Contribution ID: 53 Type: Poster

Irradiation study of COFFEE2 chips

This work presents the first irradiation assessment of a pixel sensor prototype (COFFEE2) fabricated in the 55nm HV-CMOS process, targeted for the high-radiation environment of the LHCb Upgrade II. The study focuses on the KIT array within COFFEE2, which features a complete readout system. Protons were used to irradiate chips to fluences up to 1×10^{14} n_eq/cm² at room temperature and 7×10^{14} n_eq/cm² at -28° C. Post-irradiation measurements show a manageable increase in leakage current. The chip remained functional with high hit efficiency even at 10^{14} n_eq/cm², though a reduction in pixel response uniformity was observed. Higher depletion bias was found to mitigate performance loss. The results demonstrate the strong radiation tolerance of the 55nm HV-CMOS technology, validating its promise for future particle tracking detectors requiring micrometer spatial resolution and nanosecond timing $_{\circ}$

Primary authors: ZHANG, Hui; FENG, Mingjie (IHEP); 徐子骏, UNKNOWN; 史, 天宇 (高能所); LI 李,

Yiming 一鸣 (IHEP); XIANG, Zhiyu; 曾,程 (中国科学院高能物理研究所)

Presenter: 史, 天宇 (高能所)
Session Classification: Poster

Track Classification: Detector and System: 12: Silicon Detector