Contribution ID: 10 Type: Poster

Design of L-Band 10MW High Efficiency Multibeam Klystron

This paper describes the design and simulation of the complete electron gun, electromagnet and RF structure of 10 MW High efficiency (75%) multibeam (06 beams) klystron for high energy physics applications. At an acceleration potential of 115 kV, a space charge beam current of total 132A is achieved with an average cathode loading of less than 3.36 A/cm2. The maximum surface electric fields at beam optics and at the high voltage ceramic seal are less than 7 kV/mm and 1.13 kV/mm, respectively. With an average beam radius of 7 mm, the electron beam is successfully transported to the interaction structure with a ripple rate of 3.36%. The 3-D beam dynamic simulation results (Eff.=70%), in CST agrees with the results of 1D AJDISK (Eff.=75%), 2-D KLYC (Eff.=72%), 2.5D EMSYS (Eff.=72%), simulations.

Primary author: Mr HABIB, NOMAN (IHEP,UCAS)

Co-authors: Prof. ZHOU, Zu-Sheng (IHEP,CAS); Mr YU, Liu (IHEP,UCAS); Mr OU-ZHENG, Xiao (IHEP,CAS); Dr IQBAL, Munawar (IHEP,CAS); Dr ALEEM, Abid (IHEP,CAS); Mr HAN, Xiao (IHEP,UCAS); Mrs YI-AO, Wang (IHEP,UCAS)

Presenter: Mr HABIB, NOMAN (IHEP,UCAS)

Session Classification: Poster

Track Classification: Accelerator: 02: Accelerator technology