PID Studies with dN/dx and Timeof-Flight for CEPC

Guang Zhao, Dian Yu, Yue Chang, Houqian Ding, Mingyi Dong, Yunyun Fan, Huirong Qi, Linghui Wu, Jinxian Zhang

The 2025 International Workshop on the CEPC 11/10/2025, Guangzhou

Post-TDR efforts

✓dN/dx reconstruction with deep learning in TPC (arXiv: 2510.10628)

✓Time-of-flight in ITK (arXiv: 2507.18164)

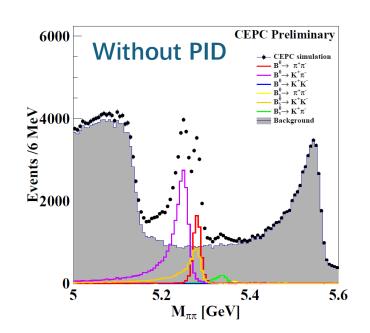
Motivation: Particle identification

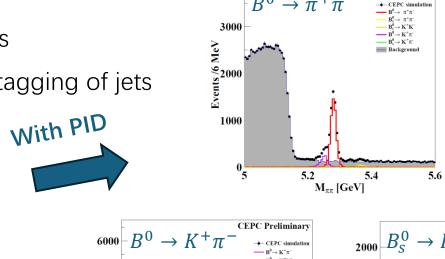
PID is essential for high energy physics experiments

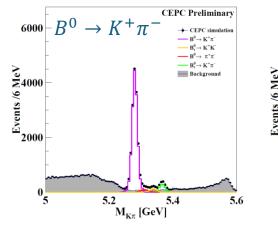
- Suppressing combinatorics
- Distinguishing between same topology final-states
- Adding valuable additional information for flavor tagging of jets

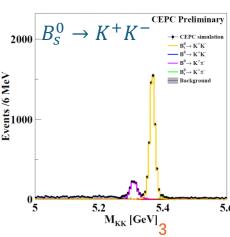
...

Benchmark channel: $B^0_{(s)} \rightarrow h^+ {h'}^-$



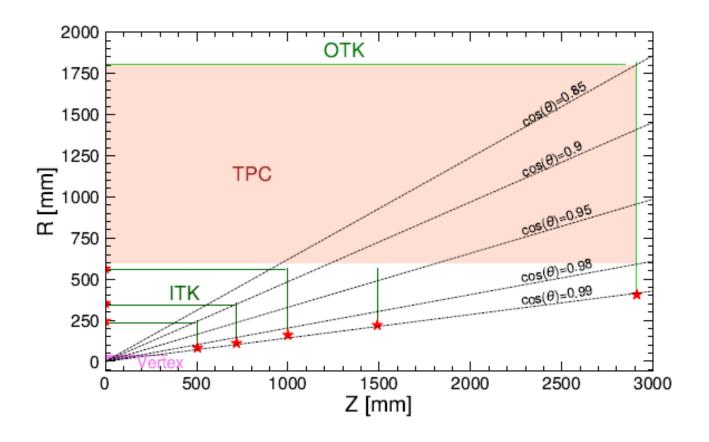






CEPC Preliminary

CEPC hadron ID system

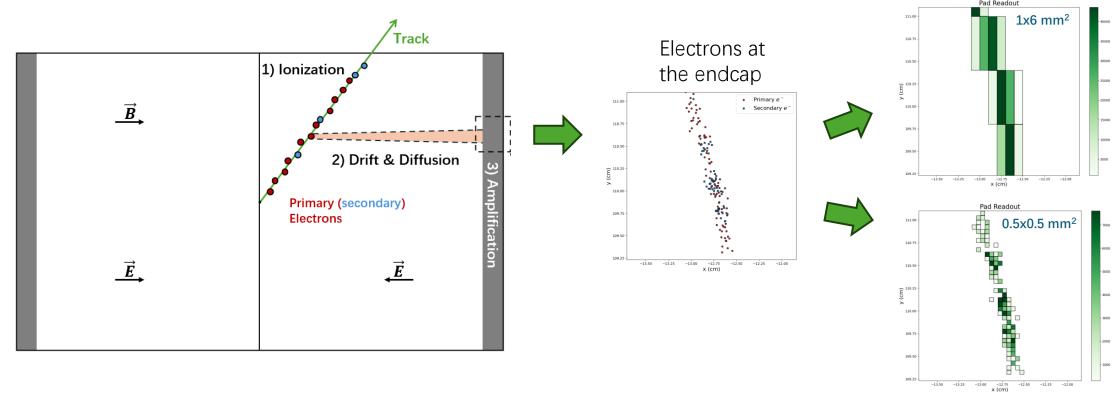


• TPC:

- Large volume:
 - L = 5.8 m
 - 0.6 m < R < 1.8 m
- High granularity: 0.5 x 0.5 mm²
- OTK:
 - Strip AC-LGAD: $\sigma = 50$ ps
- ITK (post-TDR):
 - Outermost layer
 - Pixel AC-LGAD: $\sigma = 30 \text{ ps}$

dN/dx reconstruction with deep learning in TPC

Ionization measurement in TPCs



dE/dx (traditional method):

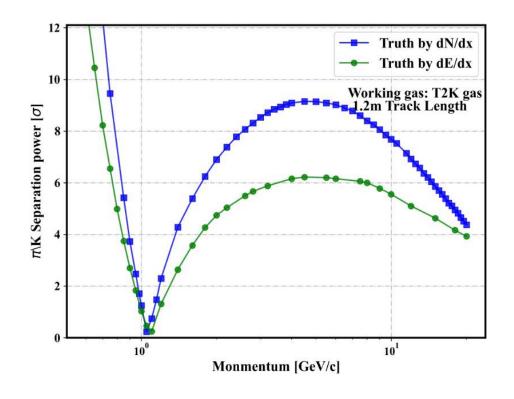
- **Method:** Total energy loss measurement by integrating the energies in large pads
- Characteristics:
 - Large fluctuations from energy measurements, amplification, secondary ionizations, etc

dN/dx or cluster counting ("ideal" method):

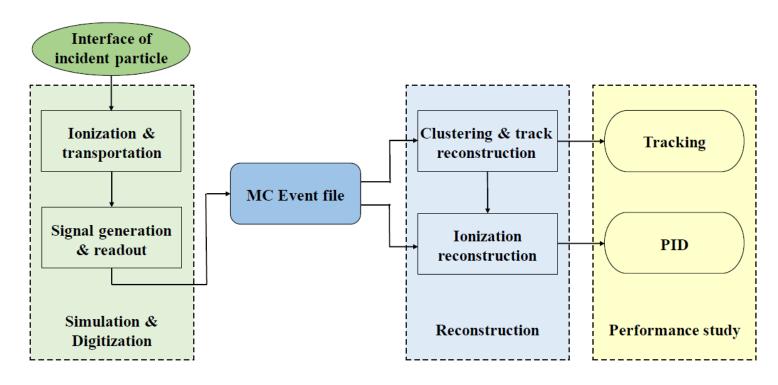
- Method: Number of primary ionization cluster measurement, requiring high granularity readout
- Characteristics:
 - Small fluctuation (resolution potentially improved by a factor of 2)

PID evaluation: Particle separation power

- **Definition:** $\frac{\text{separation}}{\text{resolution}} = \frac{|\mu_A \mu_B|}{\sqrt{\frac{\sigma_A^2 + \sigma_B^2}{2}}}$
 - Very important for physics
 - Resolution is NOT important



TPC simulation framework



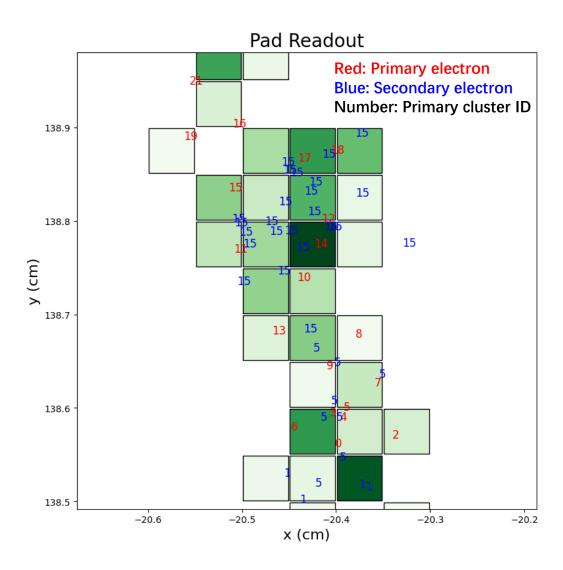
Precise simulation:

- Full geometry
- Gas mixture: $Ar/CF_4/iC_4H_{10}$ (95:3:2)
- Magnetic field: B = 3 T
- Ionization: Heed

Parameterized digitization:

- Transport: Drift and diffusion
- Amplification & readout (from experiment input):
 - Gas gain: ~2000; Noise: ~100e⁻/ch.;
 Eff. width: ~100 um

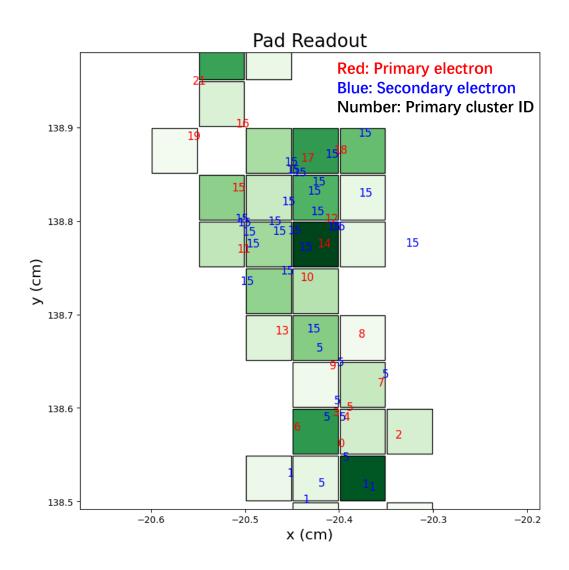
dN/dx reconstruction



Readout information:

Charge/timing in each pad

dN/dx reconstruction



Readout information:

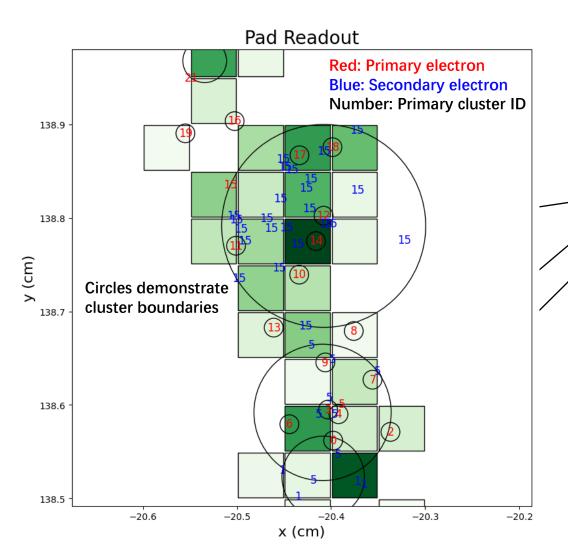
Charge/timing in each pad

Reconstruction:

 Determine the number of primary electrons from 2D readout pads

(or mitigating the impact of secondary electrons)

dN/dx reconstruction: Challenges



Cluster 1, 5, 15 overlap with other clusters

Challenges:

Max. drift length 2.9m → max. diffusion
 550um → Overlapped clusters → Very difficult to use position locality for clustering

Baseline method: Truncated mean

Most used method:

- Reject measurements M_i with highest values \rightarrow most related to the secondaries
- Calculate mean of remaining samples

Average over the lowest *n* measurements:

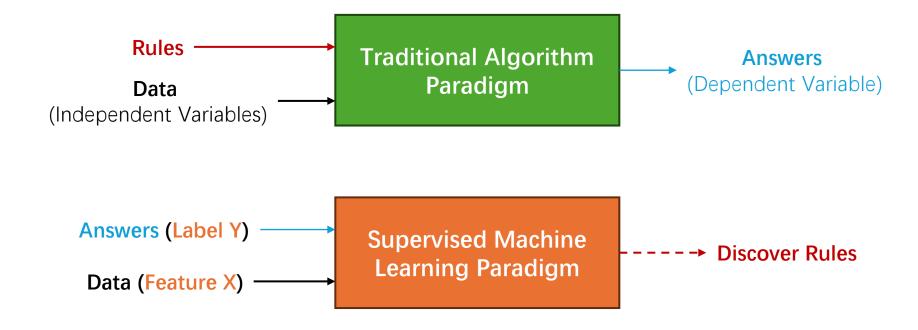
$$\langle M \rangle_{\alpha} = \frac{1}{n} \sum_{i=1}^{n} M_i$$

where $M_i \leq M_{i+1}$ for i=1,...,N-1 and $\alpha=n/N$ is a fraction.

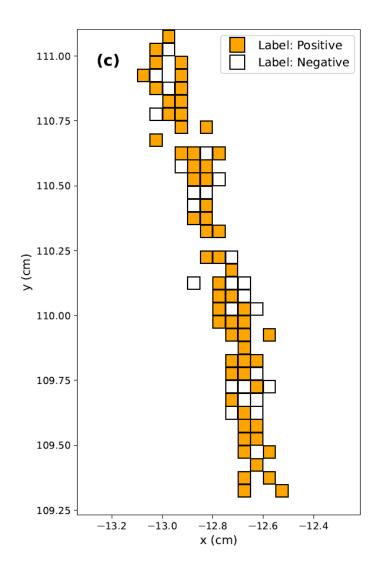
Measurement M refers to:

- **charge** for dE/dx
- number of activated pads for dN/dx

Deep-learning-based method



Problem definition

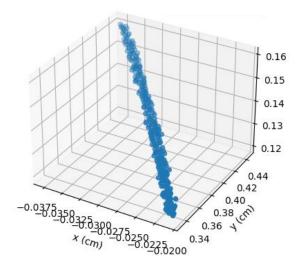


Method: Supervised learning

- Pad labeling:
 - Positive: More than 1 primary e
 - Negative: No primary e
- Perform binary classification

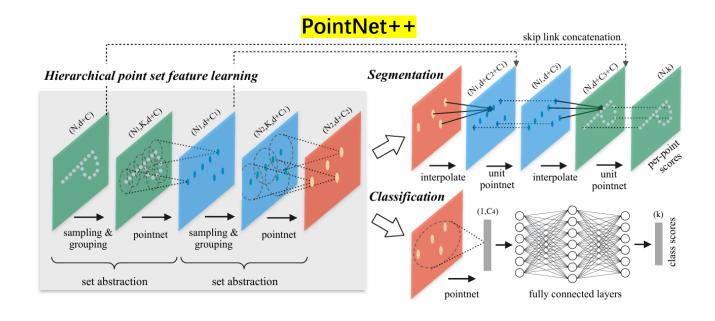
Data structure: Point cloud

- 2D position + 1D timing → 3D spatial coordinates
 - → Point-cloud-based methods



Point-based methods

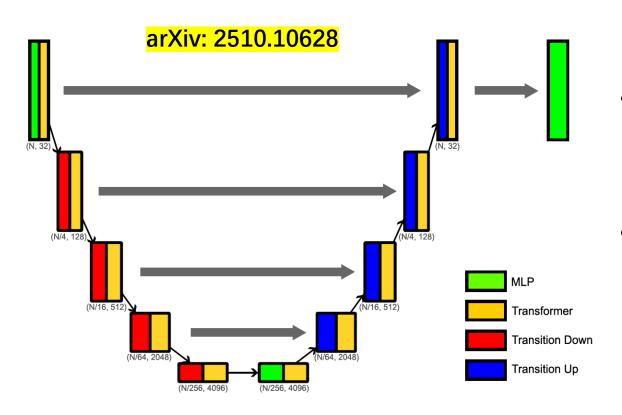
- PointNet++ [CR Qi, et. al., NIPS 2017]
 - Hierarchical structured: Encoder-decoder with skip links
 - Basic building block for feature aggregation: MLP + pooling



Point Transformer Point Transformer Point Transformer

- Point Transformer [H. Zhao, et. al., IEEE/CVF 2021]
 - Replace the MLP + pooling with self-attention blocks

GraphPT: Point Transformer on Graphs



Design principles:

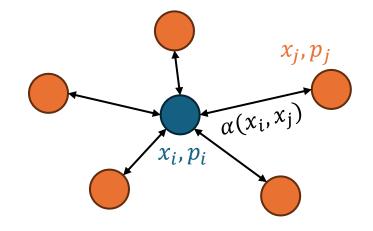
- PT built upon GNNs
- Self-attention via message passing

Backbone structure:

- U-Net-based hierarchical architecture
 - Encoder-decoder with skips
 - MLP + softmax layer outputs [0, 1]

GraphPT: Point Transformer on Graphs

arXiv: 2510.10628



x: (Q, T) *p*: 3D position

Self-attention mechanisms:

- Message-passing:
 - $x_i' = \beta(x_i) + \sum_{j \in N(i)} \alpha(x_i, x_j) \beta(x_j)$
- Subtract operator (from PT):

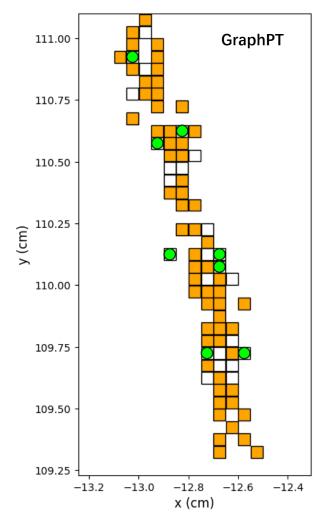
•
$$\alpha(x_i, x_j) = \operatorname{softmax}(\delta(\phi(x_i) - \psi(x_j) + \theta(p_i - p_j)))$$

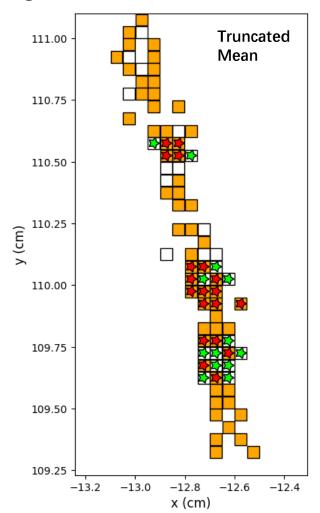
Multi-head dot-product operator (this work):

•
$$\alpha(x_i, x_j) = \operatorname{softmax}\left(\frac{\phi(x_i)^{\mathrm{T}}(\psi(x_j) + \theta(p_i - p_j))}{\sqrt{d_{\mathrm{out}}}}\right)$$

Classification visualization

Track segment





Color code:

- Orange pad: Ground truth positive
- Write pad: Ground truth negative
- Green marker: True negative ©
- Red marker: False negative 8

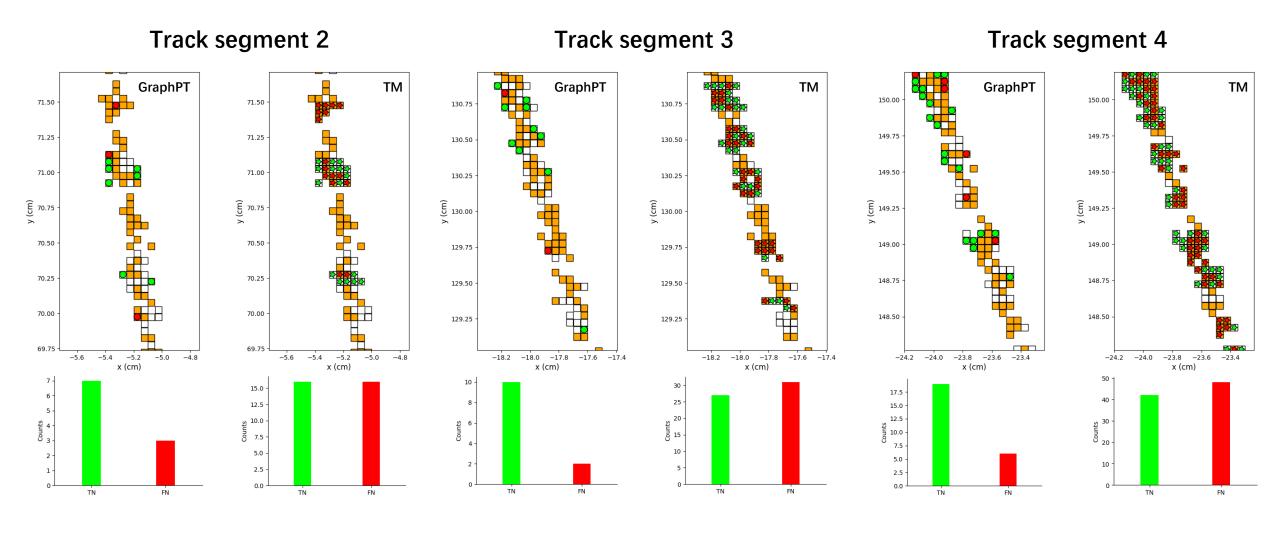
Marker:

- Circle: Classified as negative by GraphPT
- Star: Classified as negative by Truncated Mean

Conclusions:

- Less false negative predictions by GraphPT
- Most signals are preserved, leading to higher signal efficiencies

More classification visualization



Classification performance

Metrics:

- Accuracy = $\frac{TP+TN}{TP+TN+FP+FN}$
- F1 score = $2 \times \frac{P \times R}{P + R}$, where $P = \frac{TP}{TP + FP}$ and $R = \frac{TP}{TP + FN}$

Conclusions:

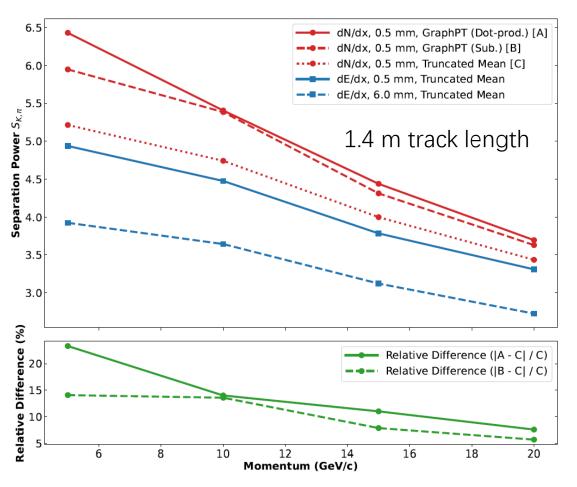
- GraphPT has lower precision but much higher recall → Much improved signal efficiency: ~60% improvement
- GraphPT has much better accuracy and F1 score: ~20% improvement
- The GraphPT with dot-product attention achieve the overall best classification power

Table 3. Classification metrics.

Method	Accuracy	Precision	Recall	F1-Score
Truncated Mean	0.601	0.743	0.574	0.648
GraphPT (Sub.)	0.698	0.689	0.960	0.802
GraphPT (Dot-prod.)	0.707	0.702	0.941	0.804

PID performances

K/π separation power



✓ Metrics:

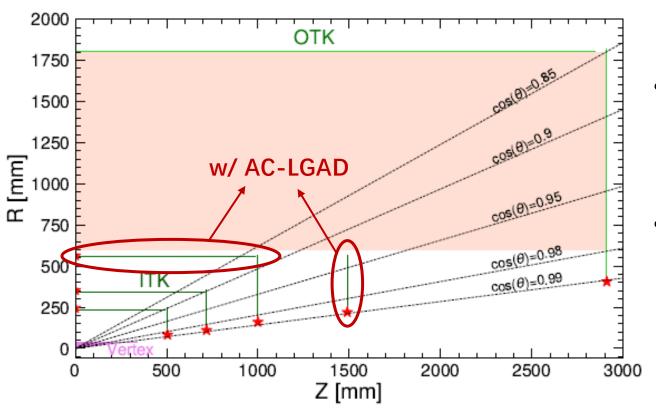
- ✓ K/π separation power within 5-20 GeV/c
- ✓ dN/dx (vs. truncated mean):
 - ✓ GraphPT (sub.): 5-15% improvement
 - ✓ GraphPT (dot-prod.): 10-20% improvement

✓ Overall:

- ✓ All dN/dx results outperform dE/dx
- ✓ Up to 50% improvement compared with traditional 6mm-pad dE/dx

Time-of-flight in ITK

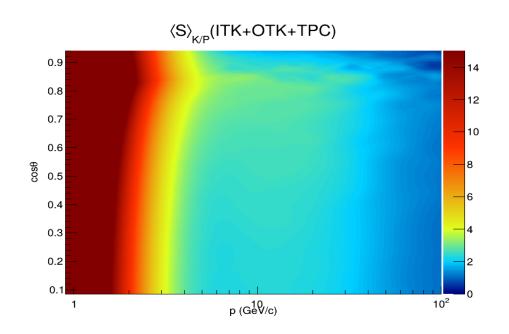
ToF in ITK

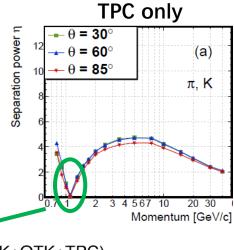


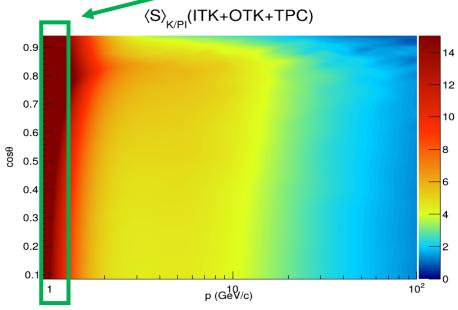
- Besides OTK, add ToF at the outermost layer of ITK:
 - Pixel AC-LGAD: $\sigma = 30 \text{ ps}$
- P_T coverage:
 - OTK: > 0.81 GeV/c
 - ITK: > 0.25 GeV/c

Combined separation power

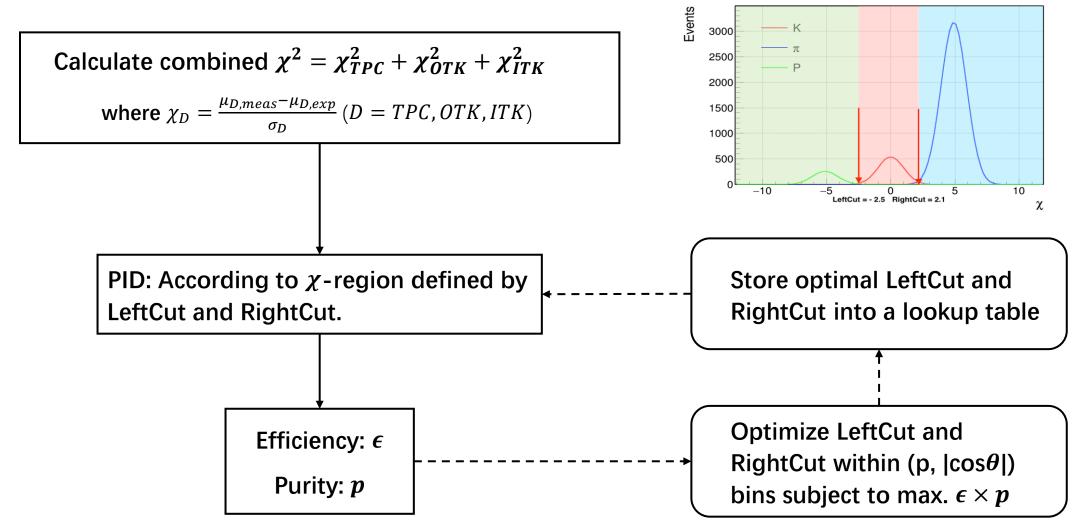
- Definition: $S_{comb} = \sqrt{S_{TPC}^2 + S_{OTK}^2 + S_{ITK}^2}$
 - Note: dN/dx by truncated mean
- The low-momentum gap in separation power by TPC is covered by ToF







Unified PID methodology



Kaon ID results

Catagory	efficiency	purity	eff*pur
a	0.9932	0.1427	0.1417
b	0.9904	0.2573	0.2548
\mathbf{c}	0.9680	0.8743	0.8463
d	0.9938	0.9241	0.9184

Control sample: $Z \rightarrow q \bar{q}$

Remarks:

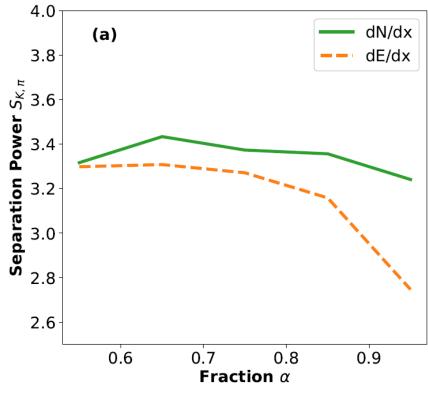
- a: Limited PID in the TPC around 1 GeV/c; the sample is imbalanced (dominated by pions)
- b: The OTK improves PID but is not efficient enough due to the large radius
- c: The ITK improves PID significantly, due to improvements from low momentum particles
- d: A piecewise combine strategy can exploit the available information more effectively

Conclusions

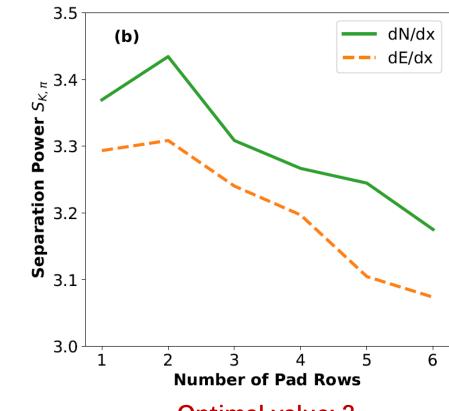
- Hadron identification is essential for CEPC physics. Both dN/dx and time-of-flight have made significant progress.
- A point-cloud transformer-based dN/dx reconstruction method has been developed. Key improvements over traditional methods include:
 - Signal efficiency: ~60% improvement
 - Accuracy/F1 score: ~20% improvement
 - K/π separation power: ~10-20% improvement
- Time-of-flight in the ITK can significantly enhance PID, especially for low-momentum particles, achieving an efficiency x purity of ~91.8%

Backup slides

Optimization of the truncated mean



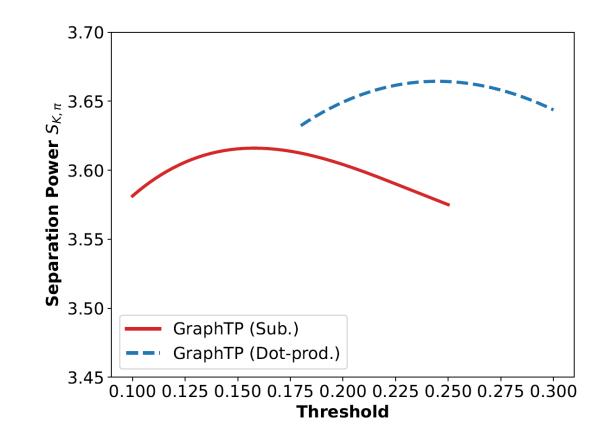
Optimal value: 0.65



Optimal value: 2

Combine layers to reduce fluctuations for small pads

Parameter optimization for PID



- \checkmark Figure of merit: K/π separation power
- \checkmark Variable: Threshold τ for dN/dx calculation

$$\checkmark dN/dx = \frac{1}{L} \sum_{i=1}^{N} \mathbf{1}_{\{p_i > \tau\}}$$

- ✓ Optimal thresholds:
 - ✓ Subtraction operator: 0.157
 - Dot-product operator: 0.261

Kaon ID results

```
---- PID Summary ----
Default sigma: 1
Efficiency (K): 0.92768
Purity (K): 0.863539
Efficiency * Purity: 0.801088
```

With p > 4 GeV/c and $|\cos\theta| < 0.95$ cuts