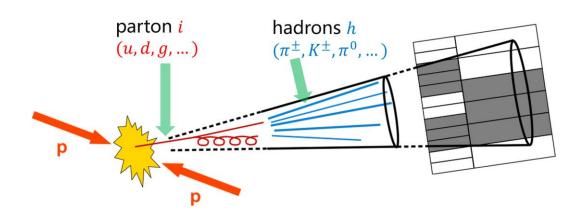

Global Analyses of Collinear Fragmentation Functions from the NPC Collaboration

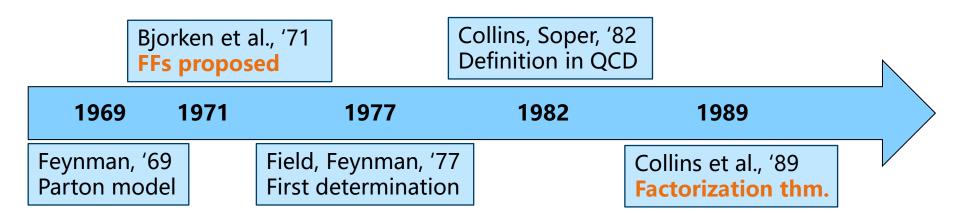
XiaoMin Shen(沈晓民)

Institute of Modern Physics, CAS

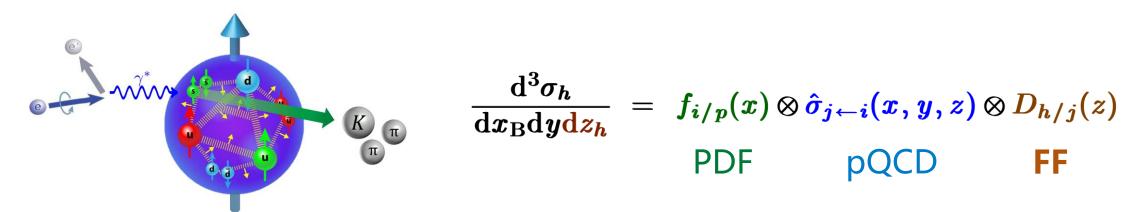

On behalf of the Non-Perturbative Physics Collaboration (NPC)



Fragmentation Functions (FFs)

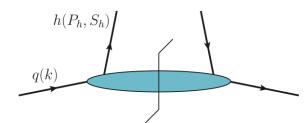


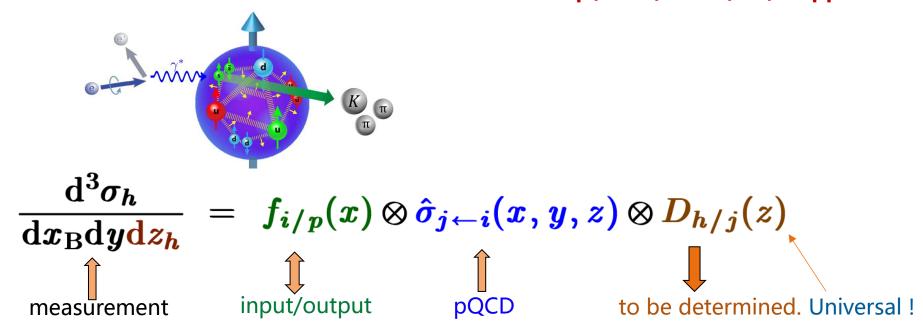
To describe hadronization


$$D_{m{h/i}}(z\equiv p_{m{h}}^+/\,p_{m{i}}^+)$$

Why FFs: key ingredients of QCD factorization framework

Semi-Inclusive DIS (SIDIS): e + N -> e + h + X


 $ightharpoonup e^+e^-
ightharpoonup h + X$ (SIA), **pQCD** \otimes **FF** [see Tongzhi's talk in this session]


Determination of FFs from global data fit

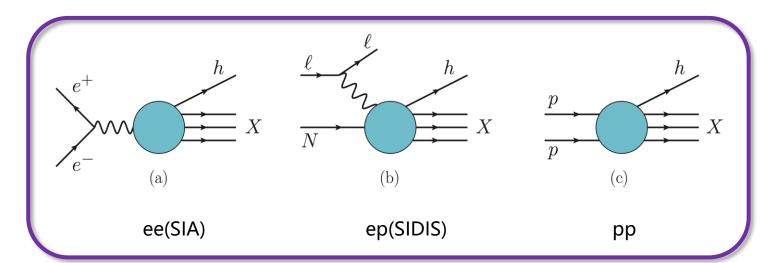
Field theory definiton of the collinear (integrated) quark FFs [Collins, Soper '82]

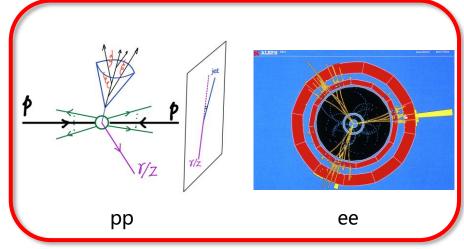
$$D_{h/q}(z) = \frac{z}{4} \sum_{X} \int \frac{d\xi^{+}}{2\pi} e^{iP_{h}^{-}\xi^{+}/z} \operatorname{Tr} \left[\langle 0 | \mathcal{W}(\infty^{+}, \xi^{+}) \psi_{q}(\xi^{+}, 0^{-}, \vec{0}_{T}) | P_{h}, S_{h}; X \rangle \right] \times \langle P_{h}, S_{h}; X | \bar{\psi}_{q}(0^{+}, 0^{-}, \vec{0}_{T}) \mathcal{W}(0^{+}, \infty^{+}) | 0 \rangle \gamma^{-}$$

❖ Global data fits based on factorization formula ep(SIDIS) + ee(SIA) + pp collisions

Outline

> Introduction


NPC=Non-Perturbative Physics Collaboration


- > Global fits of FFs at NLO from NPC
- Global fits of FFs at NNLO
- > Impact of data from future lepton colliders on FFs

collaboration	NNFF	JAM	DSS+	BDSSV	MAP	NPC
SIA(ee)	✓	\checkmark	\checkmark	\checkmark	✓	
SIDIS (ep)	X	\checkmark	\checkmark	\checkmark	\checkmark	
pp incl. hadron	X	X	\checkmark	X	X	✓ /
hadron in jet	X	X	X	X	X	$\setminus \checkmark /$
FFs (charged h)	π^{\pm}, K^{\pm}, p	π^{\pm},K^{\pm}	π^{\pm}, K^{\pm}, p	π^\pm	$\pi^{\pm},\!K^{\pm}$	π^{\pm}, K^{\pm}, p
FFs (neutral h)			$\mid \eta \mid$			$K^0,\eta,\!\Lambda$
pQCD order	NNLO	NLO	NLO	appr. NNLO	appr. NNLO	NLO

Only some of the recent global analyses are shown here.

NPC FFs analyses incorporate various types of data

single-inclusive hadron production

hadron-in-jet measurements

> Hadron-in-jet data provides direct probe of z dependence

$$\frac{p_{T,h}}{p_{T,j}} \stackrel{\mathrm{LO}}{\longrightarrow} z$$

All theoretical predictions calculated with FMNLO.

[Liu, XS, Zhou, Gao, 2305.14620 (JHEP)]

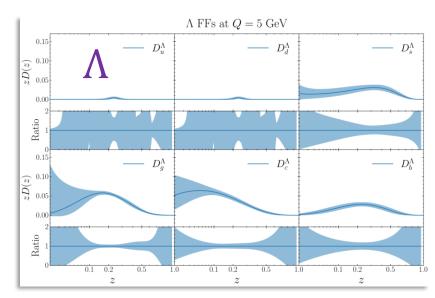
figure credit: A. Metz, A. Vossen,1607.02521; ALEPH Collaboration

Experiments	N_{pt}	χ^2	χ^2/N_{pt}
ATLAS jets †	446	350.8	0.79
ATLAS $Z/\gamma + \text{jet}^{\dagger}$	15	31.8	2.12
CMS Z/γ + jet [†]	15	17.3	1.15
LHCb Z + jet	20	30.6	1.53
ALICE inc. hadron	147	150.6	1.02
STAR inc. hadron	60	42.2	0.70
pp sum	703	623.3	0.89
TASSO	8	7.0	0.88
TPC	12	11.6	0.97
OPAL	20	16.3	0.81
OPAL (202 GeV) †	17	24.2	1.42
ALEPH	42	31.4	0.75
DELPHI	78	36.4	0.47
DELPHI (189 GeV)	9	15.3	1.70
SLD	198	211.6	1.07
SIA sum	384	353.8	0.92
H1 [†]	16	12.5	0.78
H1 (asy.) [†]	14	12.2	0.87
ZEUS †	32	65.5	2.05
COMPASS (06I)	124	107.3	0.87
COMPASS $(16p)$	97	56.8	0.59
SIDIS sum	283	254.4	0.90
Global total	1370	1231.5	0.90

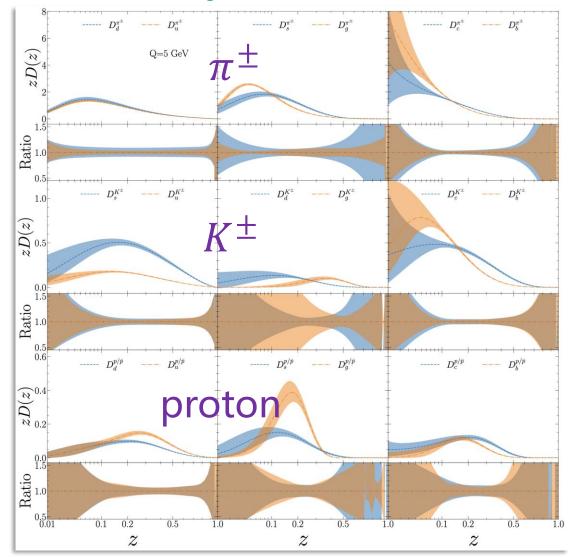
NPC23 π^{\pm} , K^{\pm} , p FFs fit

collaboration	year	$\sqrt{s}[\mathrm{GeV}]$	χ^2	$N_{ m pt}$	$\chi^2/N_{ m pt}$
TASSO	1985	14	5.65	9	0.63
TASSO	1985	22	5.87	6	0.98
TASSO	1985	34	16.03	13	1.23
TASSO	1990	14.8	12.56	9	1.40
TASSO	1990	21.5	3.78	6	0.63
TASSO	1990	34.5	17.51	13	1.35
TASSO	1990	35	14.76	13	1.14
TASSO	1990	42.6	33.60	13	2.58
TPC	1984	29	2.75	8	0.34
MARK II	1985	29	12.65	17	0.74
HRS	1987	29	33.16	12	2.76
CELLO	1990	35	2.71	9	0.30
TOPAZ	1995	58	0.29	4	0.07
OPAL	1991	91.2	7.75	7	1.11
OPAL	1995	91.2	13.63	16	0.85
OPAL	2000	91.2	8.62	16	0.54
ALEPH	1998	91.2	6.39	16	0.40
ALEPH	2000	91.2	12.72	14	0.91
ALEPH jet 1	2000	91.2	14.91	12	1.24
ALEPH jet 2	2000	91.2	8.21	13	0.63
ALEPH jet 3	2000	91.2	8.55	11	0.78
DELPHI	1995	91.2	7.55	13	0.58
SLD	1999	91.2	7.39	9	0.82
SLD c -tagged	1999	91.2	17.44	9	1.94
SLD <i>b</i> -tagged	1999	91.2	11.12	9	1.24
SIA sum			285.60	277	1.03
ZEUS $Q^2 \in 160,640 { m GeV^2}$	2012	318	4.41	5	0.88
ZEUS $Q^2 \in 640, 2560 \mathrm{GeV}^2$	2012	318	3.26	5	0.65
ZEUS $Q^2 \in 2560, 10240 \mathrm{GeV^2}$	2012	318	2.74	2	1.37
SIDIS sum			10.41	12	0.87
ALICE $N_{K_S^0}^{13\mathrm{TeV}}/N_{K_S^0}^{7\mathrm{TeV}}$	2021	13000 & 7000	2.88	10	0.29
ALICE $N_{K_S^0}/N_{\pi^\pm}$	2021	13000	5.79	15	0.39
pp sum			8.67	25	0.35
total sum			304.68	314	0.97

NPC23 K⁰ FFs fit



The NPC FF sets at NLO


... are publicly available

LHAPDF 6.5.5

Main page	PDF sets	Class hierarchy	Examples	More								
2070000	NPC23_	NPC23_PIp_nlo (tarball) (info file)										
2070200	NPC23_	_KAp_nlo			(tarball)	(info file)	127					
2070400	NPC23_	PRp_nlo			(tarball)	(info file)	127					
2070600	NPC23_	Plm_nlo			(tarball)	(info file)	127					
2070800	NPC23_	_KAm_nlo			(tarball)	(info file)	127					
2071000	NPC23_	PRm_nlo			(tarball)	(info file)	127					
2071200	NPC23_	_PIsum_nlo			(tarball)	(info file)	127					
2071400	NPC23_	KAsum_nlo			(tarball)	(info file)	127					
2071600	NPC23_	PRsum_nlo			(tarball)	(info file)	127					
2071800	NPC23_	_CHHAp_nlo			(tarball)	(info file)	127					
2072000	NPC23_	_CHHAm_nlo			(tarball)	(info file)	127					
2072200	NPC23_	_CHHAsum_nlo			(tarball)	(info file)	127					

Gao, Liu, **XS**, Xing, Zhao, *PRL 132, 261903,* '24 Gao, Liu, **XS**, Xing, Zhao, *PRD 110, 114019,* '24 (Editors' suggestion) Gao, Liu, Li, **XS**, Xing, Zhao, Zhou, *PRD 112, 054045, '25*

Both charged and neutral hadron FFs determined

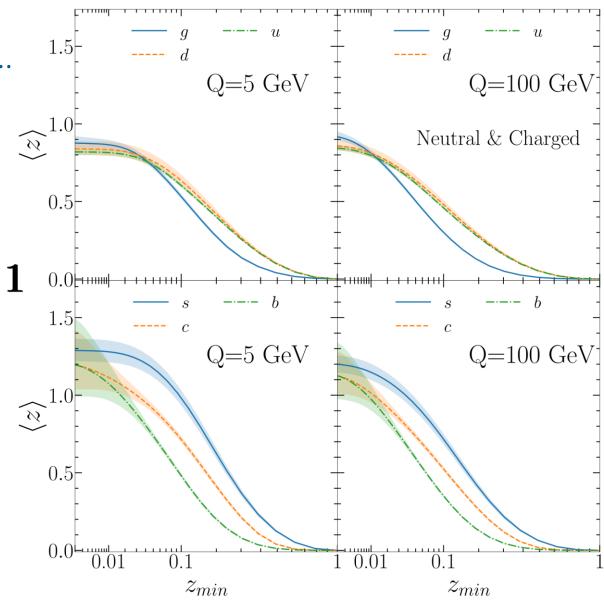
collaboration	NNFF	JAM	DSS+	BDSSV	MAP	NPC
SIA(ee)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	√
SIDIS (ep)	X	\checkmark	\checkmark	\checkmark	\checkmark	✓
pp incl. hadron	X	X	\checkmark	X	X	\checkmark
hadron in jet	X	X	X	X	X	\checkmark
FFs (charged h)	π^{\pm}, K^{\pm}, p	$\pi^{\pm},\!K^{\pm}$	π^{\pm}, K^{\pm}, p	π^\pm	$\pi^{\pm},\!K^{\pm}$	$\pi^{\pm},\!K^{\pm},\!p$
FFs (neutral h)			$\mid \eta \mid$			K^0,η,Λ
pQCD order	NNLO	NLO	NLO	appr. NNLO	appr. NNLO	NLO

- > FFs determination at NLO from Nonperturbative Physics Collaboration (NPC)
 - NPC23 FFs to light charged hadrons:

Gao, Liu, **XS**, Xing, Zhao, *PRL 132, 261903,* '24 Gao, Liu, **XS**, Xing, Zhao, *PRD 110, 114019,* '24 (Editors' suggestion)

NPC23 FFs to light neutral hadrons:

Gao, Liu, Li, XS, Xing, Zhao, Zhou, PRD 112, 054045, '25


Test sum rule using neutral + charged hadron FFs

parton i hadrons $h = \pi^{\pm}, \pi^{0}, K^{\pm}, K^{0}, \cdots$

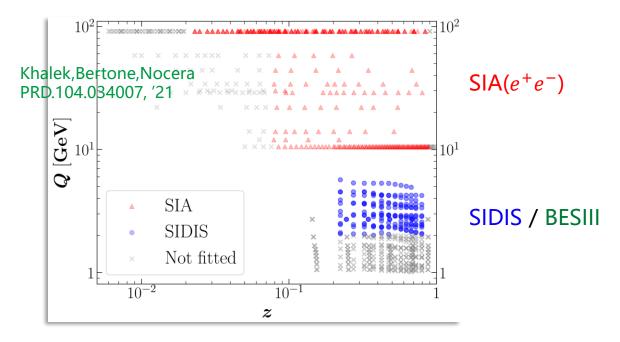
> The **momentum sum rule**:

$$\lim_{z_{\min} \to 0} \sum_{h} \int_{z_{\min}}^{1} \left[z D_{h/i}(z) \right] dz = 1 \quad 0.0$$

Gao, Liu, **XS**, Xing, Zhao, *PRL 132, 261903,* '24 Gao, Liu, Li, **XS**, Xing, Zhao, Zhou, *PRD 112, 054045, '25*

Outline

- > Introduction
- > NPC analyses of FFs at NLO
- ➤ NPC analyses of FFs at NNLO + constraints on PDFs
- > Impact of data from future colliders


collaboration	NNFF	JAM	$\mathrm{DSS} +$	BDSSV	MAP	NPC	NPC
SIA(ee)	√	√	√	√	√	√	√
SIDIS (ep)	X	\checkmark	\checkmark	\checkmark	\checkmark	✓	✓
pp incl. hadron	X	X	✓	X	X	\checkmark	X
hadron in jet	X	X	X	X	X	✓	X
FFs	π^{\pm}, K^{\pm}, p	$\pi^{\pm},\!K^{\pm}$	$\pi^{\pm}, K^{\pm}, p, h^{\pm}$	π^\pm	$\pi^{\pm},\!K^{\pm}$	$\pi^{\pm},K^{\pm},p,h^{\pm}$	$\pi^{\pm},\!K^{\pm}$
			η			K^0,η,Λ	
pQCD order	NNLO	NLO	NLO	appr. NNLO	appr. NNLO	NLO	NNLO

Global analysis of FFs at full NNLO: the datasets

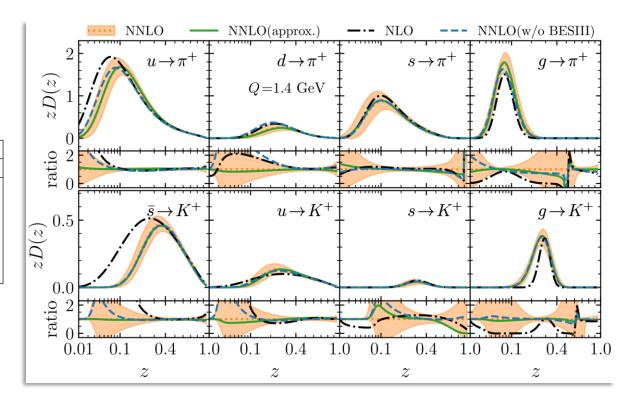
$SIA(e^+e^-)$ data used in the fit:

exp.	$\sqrt{s}/{ m GeV}$	$ \operatorname{lum.}(n_Z) $	year	final states	hadrons
DELPHI	189	157.7 pb^{-1}	2002	inc. had.	π^{\pm}, K^{\pm}
OPAL	m_Z	780 000	1994	$Z \rightarrow q ar{q}$	π^{\pm}, K^{\pm}
ALEPH	m_Z	520 000	1995	$Z \rightarrow q ar{q}$	π^{\pm}, K^{\pm}
DELPHI	m_Z	1 400 000	1998	$Z \rightarrow q \bar{q}$	π^{\pm}, K^{\pm}
				$Z \! ightarrow \! b ar{b}$	π^{\pm}, K^{\pm}
				$Z\! o qar q$	π^{\pm}, K^{\pm}
SLD	m_Z	400 000	2004	$Z\! o\! bar b$	π^{\pm}, K^{\pm}
				$Z \rightarrow c\bar{c}$	π^{\pm}, K^{\pm}
TASSO	44	34 pb^{-1}	1989	inc. had.	π^{\pm},π^0
TASSO	34	$77 \; {\rm pb}^{-1}$	1989	inc. had.	π^{\pm}, K^{\pm}
$\mathrm{TPC}/2\gamma$	29	70 pb^{-1}	1988	inc. had.	π^{\pm}, K^{\pm}
Belle	10.52	$68 \; {\rm fb^{-1}}$	2013	inc. had.	π^{\pm}, K^{\pm}
BaBar	10.54	$0.91 \; \mathrm{fb^{-1}}$	2013	inc. had.	π^{\pm}, K^{\pm}
BESIII	2.0-3.671	253 pb^{-1}	2025	inc. had.	π^{\pm}, K^{\pm}

[BESIII, **PRL**135, 151901, 2025]

- Kinematic cuts in our analyses:
 - Q > 3 GeV (SIA)
 - Q > 2 GeV(SIDIS)
 - $z > 0.01, E_h > E_{h,min}$ (0.8 GeV by default)

the first test on universality of FFs at Q~3 GeV using both ee and SIDIS data


XiaoMin Shen CEPC2025, Guangzhou Page 12

Global analysis of FFs at full NNLO: results

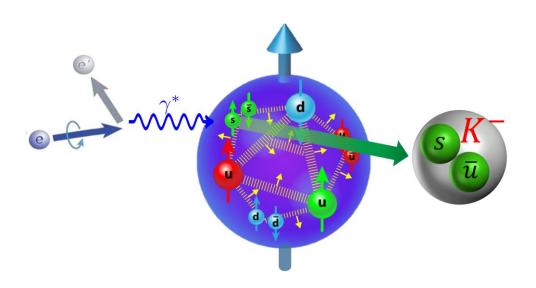
> Fit quality of the NNLO analyses

	В	ESIII	CO	MPASS	B-fa	actories	H	E-SIA		globa	1
$E_{h,\min}[\mathrm{GeV}]$	$N_{ m pt}$	$\chi^2/N_{ m pt}$	$N_{ m pt}$	χ^2	$\chi^2/N_{ m pt}$						
0.5	242	1.26	358	1.65	233	1.06	426	1.19	1259	1650.2	1.31
0.6	212	1.21	290	1.59	228	0.92	423	0.97	1153	1338.8	1.16
0.7	182	1.11	214	1.47	223	0.61	413	0.84	1032	997.2	0.97
0.8	152	0.98	142	1.30	218	0.53	407	0.82	919	781.8	0.85
0.9	122	1.05	94	1.29	213	0.52	407	0.80	836	687.1	0.82
1.0	98	1.14	54	0.97	209	0.49	403	0.80	764	587.2	0.77

energy cut of the identified hadron

LHAgrids of our FFs have been submitted to the LHAPDF repository.

https://www.lhapdf.org/pdfsets.html



XiaoMin Shen CEPC2025, Guangzhou Page 13

Application: constraining proton PDFs at NNLO

SIDIS may also constrain PDFs:

$$rac{\mathrm{d}^3\sigma_h}{\mathrm{d}x_\mathrm{B}\mathrm{d}y\mathrm{d}z_h} = f_{i/p}(x)\otimes\hat{\sigma}_{j\leftarrow i}(x,y,z)\otimes D_{h/j}(z)$$
 unpolarized PDF FF

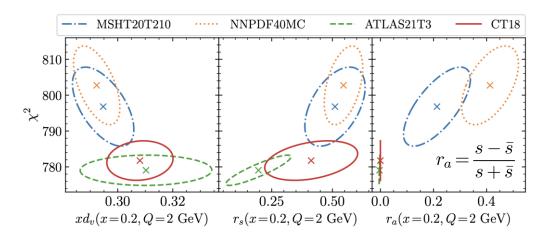
➤ LO xsec of SIDIS off an isoscalar target (COMPASS)

$$\frac{\mathrm{d}\sigma^{K^+}}{\mathrm{d}x\mathrm{d}y\mathrm{d}z} - \frac{\mathrm{d}\sigma^{K^-}}{\mathrm{d}x\mathrm{d}y\mathrm{d}z}$$

$$\sim 2\Big(u_v(x) + d_v(x)\Big)\Big(D_u^{K^+}(z) - D_{\bar{u}}^{K^+}(z)\Big)$$

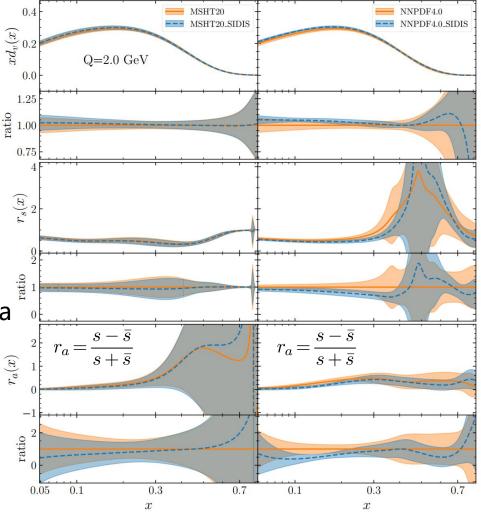
$$+ \Big(s(x) - \bar{s}(x)\Big)\Big(D_s^{K^+}(z) - D_{\bar{s}}^{K^+}(z)\Big) + \cdots$$
PDF

FF


is sensitive to strangeness asymmetry

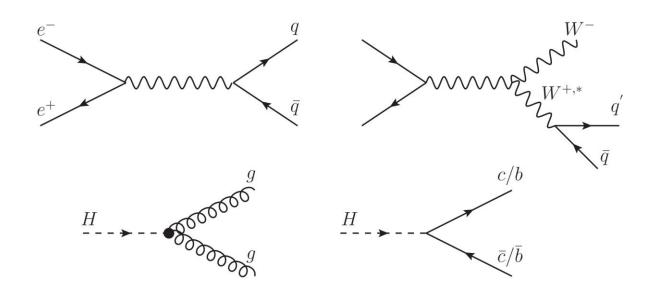
$$r_a = \frac{s - \bar{s}}{s + \bar{s}}$$

Application: constraining proton PDFs at NNLO


 \triangleright Correlation between χ^2 and PDFs

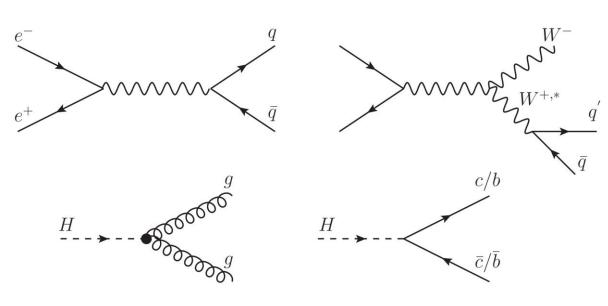
Modified PDFs which reflect the impact of SIDIS data

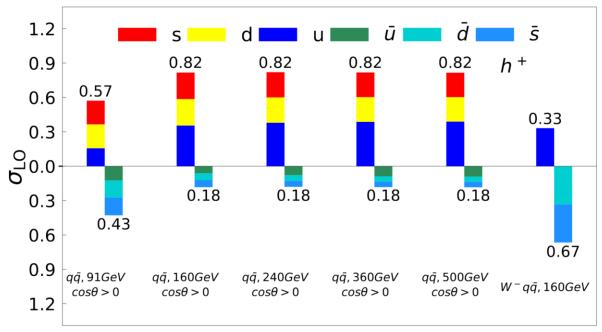
- Reweighting of the NNPDF4.0 PDF set
- Profiling of the MSHT20 PDF set


[Gao, XS, Xing, Zhao, Zhou, PRL 135, 041902, 2025]

PDF sets before and after reweighting/profiling

Outline


- > Introduction
- > NPC analyses of FFs at NLO
- > NPC analyses of FFs at NNLO + constraints on PDFs
- > Impact of data from future lepton colliders (CEPC, FCC-ee, ILC) on FFs

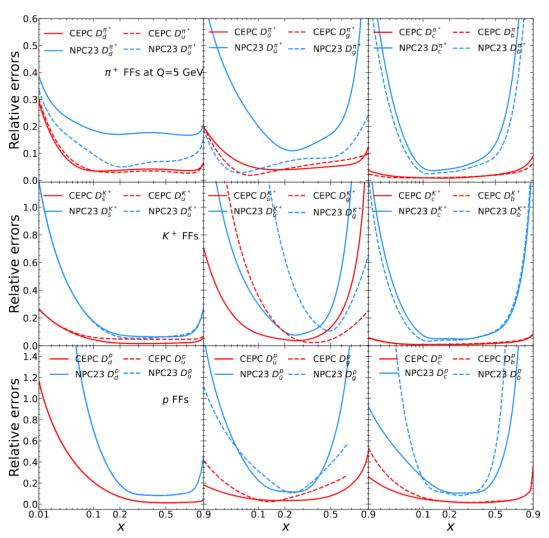

[Jun Gao, Bin Zhou, JHEP 02 (2025) 003]

Opportunities with future lepton colliders

... for flavor separation and determination of gluon FFs

Processes sensitive to FFs

relative size of light (anti)quark productions rate


FFs determination using only pseudo-data at future ee colliders

	e^+e^- annihilation							
\sqrt{s} (GeV)	lumi	inosity (ab	⁻¹)	final state	kinematic cuts	hadrons	N/	
Vs (GeV)	CEPC	FCC-ee	ILC	illiai state	Killelliatic cuts	Hadrons	N _{pt}	
91.2	60	150	_	qq	$\cos(\theta) > 0$	$\pi^+, \pi^-, K^+, K^-, p, \bar{p}$	132	
91.2	00	130	_	$c\overline{c}/b\overline{b}$	-	$\pi^{\pm}, \mathcal{K}^{\pm}, p/\bar{p}$	65	
160	4.2	_	_	$qar{q}$	$\cos(\theta) > 0$	$\pi^+, \pi^-, K^+, K^-, p, \bar{p}$	168	
100	7.2			c̄c/bb	-	$\pi^{\pm}, K^{\pm}, p/\bar{p}$	83	
161	_	10	_	$q \bar q$ _	$\cos(\theta) > 0$	$\pi^+, \pi^-, K^+, K^-, p, \bar{p}$	168	
101	_	10		c̄c/bb	-	$\pi^{\pm}, K^{\pm}, p/\bar{p}$	83	
240	13	5	_	$q\bar{q}$	$\cos(\theta) > 0$	$\pi^+, \pi^-, K^+, K^-, p, \bar{p}$	186	
240	15	3		$c\overline{c}/b\overline{b}$	-	$\pi^{\pm}, K^{\pm}, p/\bar{p}$	92	
250	_	_	2	$q \overline{q}_{\perp}$	$\cos(\theta) > 0$	$\pi^+, \pi^-, K^+, K^-, p, \bar{p}$	186	
250			_	c̄c/b̄b	-	$\pi^{\pm}, K^{\pm}, p/\bar{p}$	92	
350	_	0.2	0.2	$q\overline{q}_{\perp}$	$\cos(\theta) > 0$	$\pi^+, \pi^-, K^+, K^-, p, \bar{p}$	198	
		0.2	0.2	c̄c/b̄b	-	$\pi^{\pm}, K^{\pm}, p/\bar{p}$	98	
360	0.65	_	_	$q\bar{q}$	$\cos(\theta) > 0$	$\pi^+, \pi^-, K^+, K^-, p, \bar{p}$	198	
	0.00			$c\bar{c}/b\bar{b}$	-	$\pi^{\pm}, K^{\pm}, p/\bar{p}$	98	
365	_	1.5	_	$q\bar{q}$	$\cos(\theta) > 0$	$\pi^+, \pi^-, K^+, K^-, p, \bar{p}$	198	
		1.0		c̄c/b̄b	-	$\pi^{\pm}, K^{\pm}, p/\bar{p}$	98	
500	_	_	4	$q\bar{q}_{\perp}$	$\cos(\theta) > 0$	$\pi^+, \pi^-, K^+, K^-, p, \bar{p}$	198	
				c̄c/b̄b	-	$\pi^{\pm}, K^{\pm}, p/\bar{p}$	98	
	II.			W boson decay char	nnels			
\sqrt{s} (GeV)		ents (millio		final state	kinematic cuts	hadrons	N _{pt}	
V = (= 1 ·)	CEPC	FCC-ee	ILC				търс	
80.419	116	68	62	$W^-W^{+*} \rightarrow W^-q\bar{q}$	_	$\pi^+, \pi^-, K^+, K^-, p, \bar{p}$	120	
	58	34	31	$W^-W^{+*} \rightarrow W^-c\bar{s}$,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
				Higgs boson decay ch	annels			
\sqrt{s} (GeV)		ents (millio	,	final state	kinematic cuts	hadrons	N _{pt}	
V = (= = ·)	CEPC	FCC-ee	ILC				pt	
105	0.23	0.09	0.07	gg -		+ 14 /-		
125	0.08	0.03	0.02	cc	-	$\pi^\pm, {\it K}^\pm, {\it p}/{ar p}$	77	
	1.53	0.59	0.47	bb				

- binning (in momentum fraction): same as SLD measurement at Z pole [PRD 59,052001]
- central values calculated using the NPC23
 FFs
- statistical uncertainties evaluated from the expected number of events
- systematic uncertainties set to baseline measurement of SLD at Z pole.

Significant reduction of FFs uncertainties observed

[Jun Gao, Bin Zhou, JHEP 02 (2025) 003]

Summary

- NPC collaboration has delivered precise and comprehensive FF sets at NLO.
- > We present the **first** global (SIA+SIDIS) FFs determination at full NNLO.
- > CEPC can significantly reduce the uncertainties of FFs in a wide kinematic range.

collaboration	NPC	NPC
SIA(ee)	\checkmark	\checkmark
SIDIS (ep)	\checkmark	\checkmark
pp incl. hadron	\checkmark	X
hadron in jet	\checkmark	X
FFs	π^{\pm}, K^{\pm}, p	$\pi^{\pm},\!K^{\pm}$
	K^0,η,Λ	
pQCD order	NLO	NNLO

FF sets from NPC available from https://www.lhapdf.org/pdfsets.html

NLO charged hadron:

Gao, Liu, XS, Xing, Zhao, PRL 132, 261903, 2024

Gao, Liu, XS, Xing, Zhao, PRD 110, 114019, 2024

NLO neutral hadron:

Gao, Liu, Li, XS, Xing, Zhao, Zhou, PRD 112, 054045, 2025

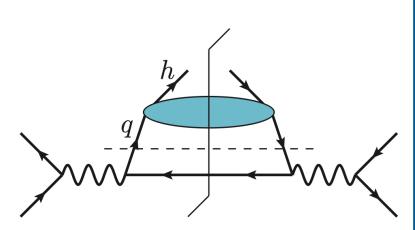
NNLO:

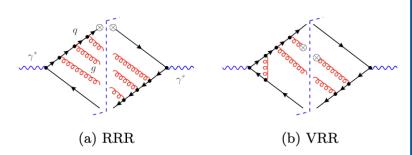
Gao, XS, Xing, Zhao, Zhou, PRL 135, 041902, 2025

Thank you for your attention!

Backup slides

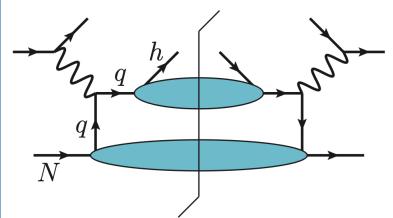
NPC collaboration gathering on July 19th 2025




in neighborhood of Huizhou city (host of EICc)

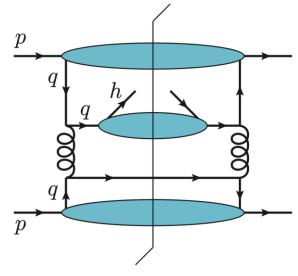
Jun Gao, ChongYang Liu, Meng Yang Li, XiaoMin Shen, HongXi Xing, YuXiang Zhao, Bin Zhou, YiYu Zhou Shanghai JiaoTong Univ., South China Normal Univ., Institute of Modern Physics, CAS

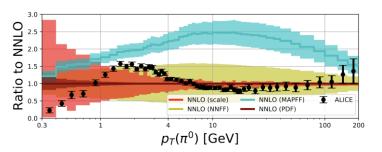
Recent progresses from pQCD



$SIA(e^+e^-)$ at N3LO

[He, Xing, Yang, Zhu, PRL.135.101901(2025)]


See Tongzhi Yang's talk today


SIDIS(ep) at NNLO

[Bonino, Gehrmann, et al. & Goyal, Moch, et al.

PRL.132.251901, '24, PRL.132.251902, '24, PRL.133.211904, '24, PRL.133.211905, '24, 2504.05376

pp at NNLO

[Czakon, Generet, Mitov, Poncelet, 2503.11489]

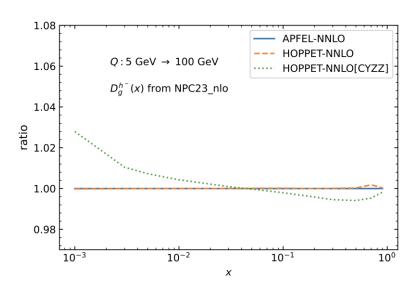
Global analysis of FFs at full NNLO: theoretical prediction

FFs at starting scale $Q_0 = 1.4 \text{ GeV}$

parameterized as

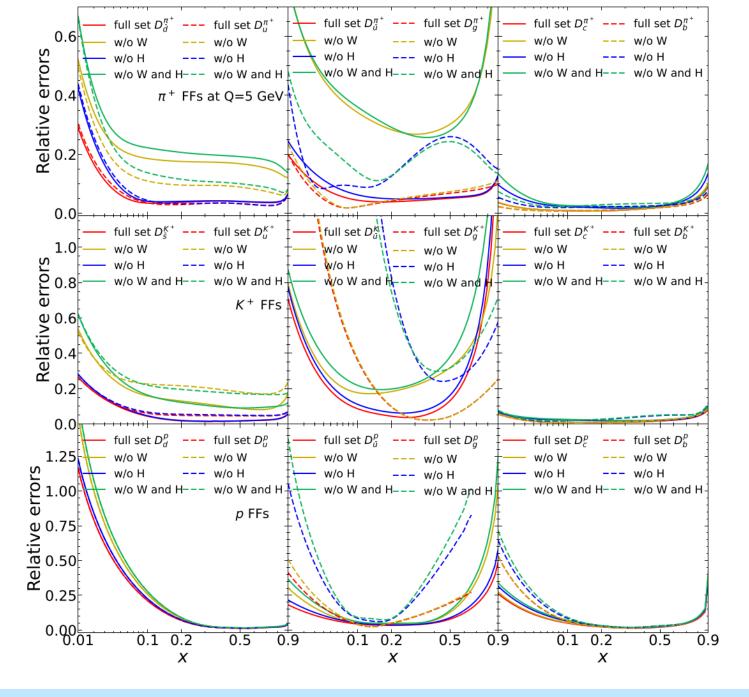
$$zD_i^h(z, Q_0) = z^{\alpha_i^h} (1-z)^{\beta_i^h} \exp\left(\sum_{n=0}^m a_{i,n}^h z^{n/2}\right)$$

charge/isospin symmetries suppress number of free parameters (54 in total)


$$D_{u\to\pi^+}(z,Q) = D_{\bar{u}\to\pi^-}(z,Q)$$

$$D_{u\to\pi^+}(z,Q_0) = D_{\bar{d}\to\pi^+}(z,Q_0)$$

FFs at arbitrary energy scale $(Q_0 \rightarrow Q)$


3-loop timelike DGLAP evolution [Mitov, Moch, Vogt, Almasy]

 \rightarrow + $P_{qg}^{T(2)}$ correction[Chen, Yang, Zhu, Zhu, '20]

> Heavy quark FFs are frozen below mass threshold.

