20 °C

Temperture and gradient

20°C

• Based on 3 m/s air speed, estimated by thermal simulation

	Matrix	Periphery	DataTrans.	DACs	Total Power	Power density
TaiChu3 180nm chip @ triggerless	304 mW	135 mW	206 mW	10 mW	655 mW	160 mW/cm ²
65nm for TDR @ 1 Gbps/chip (TDR LowLumi Z)	60 mW	80 mW	36 mW	10 mW	186 mW	~40 mW/cm ²

 40mw/cm^2

Vertex technologies: Cables and services

Inner layer: flexible PCB connected to stitching layer with wire bonding

- Power and Signal are transmitted through a long flexible PCB (~0.7m)
- Signal converted to optical fiber (out of the MDI region)

Vertex technologies: Integration with beam pipe

Performance: impact parameter resolution

Compared to alternative (ladder) option

- baseline (stitching) has significant improvement (~45%) in low momentum case

Performance in case of dead sensors

Study the performance in case of dead sensors, less than 20% impact

- 1st case: one layer is dead
- 2nd case: 10/ 100/1000 sensors block dead (0.1929%, 1.929%, 19.29%)

R&D status and final goal

Key technology	Status	CEPC Final goal
CMOS chip technology	Full-size chip with TJ 180nm CIS	65nm CIS
Detector integration	Detector prototype with ladder design	Detector with bent silicon design
Spatial resolution	4.9 μm	3-5 μm
Detector cooling	Air cooling with 1% channels (24 chips) on	Air cooling with full power
Bent CMOS silicon	Bent Dummy wafer radius ~12mm	Bent final wafer with radius ~11mm
Stitching	11×11cm stitched chip with Xfab 350nm CIS	65nm CIS stitched sensor

Summary: working plan

CEPC vertex detector timeline is about 3-4 years after AlICE ITS3 upgrade

- It will benefit from experience from AIICE ITS3 upgrade

	CEPC Final goal	CEPC Expected date	AlICE ITS3 schedule
CMOS chip technology	65nm CIS	2028 Full-size 65nm chip	2025
Spatial resolution	$3-5 \ \mu m$ with final chip	2028	2025
Stitching	65nm CIS stitched sensor	2029	2026 wafer production
Bent silicon with small radius	Bent final wafer with radius ~11mm	2030	2027
Detector cooling	Air cooling with full power	2027: thermal mockup	2027
Detector integration	Detector with bent silicon design	2032	2028

Thank you for your attention!

中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences

Aug. 7th, 2024, CEPC Detector Ref-TDR Review

Readout architecture of a RSU

Figure 1.57: Readout architecture for a RSU

Performance

Layer 5-6 : ladder design

Alternative : CMOS ladder

Alternative: CMOS chips with a long ladder layout

- 3 double-side layer with long ladders design
- We have built a vertex prototype based on the short ladders design
- No effective solution for inner layer cooling yet.

R&D efforts: Full-size TaichuPix3

Full size CMOS chip developed, 1st engineering run

- 1024×512 Pixel array, Chip Size: 15.9×25.7mm
- 25µm×25µm pixel size with high spatial resolution
- Process: Towerjazz 180nm CIS process
- Fast digital readout to cope with ZH and Z runs (support 40MHz clock)

TaichuPix-3 chip vs. coin

An example of wafer test result

	Status	CEPC Final goal	
CMOS chip technology	Full-size chip with TJ 180nm CIS	65nm CIS	24

R&D effort: vertex detector prototype

	Status	CEPC Final goal
Detector integration	Detector prototype with ladder design	Detector with bent silicon design

R&D efforts and results: vertex detector prototype beam test

26

R&D efforts curved MAPS

- CEPC b-layer radius (11mm) smaller compared with ALICE ITS3 (radius=18mm)
- Feasibility : Mechanical prototype with dummy wafer can curved to a radius of 12mm
 - The dummy wafer has been thinned to $40 \mu m$

	Status	CEPC Final goal
Bent silicon with radius	Bent Dummy wafer radius ~12mm	Bent final wafer with radius ~11mm

Action item from meeting with IDRC chair

Total area and Timeline for ALICE ITS3, should compare with CEPC vertex

- ALICE ITS3 timeline is about 3~4 years earlier
- Total area of ALICE ITS3 uprade: 0.06 m²,
- Total area of CEPC curved MAPS layers in vertex detector : 0.15 m²
- Material budget for normal ladders is too conservative ?(especially for carbon fiber)
 - Material for mu3E ladders has 0.1% X0 per layer (we quoted 0.25% X0 per layer in last meeting)
 - Ladder material now reduce from 0.25% to 0.16%X0 per layer
 - Metal layer of flexible PCB now reduced from 6 to 4 layers
 - Carbon fiber thickness in CEPC prototyping can reach 0.12mm, on the same level as mu3e detector
- Accessibility for 65/55 nm technology in China
 - TowerJazz 65nm CIS can be submitted through TowerJazz agency in China
 - R & D of SMIC 55nm technology is on-going
- Serial powering is widely used in ATLAS/CMS upgrade, should look into it
 - DC-DC powering is preferred, MAPS silicon substrate needed a common negative bias

R&D efforts and results: Jadepix3/TaichuPix3 beam test @ DESY

 Collaboration with CNRS and IFAE in Jadepix/TaichuPix R & D

R&D efforts: Air cooling in vertex prototype

Dedicated air cooling channel designed in prototype.

- Measured Power Dissipation of Taichu chip: ~60 mW/cm² (17.5 MHz in testbeam)
- Before (after) turning on the cooling, chip temperature 41 °C (25 °C)
 - In good agreement to our cooling simulation
 - No visible vibration effect in spatial resolution when turning on the fan

Key technology	Status	CEPC Final goal
Detector cooling	Air cooling with 1% channels (24 chips) on	Air cooling with full power

R&D efforts and results: R & D for curved MAPS

Stitching chip design (by ShanDong U.)

- 350nm CIS technology Xfabs
- Wafer level size after stitching ~11 × 11 cm²
- reticle size ~2 ×2 cm²
- 2D stitching
- Engineering run, chip under testing

Stitching chip : 11×11 cm²

Key technology	Status	CEPC Final goal
Stitching	11*11cm stitched chip with Xfab 350nm CIS	65nm CIS stitched sensor

Backup: Mechanics

Backup : Cable and service

Backup : air cooling simulation

Overview of CEPC vertex detector prototype R & D

Silicon Pixel Chips for Vertex Detector

JadePix-3 Pixel size ~16×23 μ m²

Tower-Jazz 180nm CiS process Resolution 5 microns, 53mW/cm²

MOST 1

Goal: $\sigma(IP) \sim 5 \mu m$ for high P track

CDR design specifications

- Single point resolution ~ 3µm
- Low material (0.15% X₀ / layer)
- Low power (< 50 mW/cm²)
- Radiation hard (1 Mrad/year)

Silicon pixel sensor develops in 5 series: JadePix, TaichuPix, CPV, Arcadia, COFFEE

TaichuPix-3, FS 2.5x1.5 cm² 25×25 μm² pixel size

CPV4 (SOI-3D), 64×64 array ~21×17 μm² pixel size

Develop **COFFEE** for a CEPC tracker using SMIC 55nm HV-CMOS process

Arcadia by Italian groups for IDEA vertex detector LFoundry 110 nm CMOS

MOST 2

Vertex Requirement

- 1st priority: Small inner radius, close to beam pipe (11mm)
- 2nd priority: Low material budget <0.15% X0 per layer</p>
- ^{3rd} priority: High resolution pixel sensor: 3~5 μm

R&D efforts : Curved MAPS testbeam

2×10⁻ 10⁻ 2×10⁻

Before bending

R & D of curved maps with MIMOSA28 chip

- No visible difference in noise level or spatial resolution before/after bending

Long barrel : cluster size vs incident angle

Cluster size = $a \times sec\theta + b$

TaichuPix design

Pixel 25 μm × 25 μm

- Continuously active front-end, in-pixel discrimination
- Fast-readout digital, with masking & testing config. logic
- Column-drain readout for pixel matrix
 - Priority based data-driven readout
 - Readout time: 50-100 ns for each pixel
- 2-level FIFO architecture
 - L1 FIFO: de-randomize the injecting charge
 - L2 FIFO: match the in/out data rate
 - between core and interface
- Trigger-less & Trigger mode compatible
 - Trigger-less: 3.84 Gbps data interface
 - Trigger: data coincidence by time stamp only matched event will be readout
- Features standalone operation
 - On-chip bias generation, LDO, slow control, etc

TaichuPix3 vertex detector prototype

adder support tools

New pickup tools

Ladder on wire bonding machine

Dummy ladder glue automatic dispensing using gantry

The first vertex detector (prototype) ever built in China

Research team

IHEP: overall intergration, chip design, detector assembly, electronics, offline

- Overall : Joao, Zhijun ,Ouyang Qun
- Mechnical: Jinyu Fu
- Electronics: Wei wei, Ying Zhang, Jun Hu, Yunpeng Lu, Yang Zhou, Xiaoting Li
- DAQ: Hongyu Zhang
- Detector assembly: Mingyi Dong
- Physics: Chengdong Fu, linghui Wu, Gang Li
- IFAE: Chip design , Sebastian Grinstein, Raimon Casanova et al
- IPHC/CNRS: chip design , Christine Hu, Yongcai Hu et al
- ShanDong: chip design , Meng Wang, Liang Zhang, Jianing Dong
- CCNU: chip design, ladder assembly, Xiangming Sun, Ping Yang
- North West U. : Chip design Xiaoming Wei, Jia Wang, Yongcai Hu
- Nanchang U. : chip design, Tianya Wu
- Nanjing: irradation study: Ming Qi , Lei Zhang

Performance: impact parameter resolution

Compared to alternative (ladder) option

 baseline (stitching) has significant improvement in low momentum case

Vertex detector Operation

Vertex detector optimized for first 10 year of operation (ZH, low lumi-Z)

– Low luminosity Z runs is ~20% instant luminosity of high luminosity Z runs

Doromotor	Operation mode			
Parameter	Η	Z	W	$tar{t}$
Colliding particles	e^+ , e^-			
Center-of-mass energy (GeV)	240	91	160	360
Luminosity $(10^{34} \text{ cm}^{-2} \text{s}^{-1})$	8.3	192	27	0.8
No. of interaction points	2			

 Table 1.4: Primary CEPC design objectives (@ 50 MW)