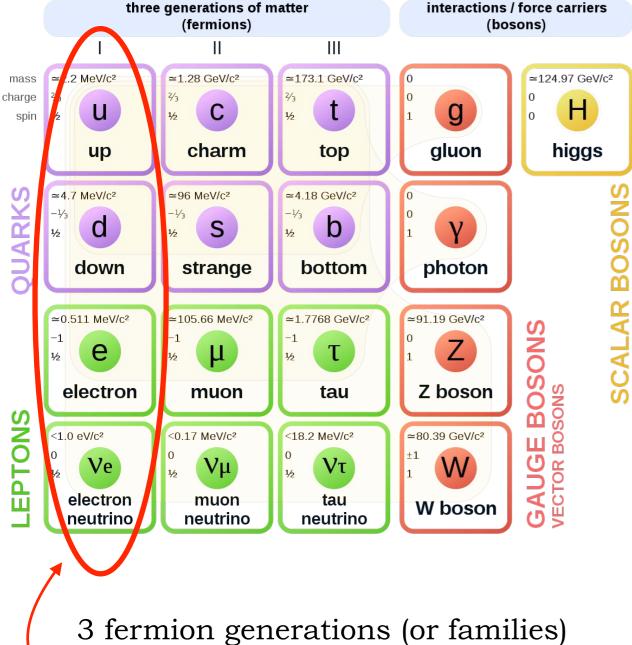
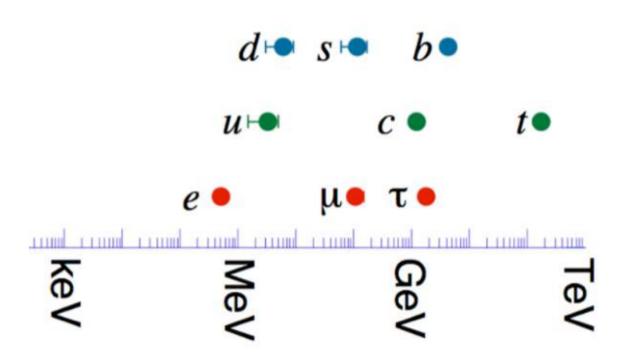
International CEPC Workshop 2025

Flavour physics at future e^+e^- colliders


Lorenzo Calibbi


Why flavour?

The flavour puzzle

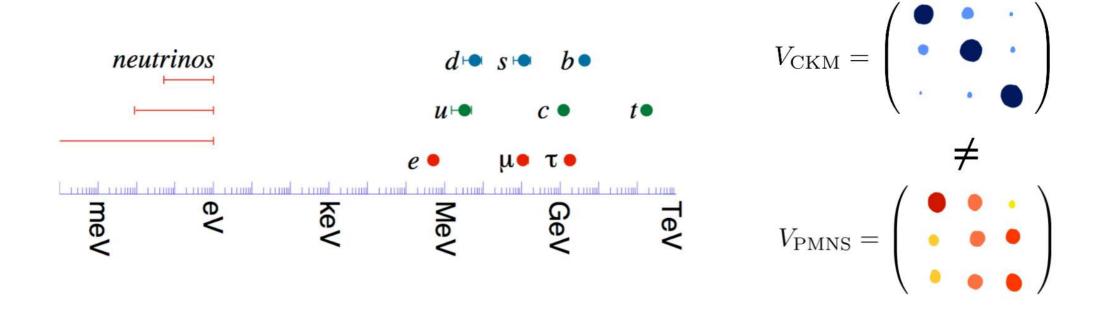
Standard Model of Elementary Particles

see e.g. J. Zupan's review arXiv:1903.05062

Hierarchical fermion masses

(why?)

You are here (why?)


Flavor in the SM

courtesy of O. Sumensari

- The SM flavor sector is loose: (even w/o considering neutrinos)
 - ⇒ 13 free parameters (masses and quark mixing) fixed by data.

$$\mathcal{L}_{\text{Yuk}} = -Y_d^{ij} \, \overline{Q}_i d_{Rj} \, H - Y_u^{ij} \, \overline{Q}_i u_{Rj} \, \widetilde{H} - Y_\ell^{ij} \, \overline{L}_i e_{Rj} \, H + \text{h.c.}$$

⇒ These (many) parameters exhibit a hierarchical structure which we do not understand.

How to explain the observed patterns in terms of less and more fundamental parameters?

Why is Flavour Physics important?

SM flavour puzzle

We need to find the scale of New Physics!

- Why three families?
- Why the hierarchies?

- LHC found a SM-like Higgs
- No sign of new phenomena

Why flavour?

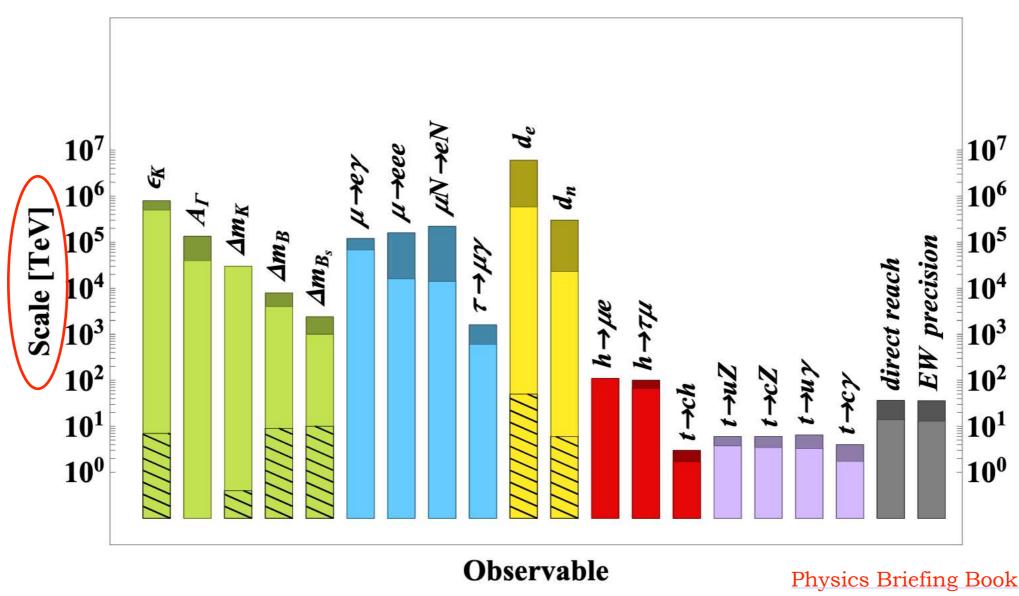
Do we really need New Physics?

- Hierachy Problem (?)
- Dark Matter/Dark Energy
- Inflation
- Neutrino masses
- Baryon asymmetry
- Origin of flavour hierarchies

• • •

Why flavour?

Do we really need New Physics?

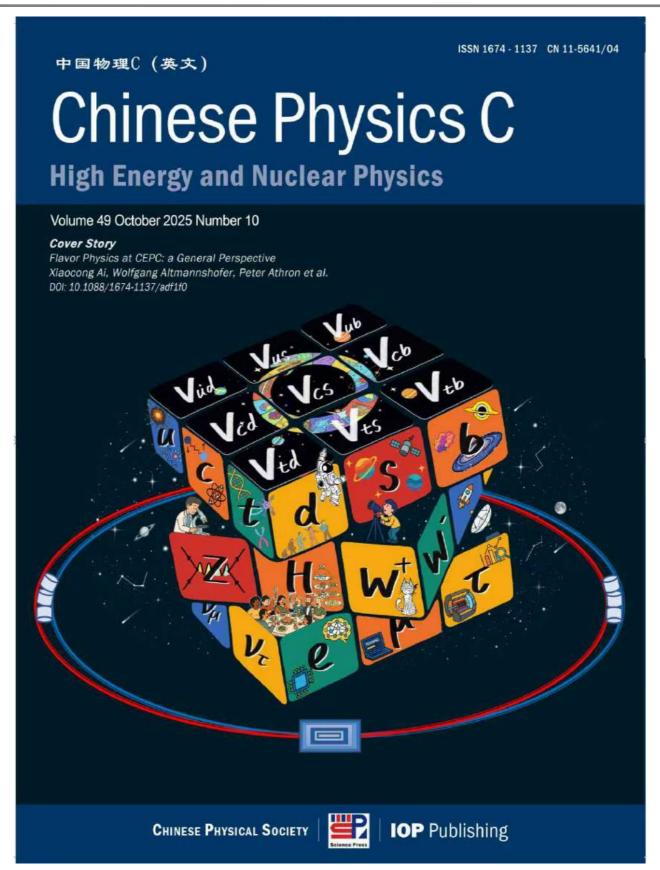

- Hierarchy Problem (?) \rightarrow *TeV-scale New Physics?*
- Dark Matter/Dark Energy
- Inflation
- Neutrino masses → see-saw?
- Baryon asymmetry → *new sources of CPV? leptogenesis?*
- Origin of flavour hierarchies \rightarrow *symmetries of flavour?*

• • •

Testable through hadronic/leptonic flavour/CP violation?

Probing very high energies

Sensitivity to new physics scale


Physics Briefing Book ESPPU 2020

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda} \sum_{a} C_a^{(5)} Q_a^{(5)} + \frac{1}{\Lambda^2} \sum_{a} C_a^{(6)} Q_a^{(6)} + \dots$$

Tera Z as a flavour factory

Warning: here we focus on the CEPC, but everything applies to the FCC-ee too!

Recent cover story (and editors suggestion) on CPC

Thanks to Wang Yuexin for the cover design!

Flavor Physics at the CEPC: a General Perspective

Xiaocong Ai¹, Wolfgang Altmannshofer², Peter Athron³, Xiaozhi Bai⁴, Lorenzo Calibbi^{5*}, Lu Cao^{6,7}, Yuzhi Che^{8,9}, Chunhui Chen¹⁰, Ji-Yuan Chen³¹, Long Chen¹¹, Mingshui Chen^{8,9,77}, Shanzhen Chen^{8,9,77†}, Xuan Chen¹¹, Shan Cheng¹², Cheng-Wei Chiang¹³, Andreas Crivellin^{14,15}, Hanhua Cui^{8,9}, Olivier Deschamps¹⁶, Sébastien Descotes-Genon¹⁷, Xiaokang Du¹⁸, Shuangshi Fang^{8,9}, Yu Gao^{8,9}, Yuanning Gao⁴⁶, Li-Sheng Geng¹⁹, Pablo Goldenzweig²⁰, Jiayin Gu^{21,22,23}, Feng-Kun Guo^{24,9,25†}, Yuchen Guo^{26,27}, Zhi-Hui Guo^{28†}, Tao Han²⁹, Hong-Jian He^{30,31}, Jibo He⁹, Miao He^{8,9}, Xiaogang He^{30,31,65} Yanping Huang^{8,9}, Gino Isidori¹⁵, Quan Ji^{8,9}, Jianfeng Jiang^{8,9}, Xu-Hui Jiang^{8,32,33}, Jernej F. Kamenik^{34,35}, Tsz Hong Kwok^{33†}, Gang Li^{8,9}, Geng Li³⁶, Haibo Li^{8,9}, Haitao Li¹¹, Hengne Li³⁷, Honglei Li³⁸, Liang Li^{31,65,66}, Lingfeng Li^{39,33*}, Qiang Li⁴⁰, Qiang Li⁴⁶, Shu Li^{30,31}, Xiaomei Li⁴¹, Xin-Qiang Li^{42†}, Yiming Li^{8,9}, Yubo Li⁴³, Yuji Li⁶, Zhao Li^{8,9}, Hao Liang^{8,9}, Zhijun Liang^{8,9}, Libo Liao⁴⁴, Zoltan Ligeti⁴⁵, Jia Liu⁴⁶, Jianbei Liu^{75,76}, Tao Liu^{33*}, Yi Liu¹, Yong Liu^{8,9}, Zhen Liu⁴⁷, Xinchou Lou^{8,77,78}, Peng-Cheng Lu¹¹, Alberto Lusiani⁴⁸, Hong-Hao Ma⁴⁹, Kai Ma⁵⁰, Farvah Mahmoudi^{79,80,81}, Yajun Mao⁴⁶, Yaxian Mao⁴², David Marzocca⁵¹, Juan-Juan Niu⁴⁹, Soeren Prell¹⁰, Huirong Qi^{8,9}, Sen Qian^{8,9}, Zhuoni Qian⁵², Qin Qin^{53†}, Ariel Rock³³, Jonathan L. Rosner^{54,55}, Manqi Ruan^{8,9,77*}, Dingyu Shao⁶, Chengping Shen^{56,23}, Xiaoyan Shen^{8,9}, Haoyu Shi^{8,9}, Liaoshan Shi^{57†}, Zong-Guo Si¹¹, Cristian Sierra³, Huayang Song²⁴, Shufang Su⁵⁸, Wei Su⁴⁴, Zhijia Sun^{8,9,62} Michele Tammaro⁵⁹, Dayong Wang⁴⁶, En Wang¹, Fei Wang¹, Hengyu Wang^{8,9}, Jian Wang¹¹, Jianchun Wang^{8,9,77}, Kun Wang⁷⁴, Lian-Tao Wang⁵⁴, Wei Wang^{31,60}, Xiaolong Wang⁵⁶, Xiaoping Wang¹⁹, Yadi Wang⁶¹, Yifang Wang^{8,9,77}, Yuexin Wang^{8,62†}, Xing-Gang Wu⁶³, Yongcheng Wu³, Rui-Qing Xiao^{30,31,64}, Ke-Pan Xie¹⁹, Yuehong Xie⁴², Zijun Xu^{8,9}, Haijun Yang^{30,31,65,66}, Hongtao Yang⁴, Lin Yang³⁰, Shuo Yang^{26,27}, Zhongbao Yin⁴², Fusheng Yu⁶⁷, Changzheng Yuan^{8,9}, Xing-Bo Yuan⁴², Xuhao Yuan^{8,9}, Chongxing Yue^{26,27}, Xi-Jie Zhan⁶⁸, Hong-Hao Zhang⁸² Kaili Zhang^{8,62}, Liming Zhang⁶⁹, Xiaoming Zhang⁴², Yang Zhang¹, Yanxi Zhang⁴⁶, Ying Zhang⁸³ Yongchao Zhang⁷⁰, Yu Zhang⁷¹, Zhen-Hua Zhang⁷², Zhong Zhang^{57,70}, Mingrui Zhao⁴¹, Qiang Zhao^{8,9}, Xu-Chang Zheng⁶³, Yangheng Zheng⁹, Chen Zhou⁴⁶, Daicui Zhou⁴², Pengxuan Zhu²⁴, Yongfeng Zhu⁴⁶, Xuai Zhuang^{8,9}, Xunwu Zuo^{20†}, Jure Zupan⁷³

You can find it here: arXiv:2412.19743 [hep-ex] Chinese Phys. C 49 103003

~150 authors/endorsers

~80 institutions

~70 pages (+biblio)

¹School of Physics, Zhengzhou University, Zhengzhou 450001, China

²Department of Physics and Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, 95064, USA

³Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023, China

⁴University of Science and Technology of China, Hefei 230026, China

⁵School of Physics, Nankai University, Tianjin 300071, China

^{*}Corresponding author.

[†]Primary contributor.

Flavor Physics at the CEPC: a General Perspective

Xiaocong Ai¹, Wolfgang Altmannshofer², Peter Athron³, Xiaozhi Bai⁴, Lorenzo Calibbi^{5*}, Lu Cao^{6,7}, Yuzhi Che^{8,9}, Chunhui Chen¹⁰, Ji-Yuan Chen³¹, Long Chen¹¹, Mingshui Chen^{8,9,77}, Shanzhen Chen^{8,9,77†}, Xuan Chen¹¹, Shan Cheng¹², Cheng-Wei Chiang¹³, Andreas Crivellin^{14,15}, Hanhua Cui^{8,9}, Olivier Deschamps¹⁶, Sébastien Descotes-Genon¹⁷, Xiaokang Du¹⁸, Shuangshi Fang^{8,9}, Yu Gao^{8,9}, Yuanning Gao⁴⁶, Li-Sheng Geng¹⁹, Pablo Goldenzweig²⁰, Jiayin Gu^{21,22,23}, Feng-Kun Guo^{24,9,25†}, Yuchen Guo^{26,27}, Zhi-Hui Guo^{28†}, Tao Han²⁹, Hong-Jian He^{30,31}, Jibo He⁹, Miao He^{8,9}, Xiaogang He^{30,31,65} Yanping Huang^{8,9}, Gino Isidori¹⁵, Quan Ji^{8,9}, Jianfeng Jiang^{8,9} Xu-Hui Jiang^{8,32,33}, Jernej F. Kamenik^{34,35}, Tsz Hong Kwok^{33†}, Gang Li^{8,9}, Geng Li³⁶, Haibo Li^{8,9}, Haitao Li¹¹, Hengne Li³⁷, Honglei Li³⁸, Liang Li^{31,65,66}, Lingfeng Li^{39,33*}, Qiang Li⁴⁰, Qiang Li⁴⁶, Shu Li^{30,31}, Xiaomei Li⁴¹, Xin-Qiang Li^{42†}, Yiming Li^{8,9}, Yubo Li⁴³, Yuji Li⁶, Zhao Li^{8,9}, Hao Liang^{8,9}, Zhijun Liang^{8,9}, Libo Liao⁴⁴, Zoltan Ligeti⁴⁵, Jia Liu⁴⁶, Jianbei Liu^{75,76}, Tao Liu^{33*}, Yi Liu¹, Yong Liu^{8,9}, Zhen Liu⁴⁷, Xinchou Lou^{8,77,78}, Peng-Cheng Lu¹¹, Alberto Lusiani⁴⁸, Hong-Hao Ma⁴⁹, Kai Ma⁵⁰, Farvah Mahmoudi^{79,80,81}, Yajun Mao⁴⁶, Yaxian Mao⁴², David Marzocca⁵¹, Juan-Juan Niu⁴⁹, Soeren Prell¹⁰, Huirong Qi^{8,9}, Sen Qian^{8,9}, Zhuoni Qian⁵², Qin Qin^{53†}, Ariel Rock³³, Jonathan L. Rosner^{54,55}, Manqi Ruan^{8,9,77*}, Dingyu Shao⁶, Chengping Shen^{56,23}, Xiaoyan Shen^{8,9}, Haoyu Shi^{8,9}, Liaoshan Shi^{57†}, Zong-Guo Si¹¹, Cristian Sierra³, Huayang Song²⁴, Shufang Su⁵⁸, Wei Su⁴⁴, Zhijia Sun^{8,9,62} Michele Tammaro⁵⁹. Dayong Wang⁴⁶, En Wang¹, Fei Wang¹, Hengyu Wang^{8,9}, Jian Wang¹¹, Jianchun Wang^{8,9,77}, Kun Wang⁷⁴, Lian-Tao Wang⁵⁴, Wei Wang^{31,60}, Xiaolong Wang⁵⁶, Xiaoping Wang¹⁹, Yadi Wang⁶¹, Yifang Wang^{8,9,77}, Yuexin Wang^{8,62†}, Xing-Gang Wu⁶³, Yongcheng Wu³, Rui-Qing Xiao^{30,31,64}, Ke-Pan Xie¹⁹, Yuehong Xie⁴², Zijun Xu^{8,9}, Haijun Yang^{30,31,65,66}, Hongtao Yang⁴, Lin Yang³⁰, Shuo Yang^{26,27}, Zhongbao Yin⁴², Fusheng Yu⁶⁷, Changzheng Yuan^{8,9}, Xing-Bo Yuan⁴², Xuhao Yuan^{8,9}, Chongxing Yue^{26,27}, Xi-Jie Zhan⁶⁸, Hong-Hao Zhang⁸² Kaili Zhang^{8,62}, Liming Zhang⁶⁹, Xiaoming Zhang⁴², Yang Zhang¹, Yanxi Zhang⁴⁶, Ying Zhang⁸³ Yongchao Zhang⁷⁰, Yu Zhang⁷¹, Zhen-Hua Zhang⁷², Zhong Zhang^{57,70}, Mingrui Zhao⁴¹, Qiang Zhao^{8,9}, Xu-Chang Zheng⁶³, Yangheng Zheng⁹, Chen Zhou⁴⁶, Daicui Zhou⁴², Pengxuan Zhu²⁴, Yongfeng Zhu⁴⁶, Xuai Zhuang^{8,9}, Xunwu Zuo^{20†}, Jure Zupan⁷³

C	ontents	
1	Introduction	2
2	Description of CEPC Facility	6
	2.1 Key Collider Features for Flavor Physics	6
	2.2 Key Detector Features for Flavor Physics	7
	2.3 Simulation Method	15
3	FCCC Semileptonic and Leptonic b -Hadron Decays	16
	3.1 Leptonic Modes	18
	3.2 Semileptonic Modes	19
4	FCNC b-Hadron Decays	22
	4.1 Di-lepton Modes	23
	4.2 Neutrino Modes	26
	4.3 Radiative Modes	28
	4.4 Tests of SM Global Symmetries	28
5	CP Violation in b -Hadron Decays	30
6	Charm and Strange Physics	35
7	au Physics	38
	7.1 LFV in τ Decays	38
	7.2 LFU of τ Decays	40
	7.3 Opportunities with Hadronic τ Decays	42
8	Flavor Physics in Z Boson Decays	44
	8.1 LFV and LFU	44
	8.2 Factorization Theorem and Hadron Inner Structure	47
9	Flavor Physics beyond Z Pole	48
	9.1 Flavor Physics and W Boson Decays	49
	9.2 Flavor-Violating Higgs Boson Decays	51
	9.3 FCNC Top Quark Physics	53
10	Spectroscopy and Exotics	55
11	Light BSM States from Heavy Flavors	59
	11.1 Lepton Sector	60
	11.2 Quark Sector	61
12	2 Detector Performance Requirements	62

¹School of Physics, Zhengzhou University, Zhengzhou 450001, China

²Department of Physics and Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, 95064, USA

³Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023, China

⁴University of Science and Technology of China, Hefei 230026, China

⁵School of Physics, Nankai University, Tianjin 300071, China

^{*}Corresponding author.

[†]Primary contributor.

Flavor Physics at the CEPC: a General Perspective

Xiaocong Ai¹, Wolfgang Altmannshofer², Peter Athron³, Xiaozhi Bai⁴, Lorenzo Calibbi⁵*, Lu Cao⁶, Yuzhi Cheø, Chunhui Chen¹0, Ji-Yuan Chen³¹, Long Chen¹¹, Mingshui Chenø, Yi-Young Chenø, Yi-Young Chen³¹, Cheng-Wei Chiang¹³, Andreas Crivellin¹⁴, Hanhua Cuið, Olivier Deschamps¹⁶, Sébastien Descotes-Genon¹¸ Xiaokang Du¹¸ Shuangshi Fangø, Yu Gaoð, Yuanning Gao⁴⁶, Li-Sheng Geng¹¸ Pablo Goldenzweig²⁰, Jiayin Gu²¹, 2², Feng-Kun Guo²⁴, Yuchen Guo²⁶, Zhi-Hui Guo²ð, Tao Han²¸ Hong-Jian He³₀, Jibo He³, Miao Heð, Xiaogang He³₀, Xiaogang He³₀, Syanping Huangð, Gino Isidori¹¸ Quan Jið, Jianfeng Jiangð, Xu-Hui Jiangð, Jernej F. Kamenik³⁴, Tsz Hong Kwok³³†, Gang Lið, Geng Li³⁶, Haibo Lið, Hengne Li³¸ Honglei Li³ð, Liang Li³¹, Só, Lingfeng Li³³, Yubo Li³¸ Yuji Li⁶, Zhao Lið, Shu Li³₀, Xiaomei Li⁴¹, Xin-Qiang Li⁴²†, Yiming Lið, Yubo Li⁴³, Yuji Li⁶, Zhao Lið, Hao Liangð, Zhijun Liangð, Liangð, Zhen Liu⁴¸ Xinchou Louð, Peng-Cheng Lu¹¹, Alberto Lucio ¹⁴ð,

1	Introduction	2
2	Description of CEPC Facility	6
	2.1 Key Collider Features for Flavor Physics	6
	2.2 Key Detector Features for Flavor Physics	7
	2.3 Simulation Method	15
3	FCCC Semileptonic and Leptonic b -Hadron Decays	16
	3.1 Leptonic Modes	18
	3.2 Semileptonic Modes	19
4	FCNC b-Hadron Decays	22
	4.1 Di-lepton Modes	23
	4.2 Neutrino Modes	26
	4.3 Radiative Modes	28
	4.4 Tests of SM Global Symmetries	28
		30
\sim	an only mention	200

A vast subject: today, I can only mention

Wang^{8,9,77}, Kun Wang⁷⁴, Lian-Tao Wang⁹⁴, Wei wang
Xiaoping Wang¹⁹, Yadi Wang⁶¹, Yifang Wang^{8,9,77}, Yuexin Wang^{8,62†}, Xing-Gang
Wu⁶³, Yongcheng Wu³, Rui-Qing Xiao^{30,31,64}, Ke-Pan Xie¹⁹, Yuehong Xie⁴², Zijun
Xu^{8,9}, Haijun Yang^{30,31,65,66}, Hongtao Yang⁴, Lin Yang³⁰, Shuo Yang^{26,27}, Zhongbao
Yin⁴², Fusheng Yu⁶⁷, Changzheng Yuan^{8,9}, Xing-Bo Yuan⁴², Xuhao Yuan^{8,9},
Chongxing Yue^{26,27}, Xi-Jie Zhan⁶⁸, Hong-Hao Zhang⁸² Kaili Zhang^{8,62}, Liming
Zhang⁶⁹, Xiaoming Zhang⁴², Yang Zhang¹, Yanxi Zhang⁴⁶, Ying Zhang⁸³ Yongchao
Zhang⁷⁰, Yu Zhang⁷¹, Zhen-Hua Zhang⁷², Zhong Zhang^{57,70}, Mingrui Zhao⁴¹, Qiang
Zhao^{8,9}, Xu-Chang Zheng⁶³, Yangheng Zheng⁹, Chen Zhou⁴⁶, Daicui Zhou⁴²,
Pengxuan Zhu²⁴, Yongfeng Zhu⁴⁶, Xuai Zhuang^{8,9}, Xunwu Zuo^{20†}, Jure Zupan⁷³

_			30	
C	ai	n only mention	35	
6	4	by personal bias)	38	
C	u	by personal blas	38	
			40	
	7.3	Opportunities with Hadronic τ Decays	42	
8	Flav	vor Physics in Z Boson Decays	44	
	8.1	LFV and LFU	44	
	8.2	Factorization Theorem and Hadron Inner Structure	47	
9	Flav	vor Physics beyond Z Pole	48	
	9.1	Flavor Physics and W Boson Decays	49	
	9.2	Flavor-Violating Higgs Boson Decays	51	
	9.3	FCNC Top Quark Physics	53	
10	Spe	ctroscopy and Exotics	55	
11	Ligl	ht BSM States from Heavy Flavors	59	
	11.1	Lepton Sector	60	
	11.2	Quark Sector	61	
12 Detector Performance Requirements				
			_	

¹School of Physics, Zhengzhou University, Zhengzhou 450001, China

²Department of Physics and Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, 95064, USA

³Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing 210023, China

⁴University of Science and Technology of China, Hefei 230026, China

⁵School of Physics, Nankai University, Tianjin 300071, China

^{*}Corresponding author.

[†]Primary contributor.

CEPC as a Tera Z factory

Nominal operation scheme (50 MW) as in the CEPC Accelerator TDR:

Operation mode	Z factory	WW threshold	Higgs factory	$t ar{t}$
$\sqrt{s} \; (\mathrm{GeV})$	91.2	160	240	360
Run time (year)	2	1	10	5
Instantaneous luminosity $(10^{34} \text{cm}^{-2} \text{s}^{-1}, \text{ per IP})$	191.7	26.7	8.3	0.83
Integrated luminosity $(ab^{-1}, 2 \text{ IPs})$	100	6.9	21.6	1
Event yields	$\boxed{4.1\times10^{12}}$	2.1×10^8	4.3×10^6	0.6×10^6

The Z-peak run is expected to deliver a few $\times 10^{12}$ visible Z decays

Tera Z as a Flavour Factory

$$BR(Z \to b\bar{b}) \approx 15\%$$
, $BR(Z \to c\bar{c}) \approx 12\%$, $BR(Z \to \tau^+\tau^-) \approx 3\%$

Plenty of flavour physics opportunities from $Z \rightarrow bb$, $Z \rightarrow cc$, $Z \rightarrow \tau\tau$

Particle	BESIII	Belle II (50 ab ⁻¹ on $\Upsilon(4S)$)	LHCb (300 fb^{-1})	CEPC $(4 \times \text{Tera-}Z)$
B^0, \bar{B}^0	-	5.4×10^{10}	3×10^{13}	4.8×10^{11}
B^\pm	-	5.7×10^{10}	3×10^{13}	4.8×10^{11}
$B_s^0,ar{B}_s^0$	-	$6.0 \times 10^8 \ (5 \ {\rm ab^{-1}} \ {\rm on} \ \Upsilon(5S))$	1×10^{13}	1.2×10^{11}
B_c^{\pm}	-	-	1×10^{11}	7.2×10^{8}
$\Lambda_b^0,ar{\Lambda}_b^0$	-	_	2×10^{13}	1×10^{11}
$D^0,ar{D}^0$	1.2×10^8	4.8×10^{10}	1.4×10^{15}	8.3×10^{11}
D^{\pm}	1.2×10^8	4.8×10^{10}	6×10^{14}	4.9×10^{11}
D_s^{\pm}	1×10^7	1.6×10^{10}	2×10^{14}	1.8×10^{11}
Λ_c^\pm	0.3×10^7	1.6×10^{10}	2×10^{14}	6.2×10^{10}
$ au^+ au^-$	3.6×10^8	4.5×10^{10}		1.2×10^{11}

Tera Z as a Flavour Factory

Advantages of a high-energy e^+e^- collider as flavour factory:

Luminosity

 $\mathcal{L}=100/ab$, O(10¹²) Z decays \Rightarrow O(10¹¹) bb, cc, and $\tau\tau$ pairs

Energy

besides producing states unaccessible, *e.g.*, at Belle II $M_Z \gg 2m_b$, $2m_\tau$, $2m_c \Rightarrow$ surplus energy, boosted decay products (better tracking and tagging, lower vertex uncertainty etc.)

Cleanliness

as for any leptonic machine, full knowledge of the initial state (e.g. Z mass constraint on invariant masses more powerful) ⇒ it enables searches involving neutral/invisible particles

What flavour physics can we study at a Tera Z?

flavour-violating Z decays

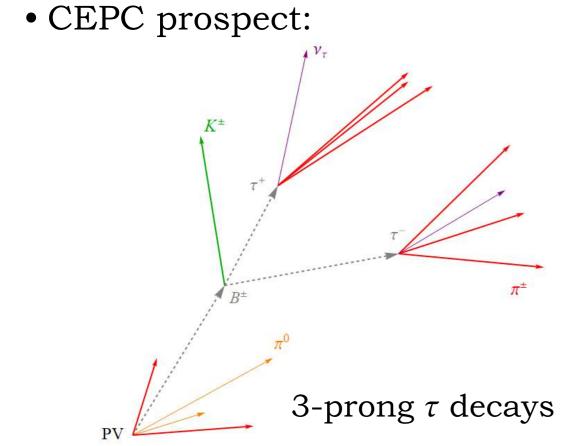
precise measurements [CKM UT angles, CPV...]

forbidden processes
[lepton flavour (universality)
violation, lepton/baryon
number violation...]

rare decays [(semi-)leptonic B decays...]

charm physics

exotic hadrons spectroscopy

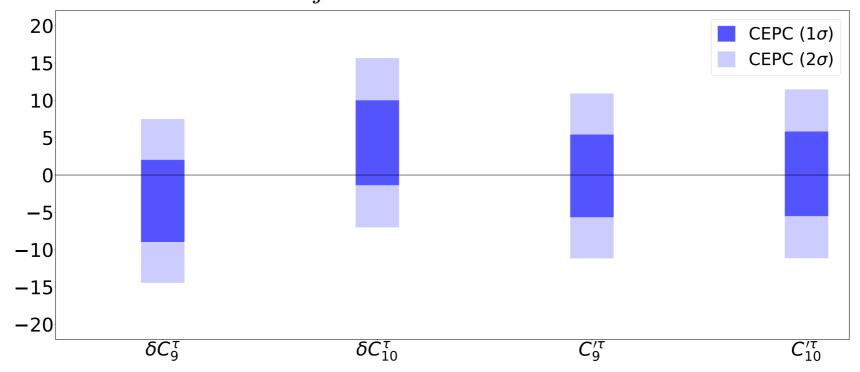

tau physics


... in one word (almost) everything

$$b \to s \tau \tau$$

$${\sf BR}(B_s o au au)_{\sf SM} = (7.7 \pm 0.5) imes 10^{-7}$$
 (Bobeth et al. 1311.0903) ${\sf BR}(B o K au au)_{\sf SM} = (1.2 \pm 0.1) imes 10^{-7}$ (Du et al. 1510.02349)

- Unobserved, weakly constrained (~10⁻⁴-10⁻³ by Belle, Belle II can provide an O(10) increased sensitivity)
- They can have huge new-physics enhancement (especially in theories preferably coupling to third generation fermions)

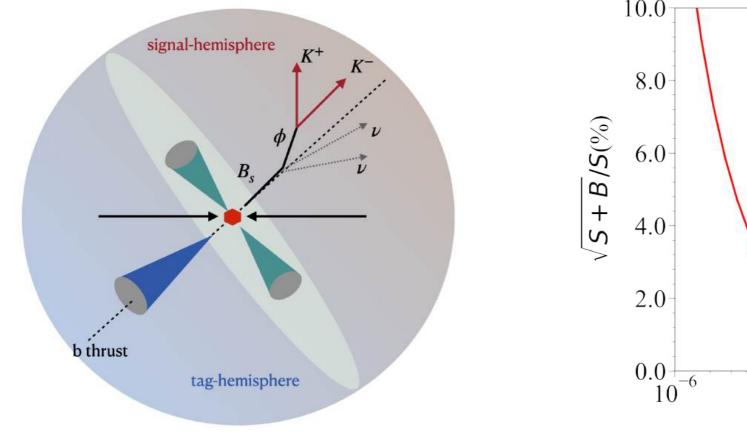

updated from Li Lingfeng and Liu Tao '20

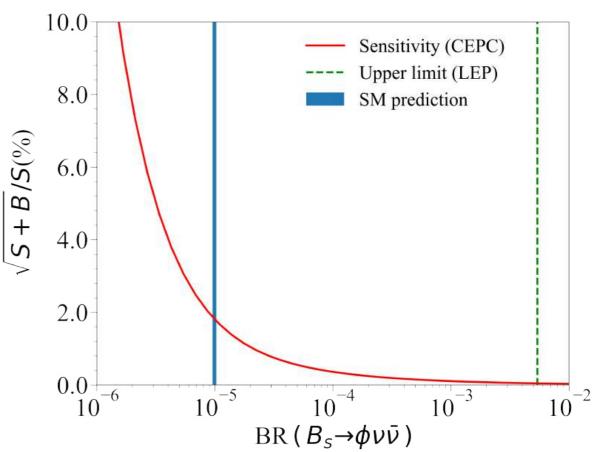
$${\sf BR}(B_{s} \to \tau \tau)_{\sf SM} = (7.7 \pm 0.5) \times 10^{-7}$$
 (Bobeth et al. 1311.0903)

$${\sf BR}(B \to K au au)_{\sf SM} = (1.2 \pm 0.1) imes 10^{-7}$$
 (Du et al. 1510.02349)

CEPC bounds on new physics contributions:

$$\mathcal{H}_{b\to s}^{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{\alpha}{4\pi} \sum_{j} (C_j O_j + C_j' O_j') + (C_L O_L + C_R O_R) + \text{h.c.},$$


→ sensitivity to new physics scales up to ~ 10 TeV

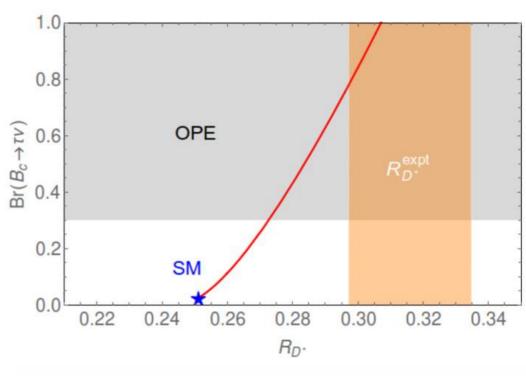

 $B^0 \to K^{*0} \tau^+ \tau^ B_s^0 \to \phi \tau^+ \tau^ B^+ \to K^+ \tau^+ \tau^ B_s^0 \to \tau^+ \tau^-$

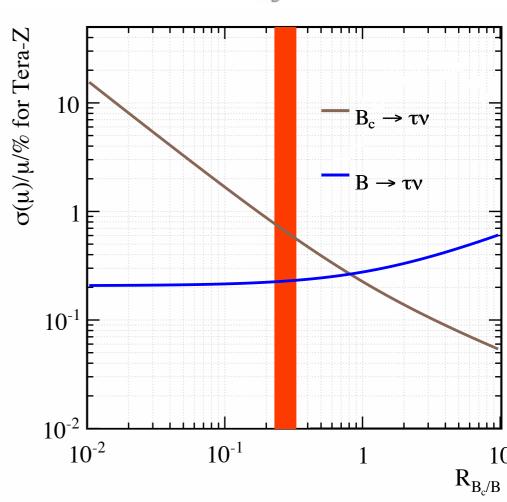
updated from Li Lingfeng and Liu Tao '20

	Current Limit	Detector	SM Prediction
$\overline{{ m BR}(B^0 o K^0 u ar{ u})}$	$< 2.6 \times 10^{-5} [3]$	BELLE	$(3.69 \pm 0.44) \times 10^{-6}$ [1]
$\mathrm{BR}(B^0 o K^{*0} u \bar{ u})$	$< 1.8 \times 10^{-5} [3]$	${f BELLE}$	$(9.19 \pm 0.99) \times 10^{-6} [1]$
${\rm BR}(B^{\pm} \to K^{\pm} \nu \bar{\nu})$	$(2.7 \pm 0.7) \times 10^{-5}$	Belle II '23	$(3.98 \pm 0.47) \times 10^{-6}$ [1]
$\mathrm{BR}(B^{\pm} \to K^{*\pm} \nu \bar{\nu})$	$< 4.0 \times 10^{-5}$ [5]	BELLE	$(9.83 \pm 1.06) \times 10^{-6}$ [1]
$BR(B_s \to \phi \nu \bar{\nu})$	$< 5.4 \times 10^{-3} \ [6]$	DELPHI	$(9.93 \pm 0.72) \times 10^{-6}$

- Also these modes can be greatly enhanced by new physics e.g. LC Crivellin Ota '15
- A Tera Z can measure $B_s \to \phi \nu \nu$ with a percent level precision: Li et al. '22

• Similar precision is expected for the other $b \to s\nu\nu$ modes Ahmis et al. (FCC-ee) '23

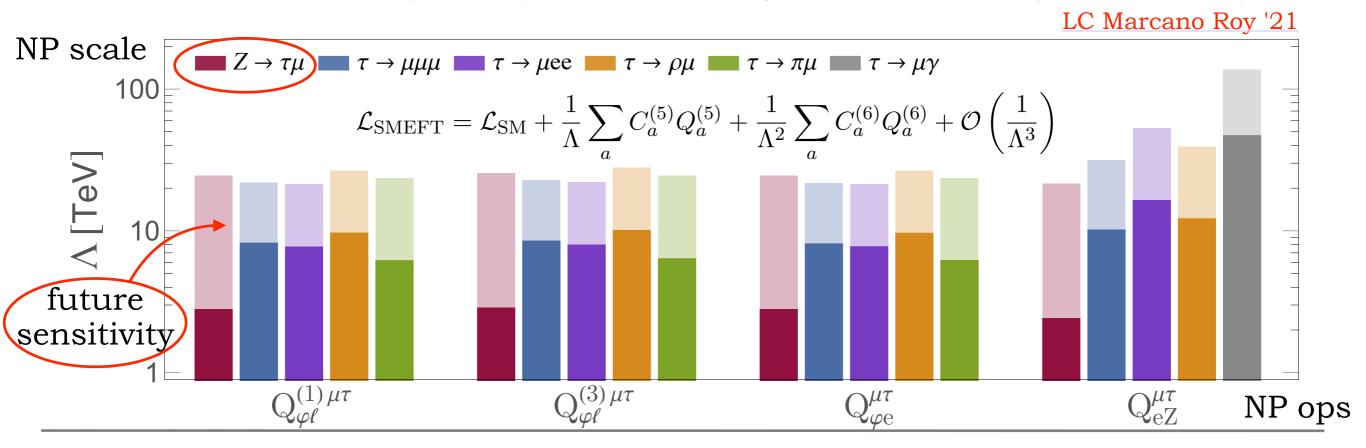

$$B_c \to \tau \nu$$


- Key observable to test possible LFU anomalies in charged-current B decays

 Alonso et al. '16
- SM prediction for the BR ~ 2%, beyond the reach of LHCb
- Tera Z could measure it with percent accuracy (hence providing a percent level measurement of V_{cb})

Zheng et al. '20

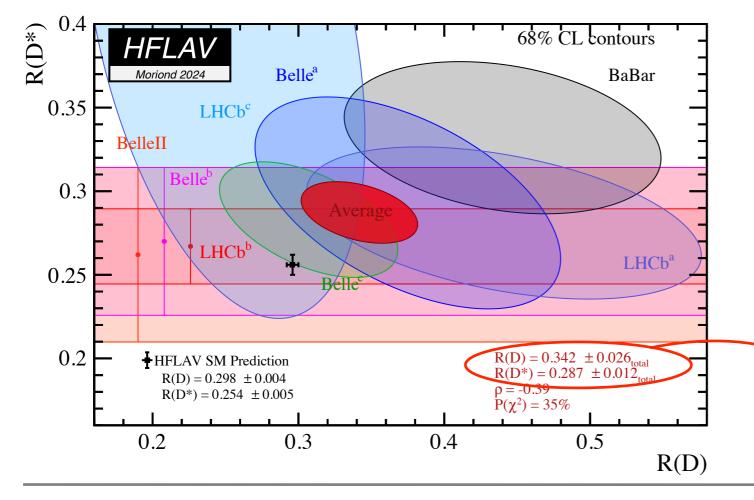
Paradigmatic example: too heavy for Belle II, too "elusive" for LHCb!

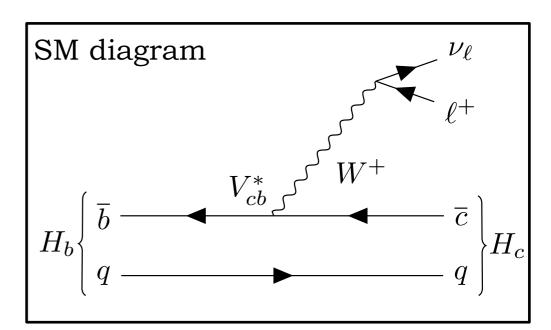


Lepton Flavour Violation in Z decays

Measurement	Current	HL-LHC	FCC	CEPC prelim.	M. Dam '18
$BR(Z \to \tau \mu)$	$< 6.5 \times 10^{-6}$	1.4×10^{-6}	10^{-9}	10^{-9}	
$\mathrm{BR}(Z \to \tau e)$	$<5.0\times10^{-6}$	1.1×10^{-6}	10^{-9}		
$BR(Z \to \mu e)$	$< 2.62 \times 10^{-7}$	5.7×10^{-8}	$10^{-8} - 10^{-10}$	10^{-9}	

- LHC searches limited by backgrounds (in particular $Z \rightarrow \tau\tau$): max ~10 improvement can be expected at HL-LHC (3000/fb)
- A Tera Z can test LFV new physics searching for $Z \to \tau \ell$ at the level of what Belle II (50/ab) will do through LFV tau decays (or better)


LFU tests in B decays


Gauge interactions are flavour blind: the SM predicts Lepton Flavour Universality (LFU) EW interactions

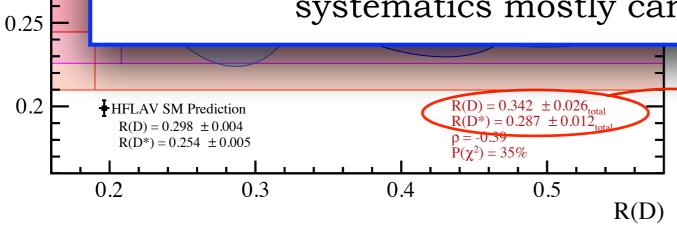
any deviation from LFU would be a clear indication of NP

Example: LFU tests in semileptonic (charged-current) B decays

$$R_{D^{(*)}} \equiv \frac{\text{BR}(B \to D^{(*)} \tau \nu)}{\text{BR}(B \to D^{(*)} \ell \nu)}, \ \ell = e, \ \mu$$

Current precision: ~5-10% World average still somewhat in tension with the SM prediction

LFU tests in B decays


Gauge interactions are flavour blind: the SM predicts Lepton Flavour Universality (LFU) EW interactions

any deviation from LFU would be a clear indication of NP

CEPC could achieve a precision below 1% on the LFU tests in $b \rightarrow c\tau \nu$ decays:

R_{H_c}	SM Value	Tera - Z	$4 \times \text{Tera-}Z$	$10 \times \text{Tera-}Z$
$R_{J/\psi}$	0.289	4.3×10^{-2}	2.1×10^{-2}	1.4×10^{-2}
R_{D_s}	0.393	4.1×10^{-3}	2.1×10^{-3}	1.3×10^{-3}
$R_{D_s^*}$	0.303	3.3×10^{-3}	1.6×10^{-3}	1.0×10^{-3}
R_{Λ_c}	0.334	9.8×10^{-4}	4.9×10^{-4}	3.1×10^{-4}

(estimates based on statistics only, but systematics mostly cancel in the ratios)

Current precision: ~5-10% World average still somewhat in tension with the SM prediction

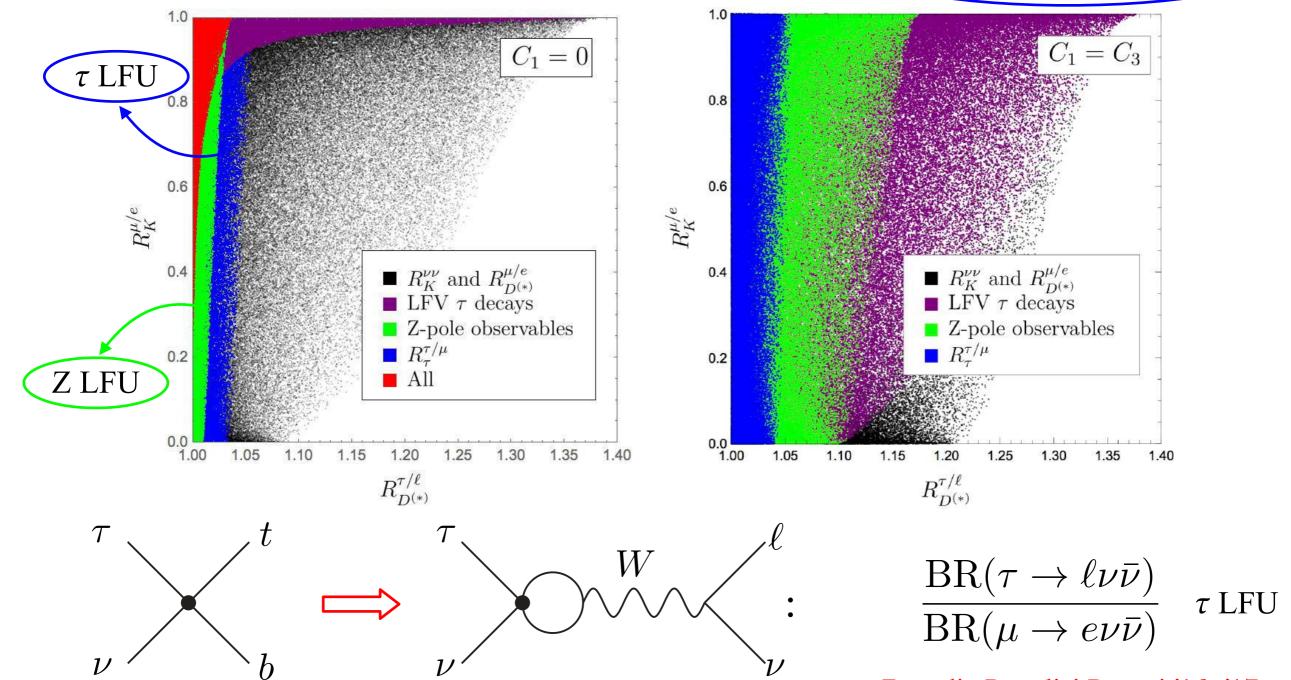
Ex

0.35

0.3

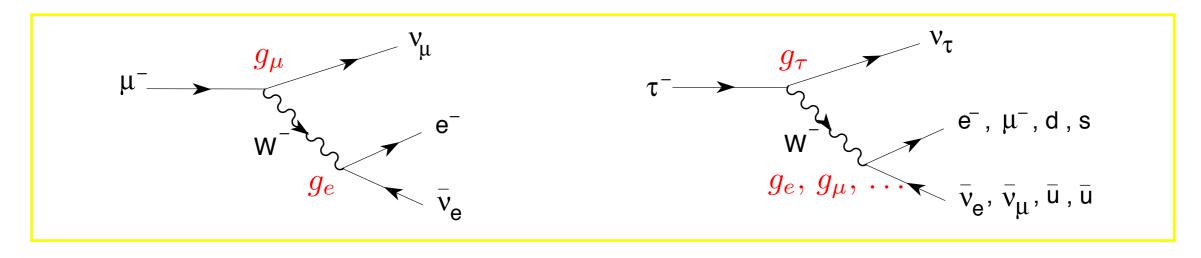
 ν_{ℓ}

 ℓ^+


 \overline{c}

Constraints on B LFU from tau LFU

New physics inducing operators involving mainly 3rd family fermions


Ops with only 3rd family:

$$Q_{\ell q}^{(1)} = (\bar{L}_3 \gamma^{\mu} L_3)(\bar{Q}_3 \gamma_{\mu} Q_3) , \quad Q_{\ell q}^{(3)} = (\bar{L}_3 \gamma^{\mu} \tau_I L_3)(\bar{Q}_3 \gamma_{\mu} \tau^I Q_3)$$

Feruglio Paradisi Pattori '16, '17

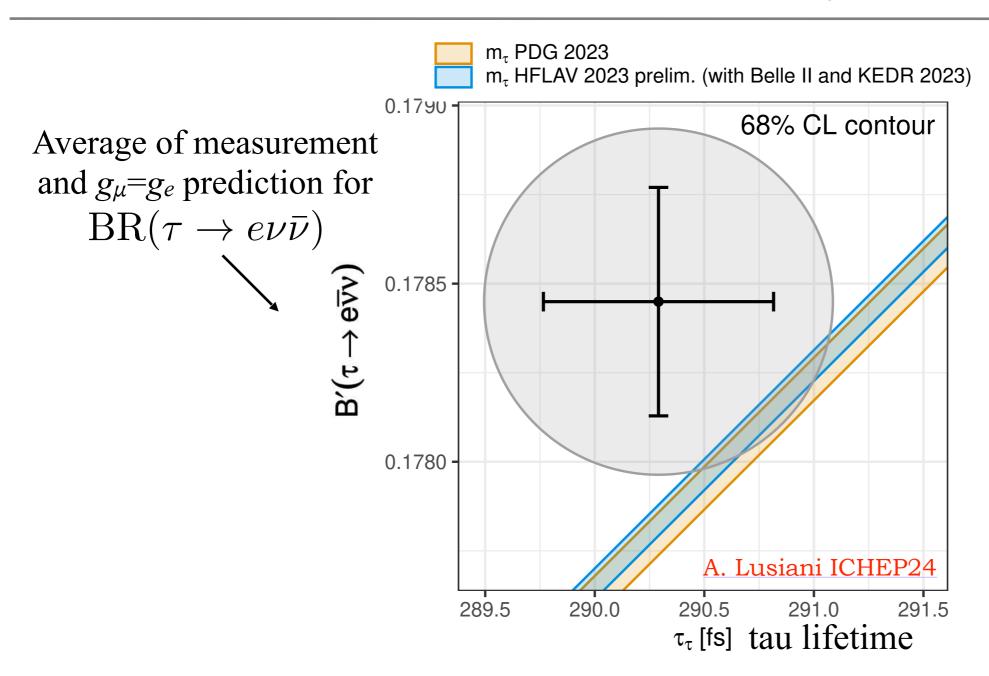
LFU tests in tau decays

$$\left(\frac{g_{\mu}}{g_{e}}\right)^{2} = \frac{\mathrm{BR}(\tau \to \mu \nu \bar{\nu})}{\mathrm{BR}(\tau \to e \nu \bar{\nu})} \frac{f(m_{e}^{2}/m_{\tau}^{2})}{f(m_{\mu}^{2}/m_{\tau}^{2})} \frac{R_{W}^{\tau e}}{R_{W}^{\tau \mu}}, \qquad \text{radiative corrections}$$

$$\left(\frac{g_{\tau}}{g_{\ell}}\right)^{2} = \frac{\tau_{\mu}}{\tau_{\tau}} \left(\frac{m_{\mu}}{m_{\tau}}\right)^{5} \frac{\mathrm{BR}(\tau \to \ell \nu \bar{\nu})}{\mathrm{BR}(\mu \to e \nu \bar{\nu})} \frac{f(m_{e}^{2}/m_{\mu}^{2})}{f(m_{\ell}^{2}/m_{\tau}^{2})} \frac{R_{W}^{\mu e} R_{\gamma}^{\mu}}{R_{W}^{\tau \ell} R_{\gamma}^{\tau}}, \qquad (\ell = e, \mu)$$

Currently LFU tested with per mil level precision:

$$\frac{g_{\mu}}{g_e} = 1.0002 \pm 0.0011 \,, \quad \frac{g_{\tau}}{g_e} = 1.0018 \pm 0.0014 \,, \quad \frac{g_{\tau}}{g_{\mu}} = 1.0016 \pm 0.0014 \,$$


[error budget: 1.1‰ from BRs, 0.9‰ from τ_{τ} , 0.2‰ from m_{τ}]

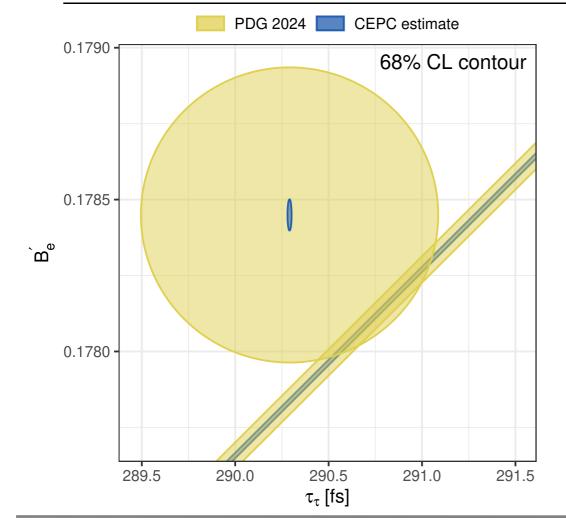
LEP & Belle II

Belle

BESIII & Belle II

LFU tests in tau decays

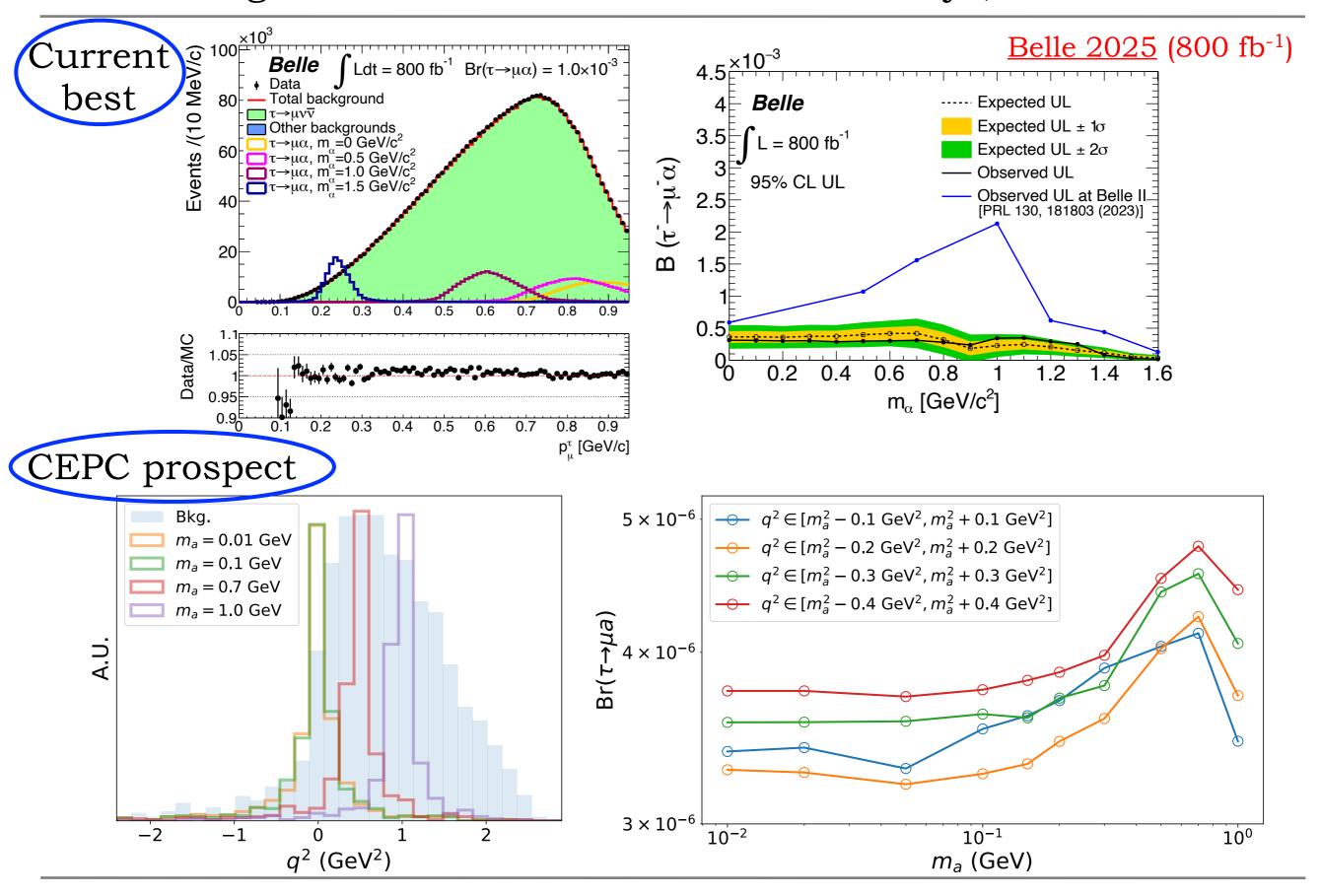
Test of new physics! Example, 3rd generation lepton-Higgs operator:

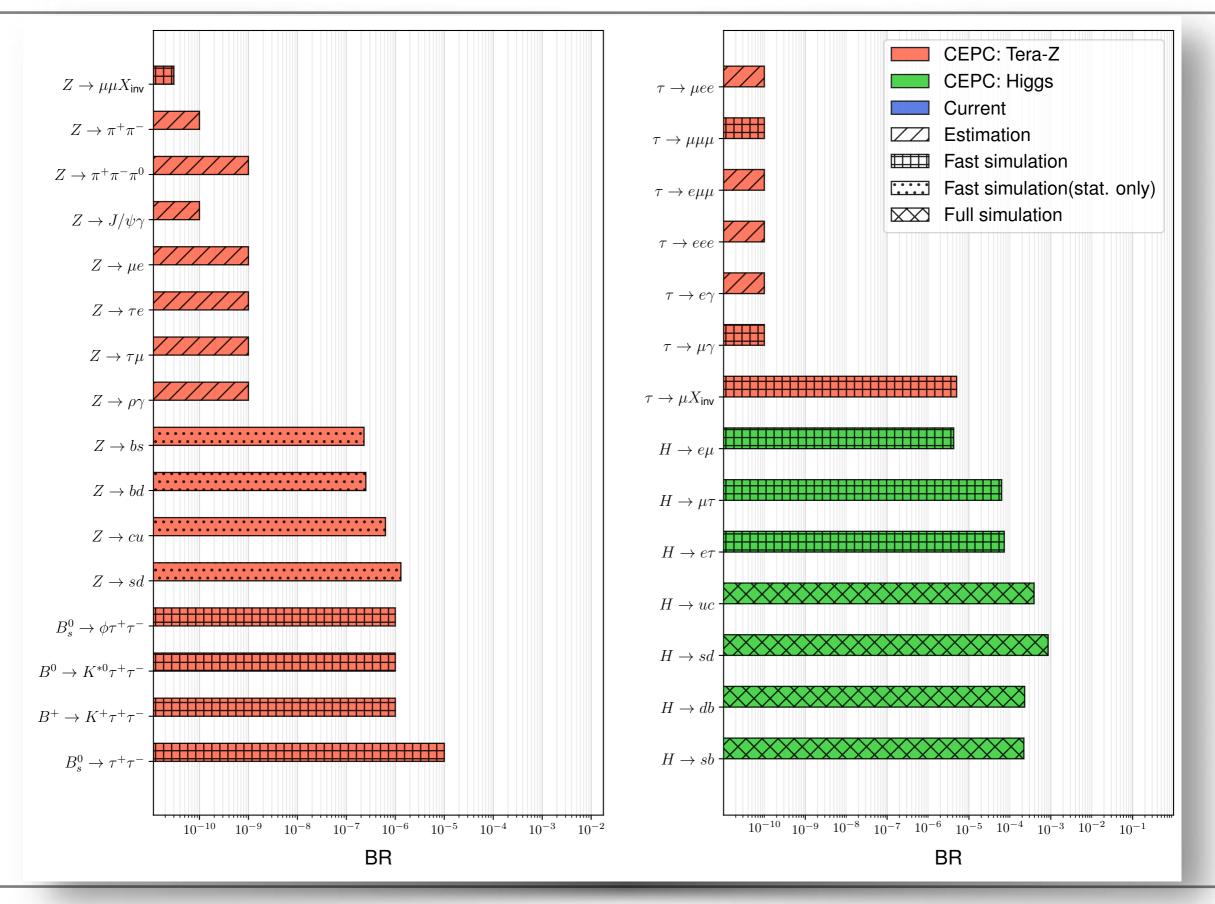

$$\frac{1}{\Lambda^2} i (\Phi^{\dagger} \tau^I \stackrel{\leftrightarrow}{D_{\mu}} \Phi) (\bar{L}_3 \tau^I \gamma^{\mu} L_3) \quad \Rightarrow \quad g_e = g_{\mu} = g, \quad g_{\tau} = g \left(1 + \frac{v^2}{\Lambda^2} \right)$$

Current LFU limits set a bound on the NP scale of $\Lambda > 8$ TeV

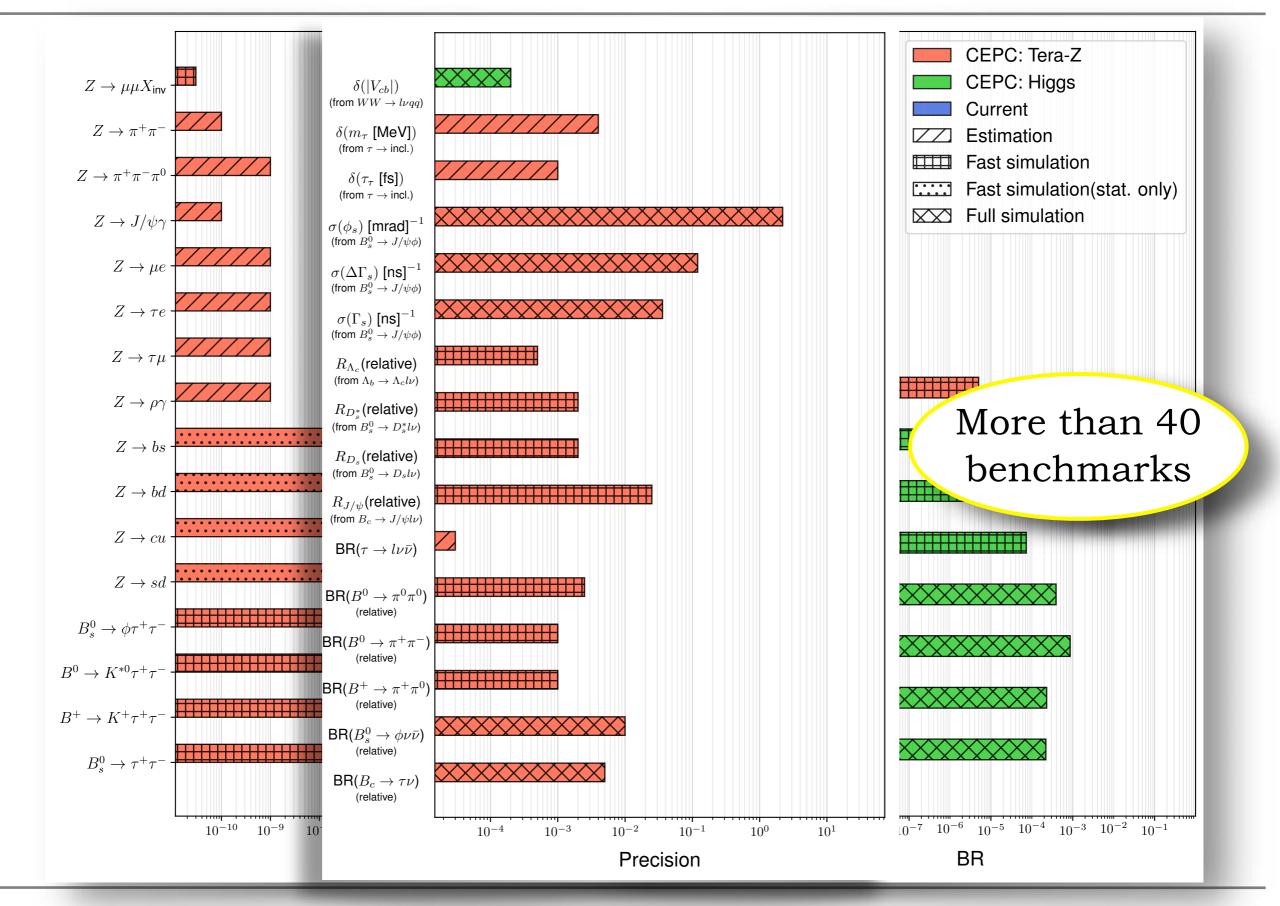
LFU tests in tau decays

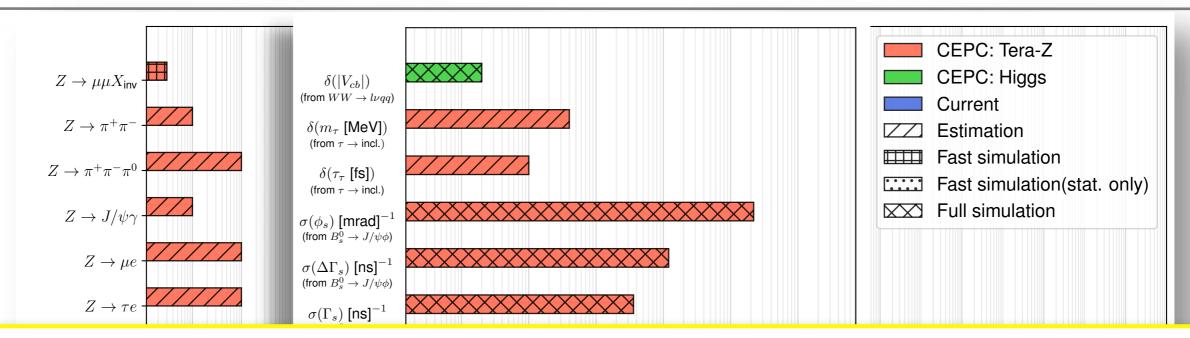
Preliminary studies show that a 10-fold improvement of the systematics is possible:


Measurement	Current	Belle II	FCC	CEPC prelim.
Lifetime [sec]	$(2903 \pm 5) \times 10^{-16}$		$\pm 6 \times 10^{-18}$	$\pm 7 \times 10^{-18}$
$BR(\tau \to e \nu \bar{\nu})$	$(17.82 \pm 0.04)\%$		$\pm~0.003\%$	$\pm~0.003\%$
$BR(\tau \to \mu \nu \bar{\nu})$	$(17.39 \pm 0.04)\%$		$\pm~0.003\%$	$\pm~0.003\%$
$m_{ au} \; [{ m MeV}]$	1776.93 ± 0.09		\pm 0.0016 (stat.)	
$m_{ au}$ [wie v]	1110.99 ± 0.09		\pm 0.018 (syst.)	

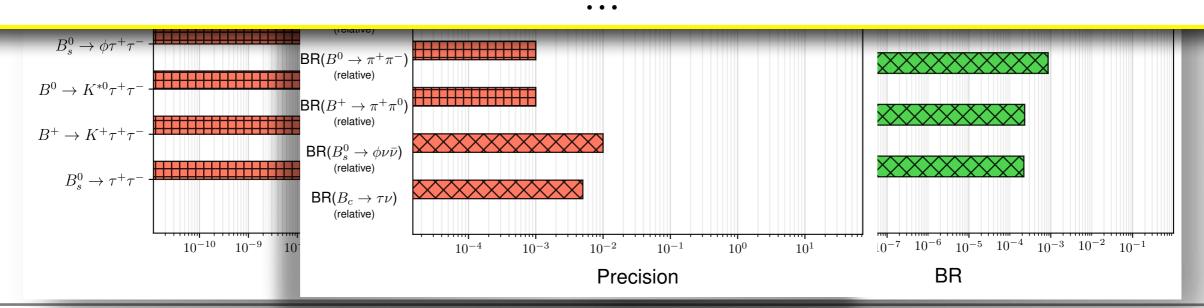

Tera-Z factories could test tau LFU at the 0.1% level

This translates to a sensitivity to LFU new-physics operators up to scales ~20 TeV


Light invisible NP boson in LFV tau decays, $\tau \to \ell X$


Summary: benchmark searches and measurements

Summary: benchmark searches and measurements



Summary: benchmark searches and measurements

In the white paper there is much more than what I could mention:

- opportunities beyond Z pole (top/Higgs FCNCs, CKM entries measurements from W decays etc.)
- detector performance requirements for such an ambitious program

Final remarks

Plenty of mystery (hence of opportunities to learn something) in the flavour sector of the Standard Model

Through flavour observables, one can probe some of the highest energy scales accessible in laboratory experiments

The Z-pole run of the CEPC would offer plenty of flavour physics opportunities, summarised in our white paper

O(10¹²) Z decays would enable us to study many processes with a much higher precision than (or inaccessible to) other experiments

Examples of unique opportunities at Tera Z: rare B decays, Z LFV decays, tests of LFU in tau decays or B_c decays etc.

Outlook

It is not over: there is much more to study! The "wish list" is long, here some examples:

- CKM: summarize the prospects for CKM measurements (especially the new methodology of determine it directly from W and top decay)
- CPV: explore conventional CPV observation channels (including baryons like Λ_b), and discuss new methods
- Possible to probe matter origin? Any sensitivity to *e.g.* leptogenesis (heavy sterile neutrinos?) and relevant physics processes (EWPT, QCD phase transition, etc.)
- Interplay between Flavour & QCD: (i) hadronization, (ii) form factors, (iii) QCD effects & B-anomalies ...
- Dedicated studies on charm (D, Λ_c) and strange hadrons
- Light new physics particles (X) in hadrons decays? $D \to \pi X$, $B \to KX$ etc.

. . .

Everyone is welcome to join these efforts and share their insight!

Additional slides

Z LFV prospects

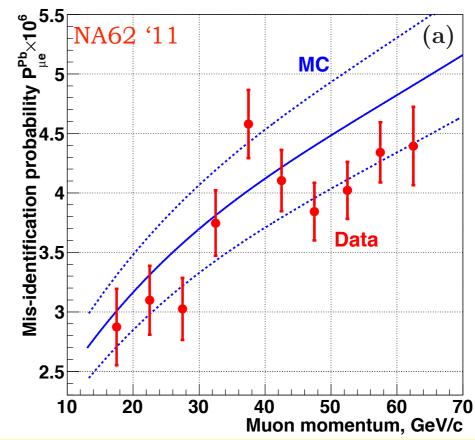
A study in the context of the FCC-ee (5×10^{12} Zs):

• $Z \rightarrow \mu e$:

M. Dam @ Tau '18 & 1811.09408

In contrast to the LHC, no background from $Z \rightarrow \tau\tau$:

Z mass constraint much more effective (collision energy is known)

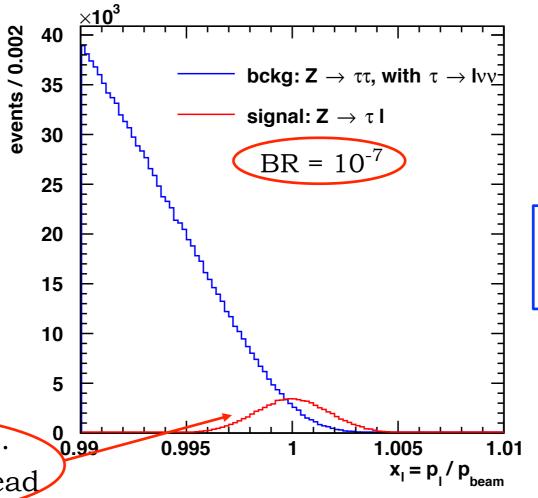

 \rightarrow background rate < 10⁻¹¹ (with a 0.1% momentum resolution at ~45 GeV)

Main issue: muons can release enough brems. energy in the ECAL to be misid as electrons. Mis-id probability measured by NA62 for a LKr ECAL: 4×10^{-6} (for $p_{\mu}\sim45$ GeV)

Bg. from $Z \rightarrow \mu\mu$ + mis-id μ (3×10⁻⁷ of all Z decays)

Sensitivity limited to: ${\rm BR}(Z\to \mu e)\sim 10^{-8}$ (Improved e/ μ separation? Down to $10^{\text{-}10}$)

Z LFV prospects


A study in the context of the FCC-ee (5×10^{12} Zs):

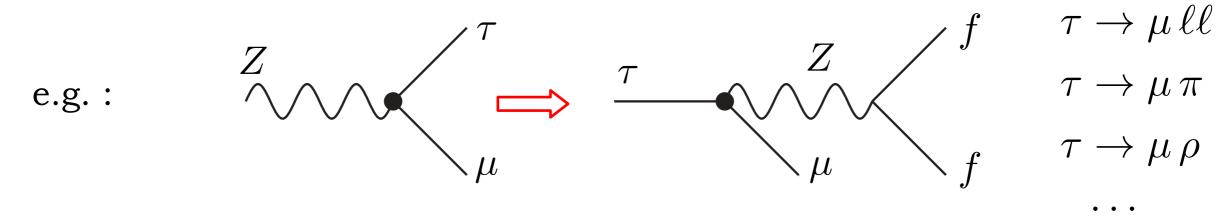
• $Z \rightarrow \ell \tau$:

M. Dam @ Tau '18 & 1811.09408

To avoid mis-id, select one hadronic τ (≥ 3 prong, or reconstructed excl. mode) Main background from $Z \to \tau\tau$ (with one leptonic τ decay)

Simulated signal & background:

Sensitivity:


 $BR(Z \to \ell \tau) \sim 10^{-9}$

 $\sim 10^{-3}$ momentum res. $\approx \sim 10^{-3}$ collision *E* spread

CEPC Flavour Physics

Z LFV prospects

- CEPC can improve on present LHC (future HL-LHC) bounds up to 4 (3) orders of magnitude, at least for the $Z \rightarrow \tau \ell$ modes
- The question is: can CEPC searches find new physics with these modes?
- It depends on the indirect constraints from other processes
- In particular low-energy LFV processes are unavoidably induced

Previous model-independent studies:

Nussinov Peccei Zhang '00; Delepine Vissani '01; Gutsche et al. '11; Crivellin Najjari Rosiek '13; ...

LFV in the SM effective field theory

If NP scale
$$\Lambda \gg m_{\rm W}$$
: $\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{\Lambda} \sum_a C_a^{(5)} Q_a^{(5)} + \frac{1}{\Lambda^2} \sum_a C_a^{(6)} Q_a^{(6)} + \dots$

Dimension-6 effective operators that can induce CLFV

	4-leptons operators		Dipole operators
$\overline{Q_{\ell\ell}}$	$(\bar{L}_L\gamma_\mu L_L)(\bar{L}_L\gamma^\mu L_L)$	Q_{eW}	$(\bar{L}_L \sigma^{\mu\nu} e_R) \tau_I \Phi W^I_{\mu\nu} (\bar{L}_L \sigma^{\mu\nu} e_R) \Phi B_{\mu\nu}$
Q_{ee}	$(\bar{e}_R\gamma_\mu e_R)(\bar{e}_R\gamma^\mu e_R)$	Q_{eB}	$(\bar{L}_L \sigma^{\mu\nu} e_R) \Phi B_{\mu\nu}$
$Q_{\ell e}$	$(\bar{L}_L\gamma_\mu L_L)(\bar{e}_R\gamma^\mu e_R)$		
	2-lepton 2-qu	ark operators	
$\overline{Q_{\ell q}^{(1)}}$	$(\bar{L}_L \gamma_\mu L_L)(\bar{Q}_L \gamma^\mu Q_L)$	$Q_{\ell u}$	$(\bar{L}_L\gamma_\mu L_L)(\bar{u}_R\gamma^\mu u_R)$
$Q_{\ell q}^{(3)}$	$(ar{L}_L\gamma_\mu au_IL_L)(ar{Q}_L\gamma^\mu au_IQ_L)$	Q_{eu}	$(\bar{e}_R\gamma_\mu e_R)(\bar{u}_R\gamma^\mu u_R)$
Q_{eq}	$(\bar{e}_R\gamma^\mu e_R)(\bar{Q}_L\gamma_\mu Q_L)$	$Q_{\ell edq}$	$(ar{L}_L^a e_R)(ar{d}_R Q_L^a)$
$Q_{\ell d}$	$(\bar{L}_L\gamma_\mu L_L)(\bar{d}_R\gamma^\mu d_R)$	$Q_{\ell equ}^{(1)}$	$(ar{L}_L^a e_R)\epsilon_{ab}(ar{Q}_L^b u_R)$
Q_{ed}	$(\bar{e}_R\gamma_\mu e_R)(\bar{d}_R\gamma^\mu d_R)$	$Q_{\ell equ}^{(3)}$	$(\bar{L}_i^a \sigma_{\mu\nu} e_R) \epsilon_{ab} (\bar{Q}_L^b \sigma^{\mu\nu} u_R)$
	Lepton-Hig	gs operators	
$\overline{Q_{\Phi\ell}^{(1)}}$	$(\Phi^{\dagger}i\stackrel{\leftrightarrow}{D}_{\mu}\Phi)(\bar{L}_{L}\gamma^{\mu}L_{L}) \ (\Phi^{\dagger}i\stackrel{\leftrightarrow}{D}_{\mu}\Phi)(\bar{e}_{R}\gamma^{\mu}e_{R})$	$Q_{\Phi\ell}^{(3)}$	$(\Phi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu}^{I} \Phi) (\bar{L}_{L} \tau_{I} \gamma^{\mu} L_{L})$
$Q_{\Phi e}$	$(\Phi^\dagger i\stackrel{\leftrightarrow}{D}_\mu \Phi)(ar{e}_R \gamma^\mu e_R)$	$Q_{e\Phi3}$	$(ar{L}_L e_R \Phi) (\Phi^\dagger \Phi)$

Grzadkowski et al. '10; Crivellin Najjari Rosiek '13

Z LFV in the SM EFT

The couplings of Z to leptons are protected by the SM gauge symmetry \rightarrow LFV effects must be proportional to the EW breaking:

$$\mathrm{BR}(Z \to \ell \ell') \sim \mathrm{BR}(Z \to \ell \ell) \times C_{\mathrm{NP}}^2 \left(\frac{v}{\Lambda_{\mathrm{NP}}}\right)^4$$

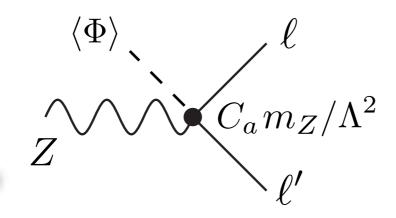
In the SM EFT, only 5 operators contribute at the tree level:

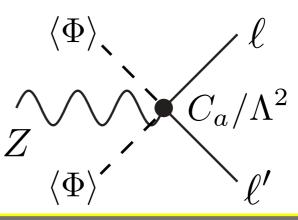
$$Q_{\Phi\ell}^{(1)} = (\Phi^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{\ell}_{L}\gamma^{\mu}\ell'_{L}), \qquad Q_{\Phi\ell}^{(3)} = (\Phi^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}^{I}\Phi)(\bar{\ell}_{L}\tau_{I}\gamma^{\mu}\ell'_{L}), \qquad Q_{\Phi e} = (\Phi^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\Phi)(\bar{\ell}_{R}\gamma^{\mu}\ell'_{R})$$

$$Q_{eW} = (\bar{\ell}_L \sigma^{\mu\nu} \ell_R') \tau_I \Phi W_{\mu\nu}^I, \qquad Q_{eB} = (\bar{\ell}_L \sigma^{\mu\nu} \ell_R') \Phi B_{\mu\nu}$$

$$\operatorname{Br}\left[Z^{0} \to \ell_{f}^{\pm} \ell_{i}^{\mp}\right] = \frac{m_{Z}}{24\pi\Gamma_{Z}} \left[\frac{m_{Z}^{2}}{2} \left(\left|C_{fi}^{ZR}\right|^{2} + \left|C_{fi}^{ZL}\right|^{2}\right) + \left|\Gamma_{fi}^{ZL}\right|^{2} + \left|\Gamma_{fi}^{ZR}\right|^{2}\right]$$

$$\Gamma_{fi}^{ZL} = \frac{e}{2s_W c_W} \left(\frac{v^2}{\Lambda^2} \left(C_{\varphi l}^{(1)fi} + C_{\varphi l}^{(3)fi} \right) + \left(1 - 2s_W^2 \right) \delta_{fi} \right) \quad \Gamma_{fi}^{ZR} = \frac{e}{2s_W c_W} \left(\frac{v^2}{\Lambda^2} C_{\varphi e}^{fi} - 2s_W^2 \delta_{fi} \right)$$


$$C_{fi}^{ZR} = C_{if}^{ZL\star} = -\frac{v}{\sqrt{2}\Lambda^2} = \left(s_W C_{eB}^{fi} + c_W C_{eW}^{fi} \right)$$


Crivellin Najjari Rosiek 1312.0634

Dipole operators:

Higgs-lepton operators:

$$Q_{\Phi\ell}^{(1)} = (\Phi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \Phi)(\bar{\ell}_{L} \gamma^{\mu} \ell_{L}^{\prime}), \qquad Q_{\Phi\ell}^{(3)} = (\Phi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu}^{\prime} \Phi)(\bar{\ell}_{L} \tau_{I} \gamma^{\mu} \ell_{L}^{\prime}), \qquad Q_{\Phi e} = (\Phi^{\dagger} i \stackrel{\leftrightarrow}{D}_{\mu} \Phi)(\bar{\ell}_{R} \gamma^{\mu} \ell_{R}^{\prime})$$

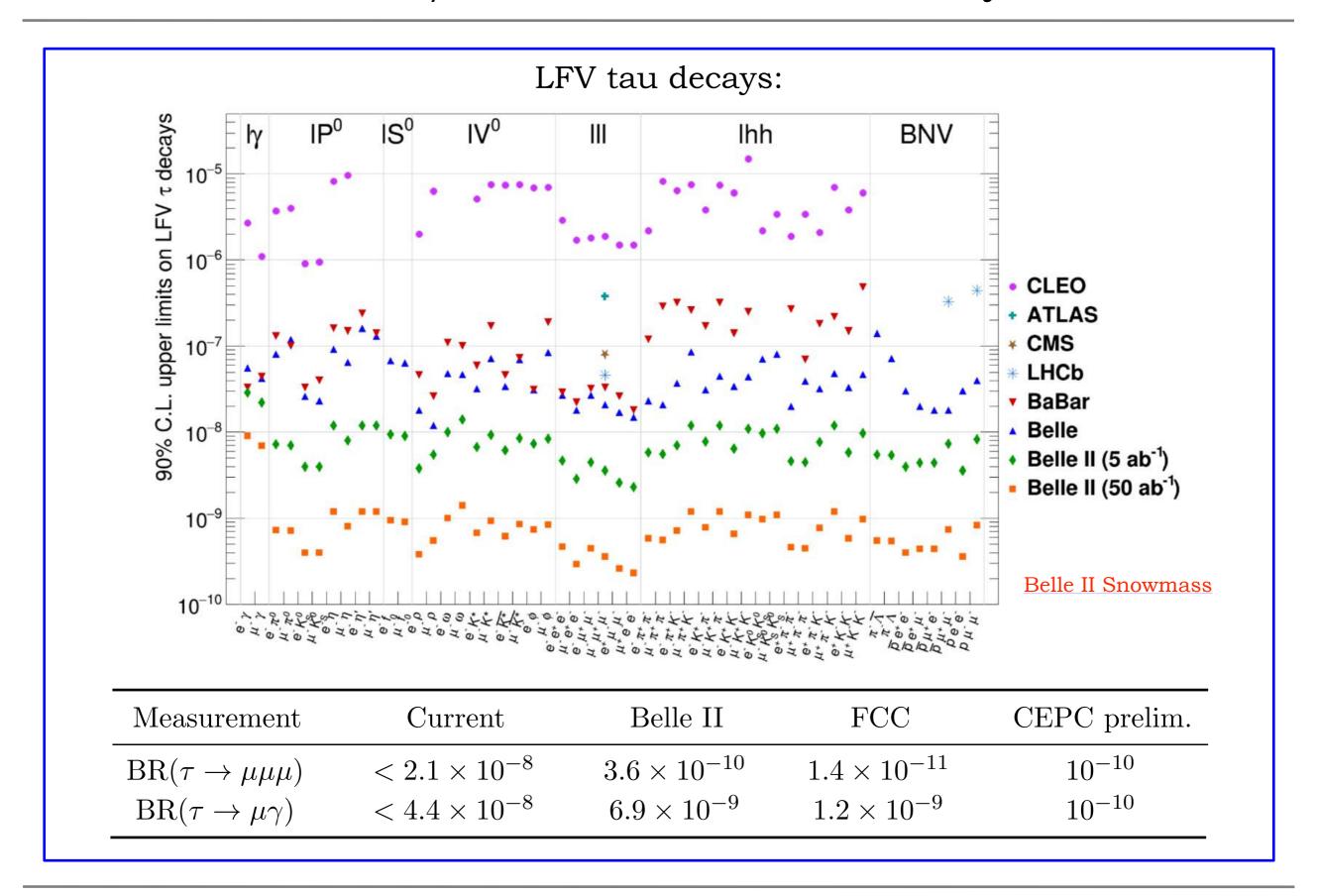
$$Q_{eW} = (\bar{\ell}_L \sigma^{\mu\nu} \ell_R') \tau_I \Phi W_{\mu\nu}^I, \qquad Q_{eB} = (\bar{\ell}_L \sigma^{\mu\nu} \ell_R') \Phi B_{\mu\nu}$$

If a single operator dominates, $Z \to \ell \ell'$ constrain NP scales up to

$$C_a = 1: \quad \Lambda \gtrsim 5 \text{ TeV} \quad (Z \to \mu e), \quad \Lambda \gtrsim 3 \text{ TeV} \quad (Z \to \tau \ell)$$

$$\Gamma_{fi}^{ZL} = \frac{e}{2s_W c_W} \left(\frac{v^2}{\Lambda^2} \left(C_{\varphi l}^{(1)fi} + C_{\varphi l}^{(3)fi} \right) + \left(1 - 2s_W^2 \right) \delta_{fi} \right) \quad \Gamma_{fi}^{ZR} = \frac{e}{2s_W c_W} \left(\frac{v^2}{\Lambda^2} C_{\varphi e}^{fi} - 2s_W^2 \delta_{fi} \right)$$

$$C_{fi}^{ZR} = C_{if}^{ZL\star} = -\frac{v}{\sqrt{2}\Lambda^2} = \left(s_W C_{eB}^{fi} + c_W C_{eW}^{fi} \right)$$


Crivellin Najjari Rosiek 1312.0634

Model-independent indirect limits on Z LFV decays

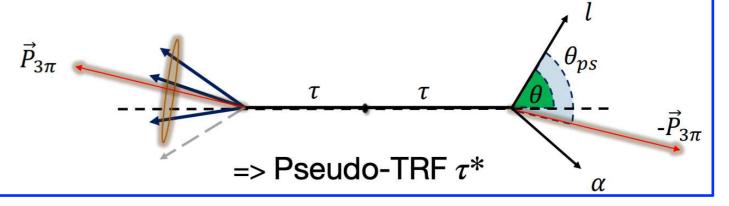
Observable	Operator	Indirect Limit on LFVZD	Strongest constraint
lepton-Higgs ops $\overline{ \text{BR}(Z \to \mu e)}$ dipole ops	$\int \left(Q_{\varphi\ell}^{(1)} + Q_{\varphi\ell}^{(3)}\right)^{e\mu}$	3.7×10^{-13}	$\mu \to e$, Au
$(RR(Z \rightarrow ue))$	$Q_{arphi e}^{e\mu}$	9.4×10^{-15}	$\mu \to e$, Au
dipole one	$\int Q_{eB}^{e\mu}$	1.4×10^{-23}	$\mu \to e \gamma$
	$Q_{eW}^{e\mu}$	1.6×10^{-22}	$\mu \to e \gamma$
	$\left(Q_{\varphi\ell}^{(1)} + Q_{\varphi\ell}^{(3)}\right)^{e\tau}$	6.3×10^{-8}	au ightarrow ho e
(BR(Z o au e))	$Q^{e au}_{arphi e}$	6.3×10^{-8}	au ightarrow ho e
	$Q_{eB}^{e au}$	1.2×10^{-15}	$ au ightarrow e \gamma$
	$Q_{eW}^{e au}$	1.3×10^{-14}	$ au o e \gamma$
	$\left(Q_{\varphi\ell}^{(1)} + Q_{\varphi\ell}^{(3)}\right)^{\mu\tau}$	4.3×10^{-8}	$ au ightarrow ho \mu$
$(BR(Z o au \mu))$	$Q^{\mu au}_{arphi e}$	4.3×10^{-8}	$ au ightarrow ho \mu$
$DR(Z / P \mu)$	$Q_{eB}^{\mu au}$	1.5×10^{-15}	$ au ightarrow \mu \gamma$
	$Q_{eW}^{\mu au}$	1.7×10^{-14}	$ au o \mu \gamma$

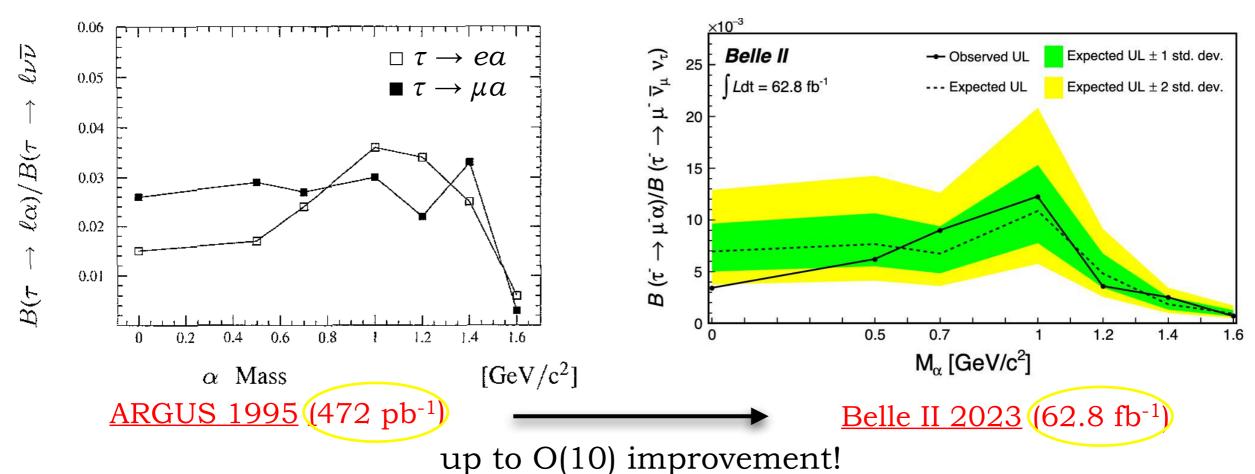
LC Marcano Roy '21

Present/future limits on LFV tau decays

LFU tests in Z decays

Universality presently tested at the per-mil level LEP exps/SLD combination: hep-ex:0509008

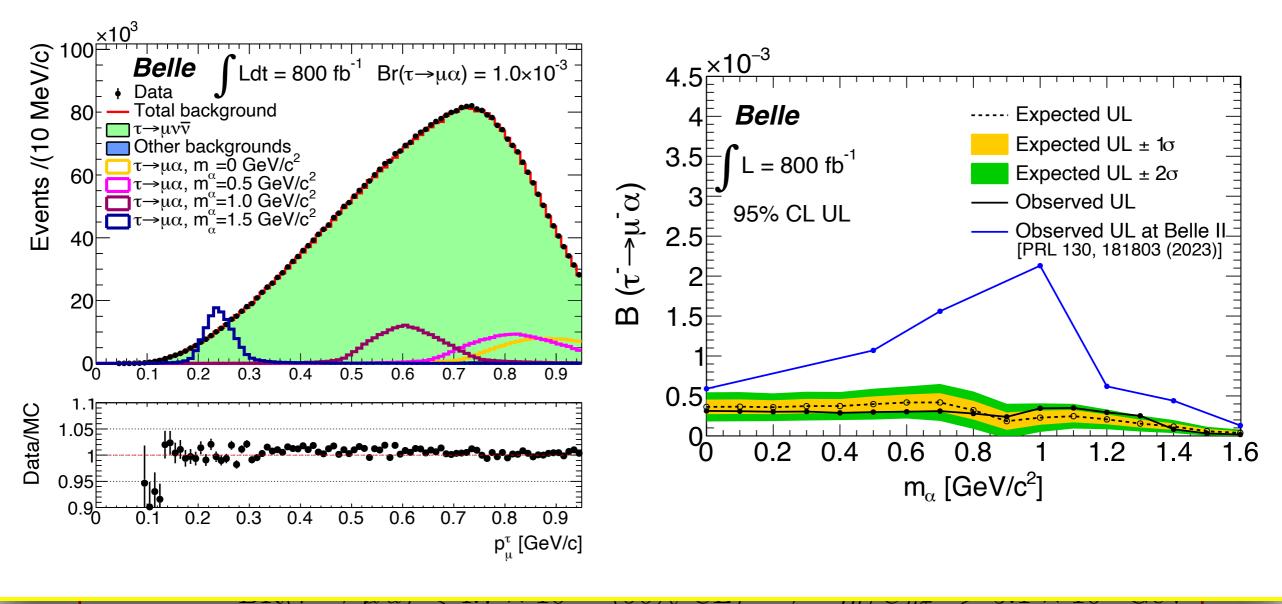

$$\frac{BR(Z \to \mu^+ \mu^-)}{BR(Z \to e^+ e^-)} = 1.0009 \pm 0.0028, \quad \frac{BR(Z \to \tau^+ \tau^-)}{BR(Z \to e^+ e^-)} = 1.0019 \pm 0.0032$$


(1.7×10⁷ Z decays at LEP + 6×10⁵ Z decays with polarised beams at SLC)

- Very important test in view of the LFU anomalies in B decays
- At LEP statistical and systematic uncertainties of the same order
- With 10¹² Z, CEPC has no problem of statistics
- Can systematics be controlled e.g. at the 10⁻⁴ level?
- This would test new physics coupling preferably to tau up to scales of the order of 10-20 TeV

Present limits on $\tau \to e \ a$, $\tau \to \mu \ a$ (invisible a)

A challenging search: tau momentum / rest frame cannot be exactly reconstructed BG: ordinary $au o \ell \nu \bar{\nu}$


$$m_a \approx 0$$
: BR $(\tau \to \mu a) < 4.7 \times 10^{-4} (90\% \text{ CL}) \Rightarrow f_a/C_{\mu\tau}^{V,A} > 5.1 \times 10^6 \text{ GeV}$
BR $(\tau \to e a) < 7.6 \times 10^{-4} (90\% \text{ CL}) \Rightarrow f_a/C_{e\tau}^{V,A} > 4.0 \times 10^6 \text{ GeV}$

Present limits on $\tau \to e \ a$, $\tau \to \mu \ a$ (invisible a)

A challenging search:

 $\left\{ \theta_{n}\right\}$

• NEW! <u>Belle 2025</u> (800 fb⁻¹)

$$m_a \approx 0$$
: BR $(\tau \to e \, a) < 7.6 \times 10^{-4} \, (90\% \, \text{CL}) \Rightarrow f_a / C_{e\tau}^{V,A} > 4.0 \times 10^6 \, \text{GeV}$

Summary of searches for light invisible LFV ALPs

- Decays mediated by dimension-5 operators: much larger NP scales can be reached than with $\mu \to e \gamma$, $\mu \to eee$ etc. (from dim-6 operators)
- Mu/tau/astro interplay: if $m_a > m_u$ constraints mainly come from τ decays

updated from LC Redigolo Ziegler Zupan '20