

Determination of the Strong Coupling Constant from Inclusive Semi-leptonic B Meson Decays

Yuzhi Che

Institute of High Energy Physics
Chinese Academy of Sciences

arXiv:2412.02480,

with Long Chen, Jinfei Wu, Xinchou Lou, Xiang Chen, Xin Guan, Yan-Qing Ma, Manqi Ruan.

The 2025 International Workshop on the High Energy Circular Electron Positron Collider

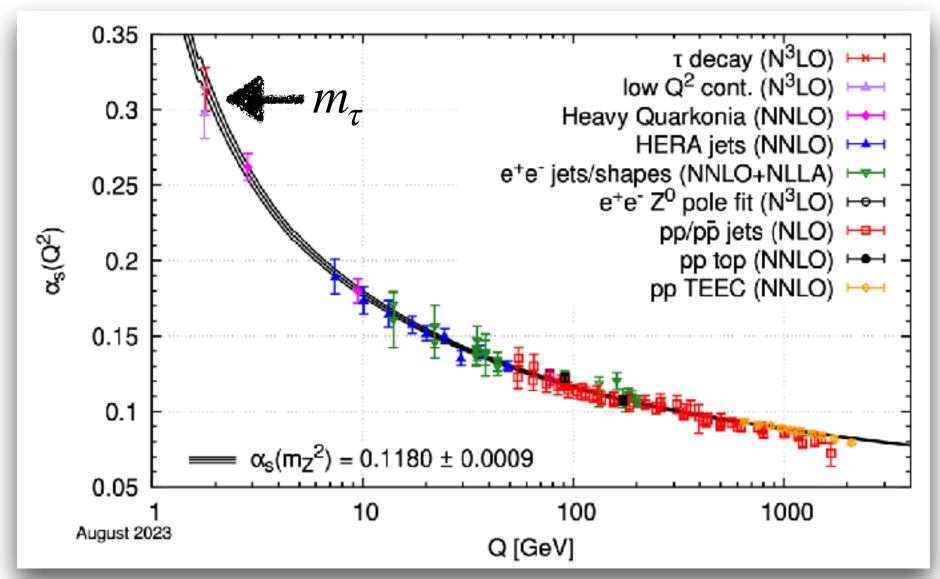
The strong coupling constant, $\alpha_{\rm s}$

- Strong coupling constant $\alpha_{_{\rm S}}$
 - encodes the strength of strong interaction,
 - is a fundamental parameter in the Standard Model (SM) and the Quantum Chromodynamics (QCD).
- However, the $\alpha_{\rm s}$ is less understood compared with the other couplings.

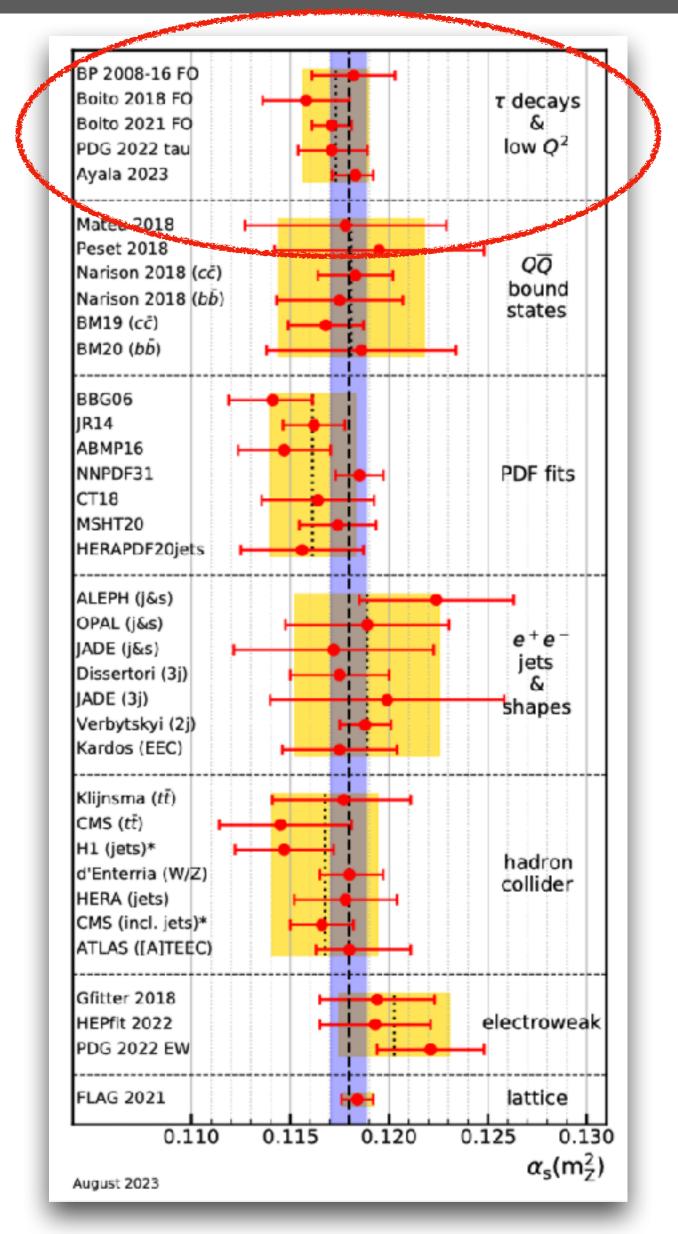
α	$7.2973525693(11) \times 10^{-3}$	1.5×10^{-10}
$G_F/(\hbar c)^3$	$1.1663788(6) \times 10^{-5} \text{ GeV}^{-2}$	5.1×10^{-7}
m_Z	91.1880(20) GeV/c^2	2.2×10^{-5}
$m_W^{}$	80.3692(133) GeV/c ²	1.7×10^{-4}
$\alpha_s(m_Z^2)$	0.1180(9)	7.6×10^{-3}
m_H	$125.20(11) \text{ GeV/}c^2$	8.7×10^{-4}
m_e	$0.51099895000(15) \text{ MeV/}c^2$	2.9×10^{-10}
m_{μ}	$0.1056583755(23) \text{ GeV}/c^2$	2.1×10^{-8}
$m_{ au}$	1.77693(9) GeV/c ²	5.1×10^{-5}
$\overline{m}_u(2 \text{ GeV})$	$2.16(7) \text{ MeV/}c^2$	3.2×10^{-2}
$\overline{m}_d(2 \text{ GeV})$	$4.70(7) \text{ MeV/}c^2$	1.5×10^{-2}
$\overline{m}_s(2 \text{ GeV})$	93.5(8) MeV/ c^2	8.6×10^{-3}
$\overline{m}_c(\overline{m}_c)$	$1.2730(46) \text{ GeV/}c^2$	3.6×10^{-3}
$\overline{m}_b(\overline{m}_b)$	$4.183(7) \text{ GeV/}c^2$	1.7×10^{-3}
m_t	172.57(29) GeV/c ²	1.7×10^{-3}

The strong coupling constant, $\alpha_{\rm s}$

- The value of α_s decreases with the increasing energy scale μ , described by the Renormalization Group Equation (RGE).
- This running behavior corresponds to fundamental properties of asymptotic freedom and color confinement.
 - Measuring $\alpha_{\rm s}(\mu)$ over a wide range of energy scale is crucial for understanding and testing QCD.
- An uncertainty δ on a measurement of $\alpha_{\rm s}(\mu)$, at a scale μ , translates to an uncertainty $\delta' = (\alpha_{\rm s}^2(m_Z)/\alpha_{\rm s}^2(\mu)) \cdot \delta$.
 - Determining $\alpha_s(\mu)$ in the low energy scale provides precise $\alpha_s(m_Z)$.

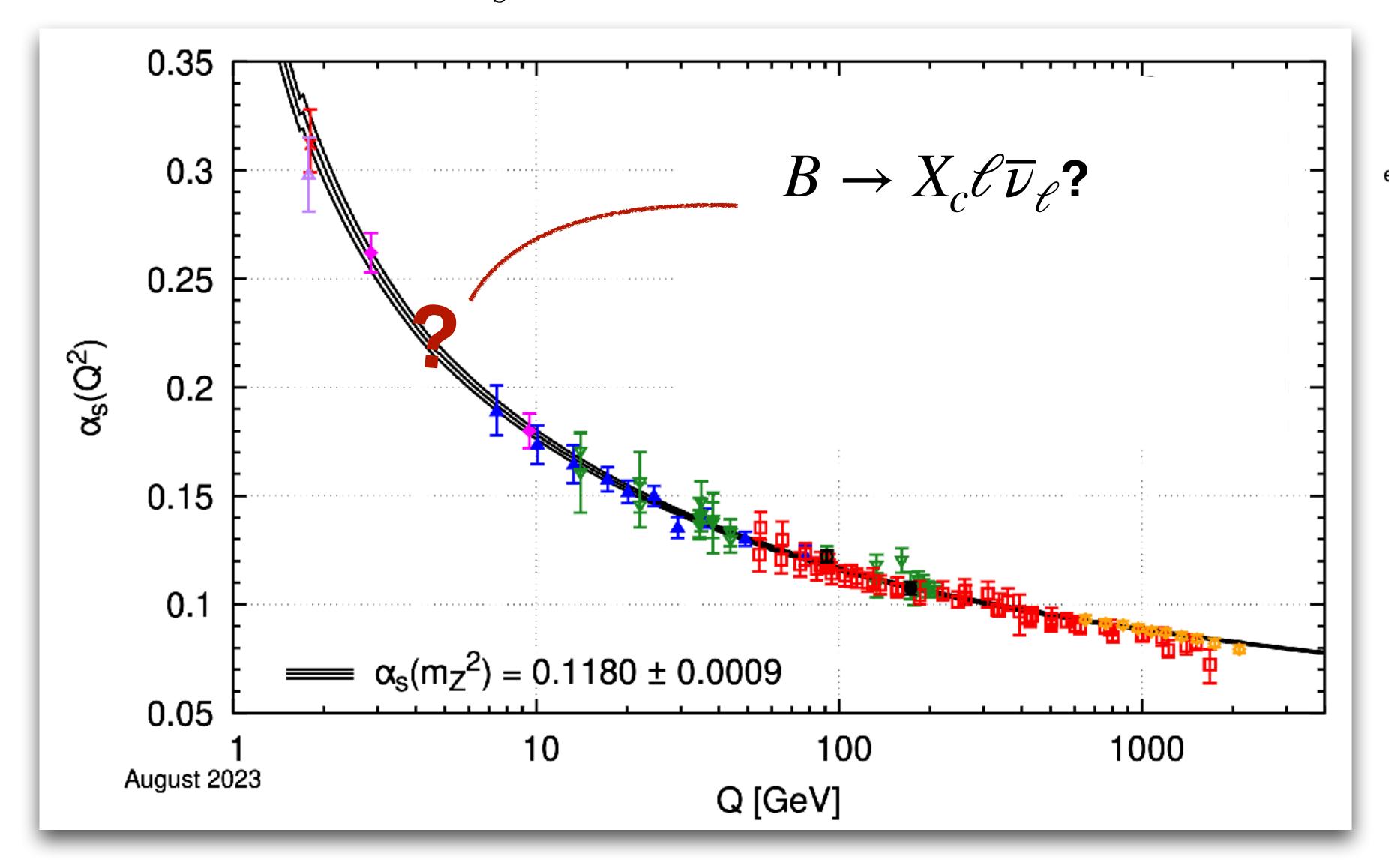


Phys.Rev.D 110 (2024) 3, 030001



The strong coupling constant, $\alpha_{\rm s}$

Is there alternative way for $\alpha_{\rm S}$ determination?



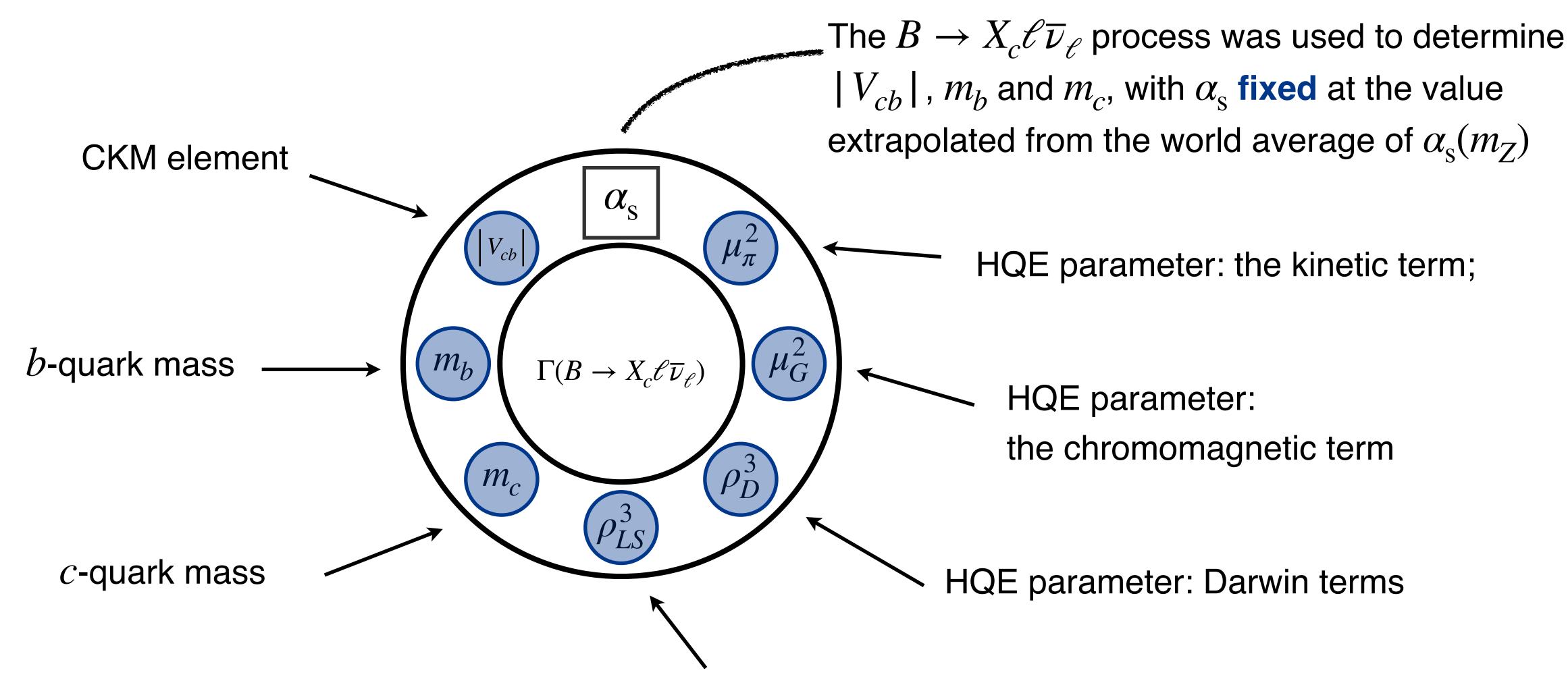
```
t decay (N<sup>3</sup>LO) → low Q<sup>2</sup> cont. (N<sup>3</sup>LO) → Heavy Quarkonia (NNLO) → HERA jets (NNLO) → e<sup>+</sup>e<sup>-</sup> jets/shapes (NNLO+NLLA) → e<sup>+</sup>e<sup>-</sup> Z<sup>0</sup> pole fit (N<sup>3</sup>LO) → pp/pp̄ jets (NLO) → pp top (NNLO) → pp TEEC (NNLO)
```

Heavy quark expansion for $B \to X_c \ell \overline{\nu}_\ell$

In the Heavy Quark Expansion (HQE) framework, the inclusive semileptonic B decay widths can be expressed as double expansions in α_s and quark masses (m_b) :

Heavy quark expansion for $B \to X_c \ell \overline{\nu}_\ell$

$$\Gamma\left(B \to X_c \mathcal{E}\bar{\nu}_{\ell}\right) = \frac{G_F^2 |V_{cb}|^2 m_b^5 A_{\text{ew}}}{192\pi^3} \left[\sum_{i=0,1,2,\cdots} c_i \left(\frac{\alpha_{\text{s}}}{\pi}\right)^i + C_{\mu_{\pi}} \frac{\mu_{\pi}^2}{2m_b^2} + C_{\mu_G} \frac{\mu_G^2}{2m_b^2} + C_{\rho_D} \frac{\rho_D^3}{2m_b^3} + C_{\rho_{LS}} \frac{\rho_{LS}^3}{2m_b^3} + \cdots \right]$$



HQE: spin-orbital terms

Heavy quark expansion for $B \to X_c \ell \overline{\nu}_\ell$ and $D \to X_s \ell \overline{\nu}_\ell$

$$\Gamma\left(B \to X_c \ell \bar{\nu}_{\ell}\right) = \frac{G_F^2 |V_{cb}|^2 m_b^5 A_{\text{ew}}}{192\pi^3} \left[\sum_{i=0,1,2,\cdots} c_i \left(\frac{\alpha_{\text{s}}}{\pi}\right)^i + C_{\mu_{\pi}} \frac{\mu_{\pi}^2}{2m_b^2} + C_{\mu_G} \frac{\mu_G^2}{2m_b^2} + C_{\rho_D} \frac{\rho_D^3}{2m_b^3} + C_{\rho_{LS}} \frac{\rho_{LS}^3}{2m_b^3} + \cdots \right]$$

 $\Gamma(B\to X_c\ell\bar\nu_\ell)$

 m_c

Exclusive B decays W decays, etc

B/D meson masses, Lattice QCD, etc. Extract $\alpha_{\rm s}$ from $B \to X_c \ell \overline{\nu}_\ell$, by fixing the other parameters at external determinations?

HQE parameters:

Differential decay width of $B \to X_c \mathcal{E} \overline{\nu}$ Lattice QCD

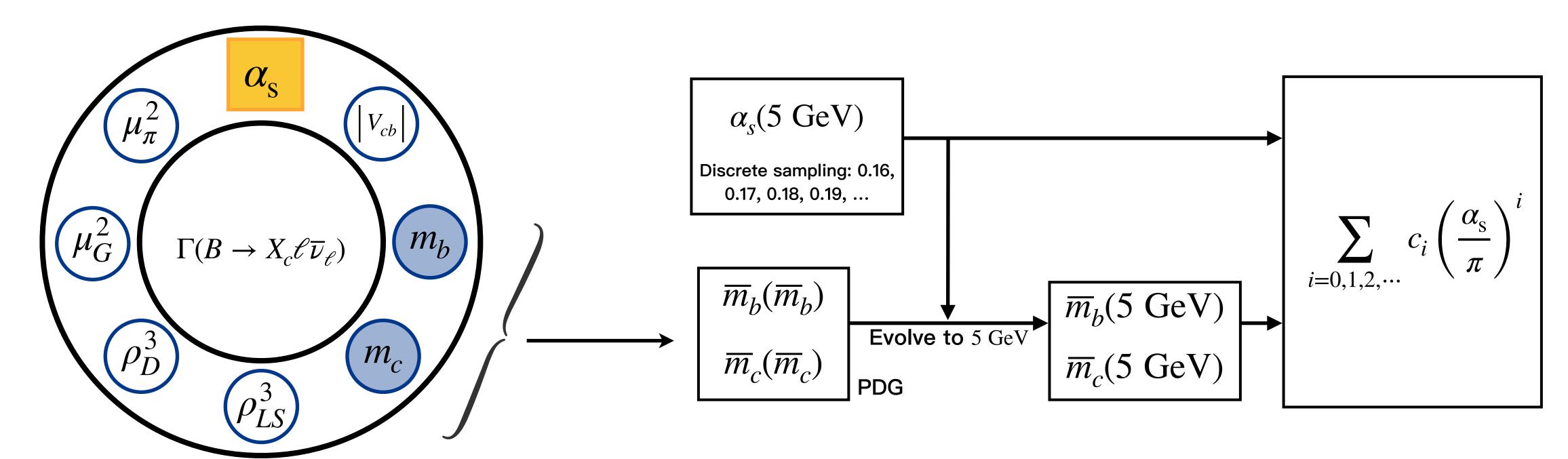
A numerical relation between $\Gamma\left(B\to X_c\ell\bar{\nu}_\ell\right)$ and α_{S}

$$\Gamma\left(B \to X_c \ell \bar{\nu}_\ell\right) = \frac{G_F^2 |V_{cb}|^2 m_b^5 A_{\text{ew}}}{192\pi^3} \left[\sum_{i=0,1,2,\dots} c_i \left(\frac{\alpha_s}{\pi}\right)^i + C_{\mu_\pi} \frac{\mu_\pi^2}{2m_b^2} + C_{\mu_G} \frac{\mu_G^2}{2m_b^2} + C_{\rho_D} \frac{\rho_D^3}{2m_b^3} + C_{\rho_{LS}} \frac{\rho_{LS}^3}{2m_b^3} + \cdots \right]$$

Leading-order power correction:

 \mathbf{c}_i : calculated to 4th order, depending on m_b, m_c . [1,2]

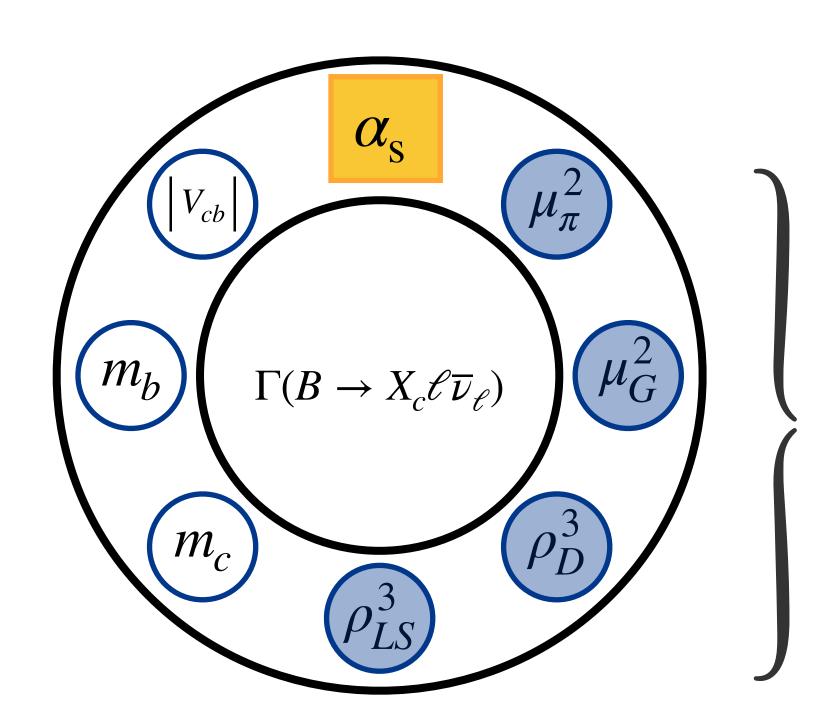
reformulated consistently in terms of the $\overline{\text{MS}}$ -renormalized quark masses $\overline{m}_b(\mu)$, $\overline{m}_c(\mu)$ and $\alpha_s(\mu)$, with $\mu=5~\mathrm{GeV}$.



A numerical relation between $\Gamma\left(B\to X_c\ell\bar{\nu}_\ell\right)$ and α_{S}

$$\Gamma\left(B \to X_c \ell \bar{\nu}_{\ell}\right) = \frac{G_F^2 |V_{cb}|^2 m_b^5 A_{\text{ew}}}{192\pi^3} \left[\sum_{i=0,1,2,\dots} c_i \left(\frac{\alpha_s}{\pi}\right)^i + C_{\mu_{\pi}} \frac{\mu_{\pi}^2}{2m_b^2} + C_{\mu_G} \frac{\mu_G^2}{2m_b^2} + C_{\rho_D} \frac{\rho_D^3}{2m_b^3} + C_{\rho_{LS}} \frac{\rho_{LS}^3}{2m_b^3} + \cdots \right] \right]$$

- 2nd and 3rd order power corrections:
 - decrease the decay width by $\sim 7\%$ [arXiv:1009.4622].



• The the coefficients are also series of $\alpha_{\rm S}$, in the kinetic scheme, [1]

$$C_{\mu_{\pi}} = 2\mathbf{c}_{0} \left(\frac{1}{2} - 0.99 \frac{\alpha_{s}}{\pi}\right), C_{\mu_{G}} = -2\mathbf{c}_{0} \left(1.94 + 3.46 \frac{\alpha_{s}}{\pi}\right), \text{ etc.}$$

The non-perturbative parameters: [2]

•
$$\mu_{\pi}^2 = 0.477 \pm 0.056 \, \mathrm{GeV^2}$$
, $\mu_{G}^2 = 0.306 \pm 0.050 \, \mathrm{GeV^2}$, etc

- The higher order power corrections are estimated around -7%, with the coefficients estimated using their first terms.
- . Truncation error: $\mathcal{O}(\alpha_{\rm S}/m_b^{2,3})$ terms and $\mathcal{O}(1/m_b^{4,5})$ terms, ~ 2.3%.

Determining $\alpha_{\rm s}$ from $\Gamma\left(B \to X_c \ell \bar{\nu}_\ell\right)$

$$\Gamma\left(B \to X_c \ell \bar{\nu}_\ell\right) = \frac{G_F^2 |V_{cb}|^2 m_b^5 A_{\text{ew}}}{192\pi^3} \left[\sum_{i=0,1,2,\dots} c_i \left(\frac{\alpha_{\text{s}}}{\pi}\right)^i + C_{\mu_{\pi}} \frac{\mu_{\pi}^2}{2m_b^2} + C_{\mu_G} \frac{\mu_G^2}{2m_b^2} + C_{\rho_D} \frac{\rho_D^3}{2m_b^3} + C_{\rho_{LS}} \frac{\rho_{LS}^3}{2m_b^3} + \cdots \right]$$

Experimental inputs: the lifetime and the branching ratios,

$$\tau_{B^{\pm}} = 1.638 \pm 0.004 \,\mathrm{ps}, \mathcal{B}(B^{\pm} \to X_c \ell \nu) = 10.8 \pm 0.4 \,\%, \tau_{B^0} = 1.517 \pm 0.004 \,\mathrm{ps}, \mathcal{B}(B^0 \to X_c \ell \nu) = 10.1 \pm 0.4 \,\%.$$

TABLE I. The parameters used during the construction of the theoretical model.

Parameter	Notation	Value & error	Note
Fermi coupling constant	G_F	$1.16637886 \times 10^{-5} \ \mathrm{GeV^{-2}}$	[50]
Electroweak correction factor	$A_{ m ew}$	1.014	[51]
CKM matrix element	$ V_{cb} $	0.0398 ± 0.0006	[50]
b -quark mass in $\overline{\mathrm{MS}}$	$\overline{m}_b(\overline{m}_b)$	$4.18^{+0.03}_{-0.02}{ m GeV}$	[50]
c -quark mass in $\overline{\mathrm{MS}}$	$\overline{m}_c(\overline{m}_c)$	$1.27\pm0.02\mathrm{GeV}$	[50]
HQE parameters	$egin{array}{c} \mu^2_\pi \ \mu^2_G \ ho^3_D \end{array}$	$0.477 \pm 0.056 \mathrm{GeV^2}$	[28]
	μ_G^2	$0.306 \pm 0.050 \mathrm{GeV^2}$	[28]
	$ ho_D^3$	$0.185 \pm 0.031 \mathrm{GeV^2}$	[28]
	$ ho_{LS}^{3}$	$-0.130 \pm 0.092 \mathrm{GeV^2}$	[2 8]
b-quark mass in kinetic scheme	$m_b^{ m kin}$	$4.573 \pm 0.012\mathrm{GeV}$	[2 8]

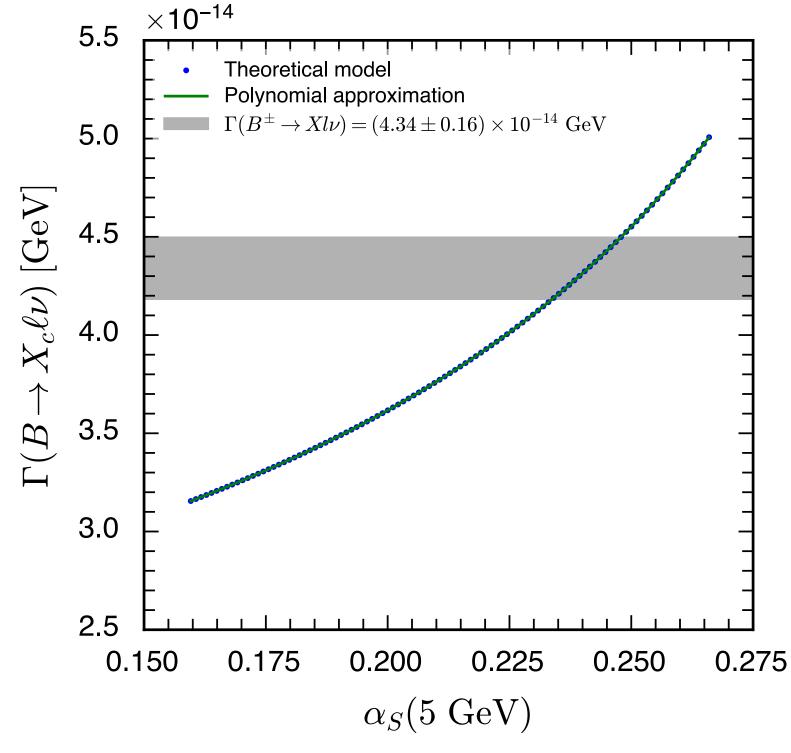


FIG I. The numerical dependence of $\Gamma\left(B \to X_c \ell \bar{\nu}_\ell\right)$ versus $\alpha_{\rm s}(5\,{\rm GeV})$, compared with experimental measurement of B^\pm .

Determining $\alpha_{\rm s}$ from $\Gamma\left(B \to X_c \ell \bar{\nu}_\ell\right)$

The
$$\chi^2$$
 fit, defined as $\chi^2(\alpha_{\rm S}) = \frac{[\Gamma_B - \hat{\Gamma}_B(\alpha_{\rm S})]^2}{\sigma_{\Gamma_{B,\rm exp}}^2 + \sigma_{\Gamma_{B,\rm theo}}^2}$, yields $\alpha_{\rm S}(5~{\rm GeV}) = 0.246 \pm 0.013$

Combining the two fits gives $\alpha_{\rm s}(5\,{\rm GeV})=0.245\pm0.009$, corresponding to $\alpha_{\rm s}(m_Z)=0.1266\pm0.0023$.

This resulting precision is comparable to the PDG averages of $\alpha_s(m_Z)$ obtained from other experimental methods.

TABLE. The relative uncertainty contributions to the theoretical prediction of $\Gamma\left(B\to X_c\ell\bar{\nu}_\ell\right)$ and the $\alpha_{\rm s}(5\,{\rm GeV})$ fitting result using $\Gamma\left(B\to X_c\ell\bar{\nu}_\ell\right)$. Values in the parenthesis are the perspective values considering future improvements.

	Γ_{sl} prediction [%]	$\alpha_s(5\mathrm{GeV})~[\%]$
$ V_{cb} = 0.0398 \pm 0.0006$	3.0 (1.4)	2.1 (1.0)
$\overline{m}_b(\overline{m}_b) = 4.18^{+0.03}_{-0.02} \text{GeV}$	3.0(1.1)	2.1(0.8)
$\overline{m}_c(\overline{m}_c) = 1.27 \pm 0.02 \mathrm{GeV}$	2.1(1.4)	1.4(1.0)
R-scale $\mu = 5^{+5}_{-2.5} { m GeV}$	4.4 (2.2)	3.1(1.6)
High-order power corrections	$2.3\ (2.3)$	1.6 (1.6)
$\tau_{B^{\pm}} = 1.638 \pm 0.004 \mathrm{ps}$	-	0.2
$\mathcal{B}(B^{\pm} \to X_c \ell \nu) = 10.8 \pm 0.4 \%$	-	3.0(2.2)
Sum	6.9(3.2)	5.7(3.5)

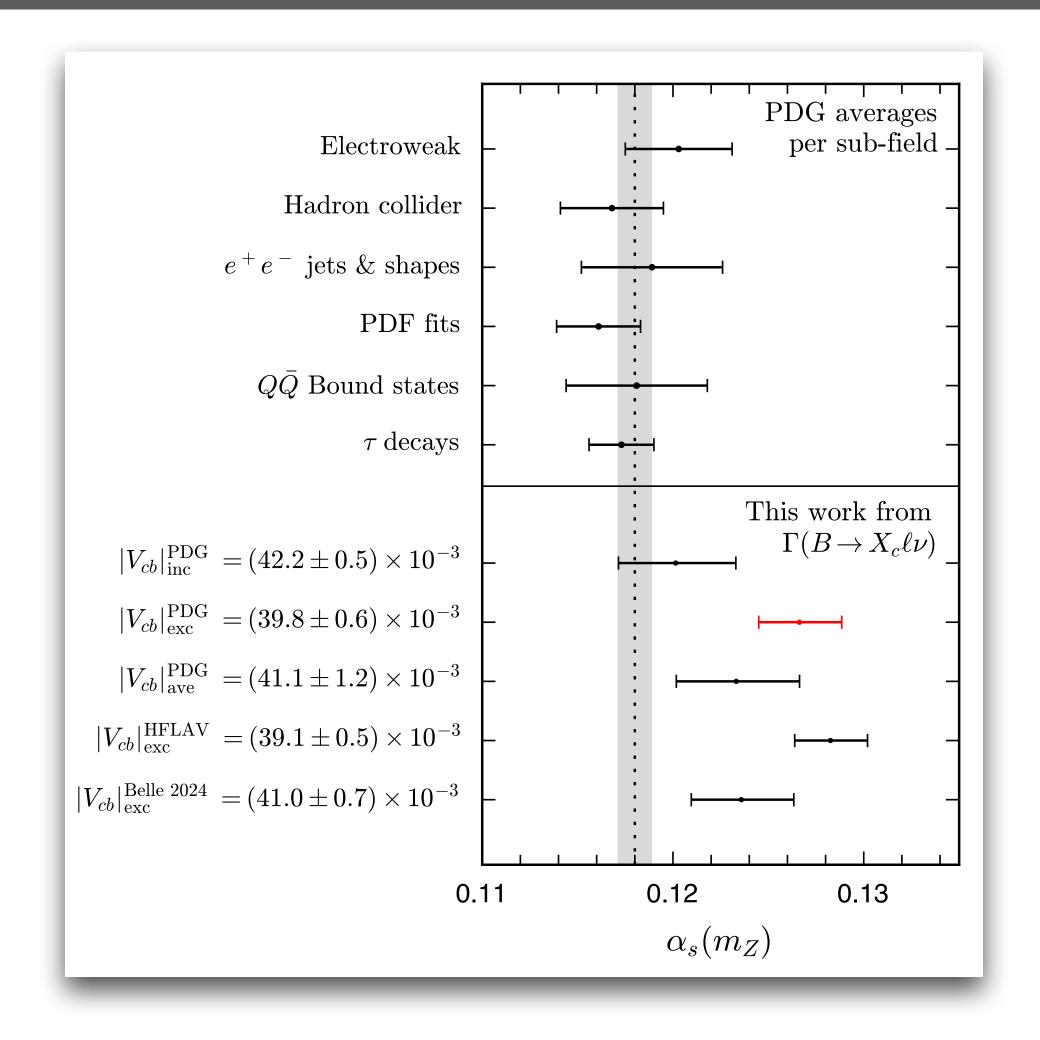


FIG. The comparison of the $\alpha_{\rm s}(m_Z)$ pre-averages from six experimental subfields in PDG and the extrapolated values obtained in this work. The running of $\alpha_{\rm s}$ along the energy scale is conducted using the RunDec package [arXiv:hep-ph/0004189]

Determining $\alpha_{\rm S}$ from $\Gamma\left(B \to X_c \ell \bar{\nu}_\ell\right)$

- Primary uncertainties:
 - the perturbative expansion;
 - Branching ratio
 - the value of $|V_{ch}|$
- The resulting $\alpha_{\rm s}(5~{\rm GeV})$ is larger than the world average value by ~ 2σ , which is correlated with the $|V_{ch}|$ puzzle.

TABLE. The relative uncertainty contributions to the theoretical prediction of $\Gamma\left(B\to X_c\ell\bar{\nu}_\ell\right)$ and the $\alpha_{\rm s}(5\,{\rm GeV})$ fitting result using $\Gamma\left(B\to X_c\ell\bar{\nu}_\ell\right)$. Values in the parenthesis are the perspective values considering future improvements.

	Γ_{sl} prediction [%]	$\alpha_s(5\mathrm{GeV})~[\%]$
$ V_{cb} = 0.0398 \pm 0.0006$	3.0 (1.4)	2.1 (1.0)
$\overline{m}_b(\overline{m}_b) = 4.18^{+0.03}_{-0.02} \text{GeV}$	3.0(1.1)	2.1(0.8)
$\overline{m}_c(\overline{m}_c) = 1.27 \pm 0.02 \mathrm{GeV}$	2.1(1.4)	1.4(1.0)
R-scale $\mu = 5^{+5}_{-2.5} { m GeV}$	4.4 (2.2)	3.1(1.6)
High-order power corrections	2.3 (2.3)	1.6 (1.6)
$\tau_{B^{\pm}} = 1.638 \pm 0.004 \mathrm{ps}$	-	0.2
$\mathcal{B}(B^{\pm} \to X_c \ell \nu) = 10.8 \pm 0.4 \%$	-	3.0(2.2)
Sum	6.9(3.2)	5.7(3.5)

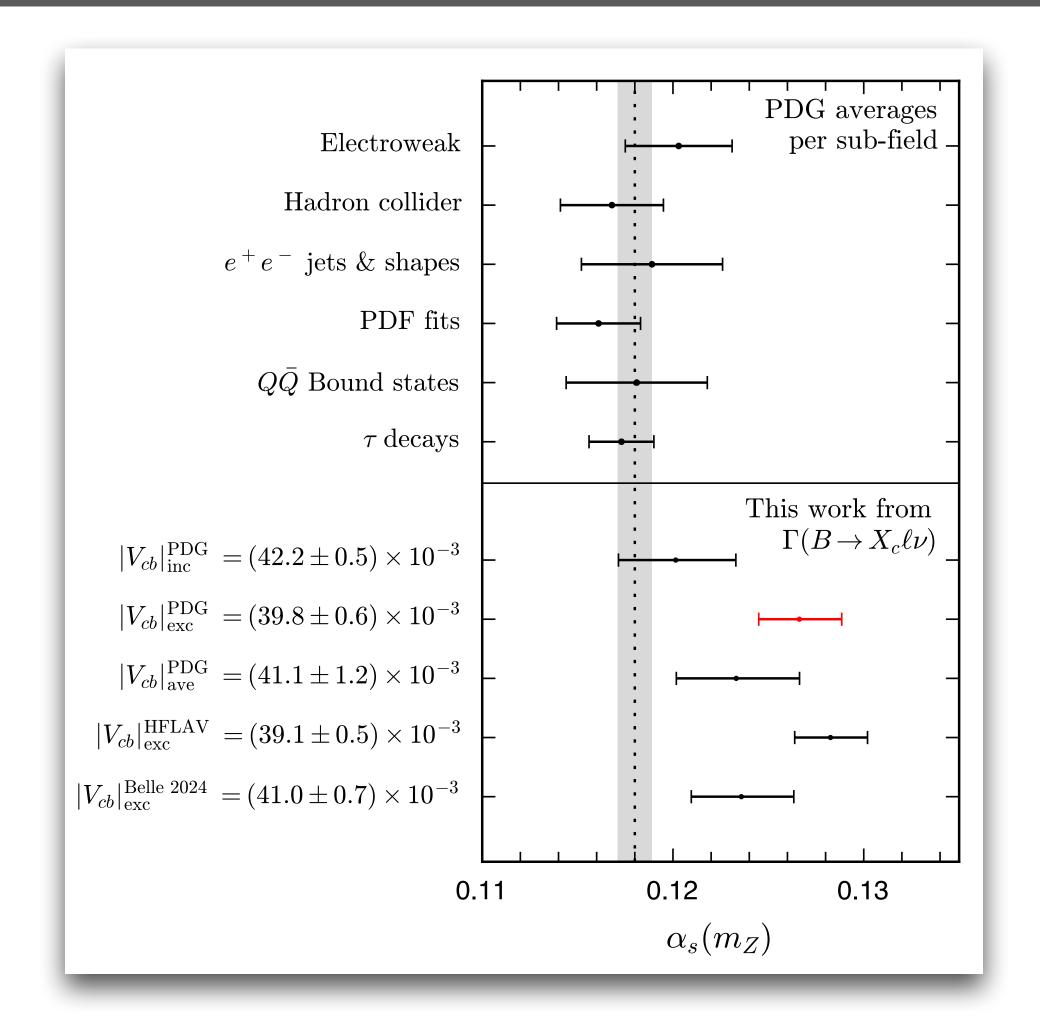


FIG. The comparison of the $\alpha_{\rm s}(m_Z)$ pre-averages from six experimental subfields in PDG and the extrapolated values obtained in this work. The running of $\alpha_{\rm s}$ along the energy scale is conducted using the RunDec package [arXiv:hep-ph/0004189]

Determining $\alpha_{\rm S}$ from $\Gamma\left(B \to X_c \ell \bar{\nu}_\ell\right)$

Prospects:

- $|V_{cb}|$ and B decay should be deeper understood at Belle II and future Z factories.
- other improvement from:
 - · higher-order perturbation calculation,
 - lattice determinations of b- and c-quark masses.

TABLE. The relative uncertainty contributions to the theoretical prediction of $\Gamma\left(B\to X_c\ell\bar{\nu}_\ell\right)$ and the $\alpha_{\rm s}(5~{\rm GeV})$ fitting result using $\Gamma\left(B\to X_c\ell\bar{\nu}_\ell\right)$. Values in the parenthesis are the perspective values considering future improvements.

	Γ_{sl} prediction [%]	$\alpha_s(5{\rm GeV})$ [%]
$ V_{cb} = 0.0398 \pm 0.0006$	3.0 (1.4)	2.1 (1.0)
$\overline{m}_b(\overline{m}_b) = 4.18^{+0.03}_{-0.02} \text{GeV}$	3.0(1.1)	2.1(0.8)
$\overline{m}_c(\overline{m}_c) = 1.27 \pm 0.02 \mathrm{GeV}$	2.1 (1.4)	1.4(1.0)
R-scale $\mu = 5^{+5}_{-2.5} \text{GeV}$	4.4 (2.2)	3.1(1.6)
High-order power corrections	2.3(2.3)	1.6(1.6)
$\tau_{B^{\pm}} = 1.638 \pm 0.004 \mathrm{ps}$	-	0.2
$\mathcal{B}(B^{\pm} \to X_c \ell \nu) = 10.8 \pm 0.4 \%$	-	3.0(2.2)
Sum	6.9(3.2)	5.7 (3.5)

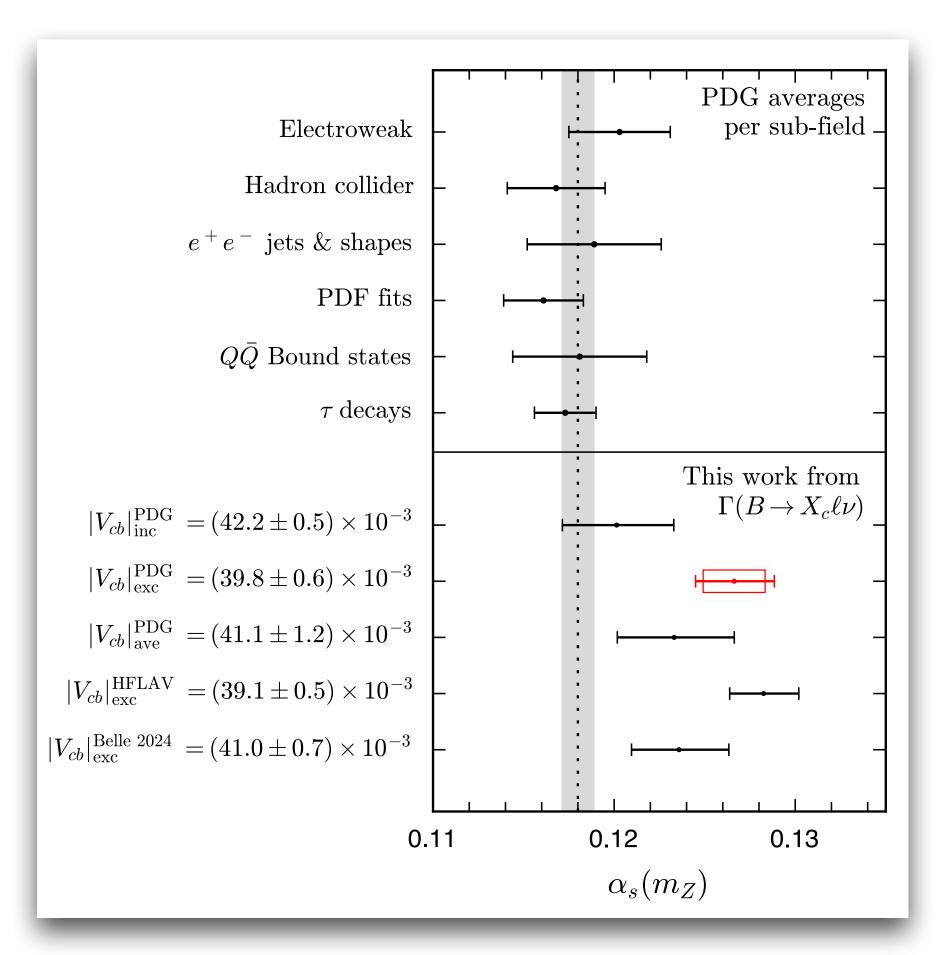


FIG. The comparison of the $\alpha_{\rm s}(m_{\rm Z})$ pre-averages from six experimental subfields in PDG and the extrapolated values obtained in this work. The running of $\alpha_{\rm s}$ along the energy scale is conducted using the RunDec package [arXiv:hep-ph/0004189]

Determining $\alpha_{\rm S}$ from $\Gamma\left(D \to X_{\rm S} \ell \bar{\nu}_{\ell}\right)$

Another work on $D \to X_c \mathcal{E} \overline{\nu}$ [arXiv:2406.16119], using

$$\Gamma\left(D \to X_{s} \ell \bar{\nu}_{\ell}\right) = \frac{G_{F}^{2} |V_{cs}|^{2} m_{c}^{5} A_{ew}}{192\pi^{3}} \Big[$$

$$f_{0} + f_{1} \frac{\alpha_{s}}{\pi} + f_{2} (\frac{\alpha_{s}}{\pi})^{2} + \mathcal{O}(\alpha_{s}^{3})$$

$$+ f_{\mu_{\pi}} \frac{\mu_{\pi}^{2}}{2m_{c}^{2}} + f_{\mu_{G}} \frac{\mu_{G}^{2}}{2m_{c}^{2}}$$

$$+ f_{\rho_{D}} \frac{\rho_{D}^{3}}{2m_{c}^{3}} + f_{\rho_{LS}} \frac{\rho_{LS}^{3}}{2m_{c}^{3}} + \frac{32\pi^{2}}{m_{c}^{3}} B_{WA}$$

$$+ \cdots \Big]$$

yields, $\alpha_{\rm s}(m_c) = 0.445 \pm 0.009_{\rm exp} \pm 0.081_{m_c} \pm 0.056_{\rm trun} \pm 0.057_{\rm others}$

The HQE expressions of the semi-leptonic D & B decay widths share the same parameters.

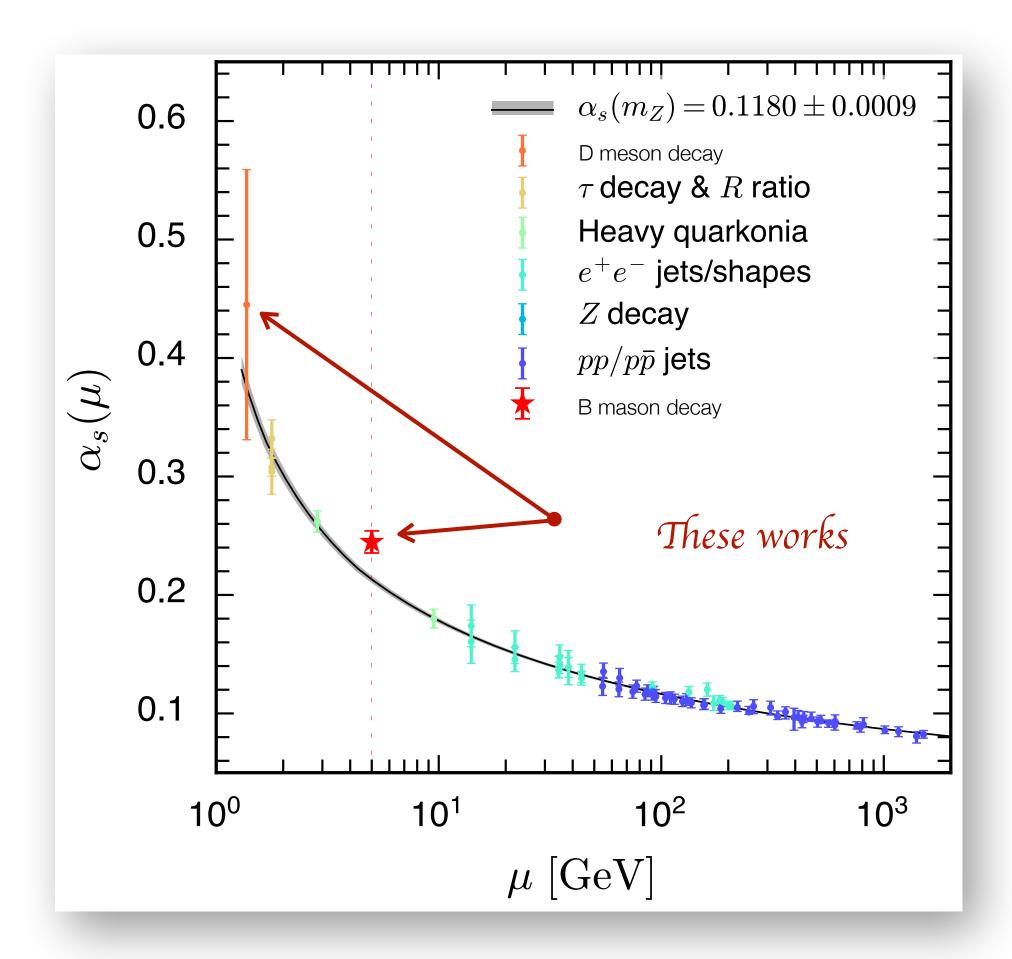
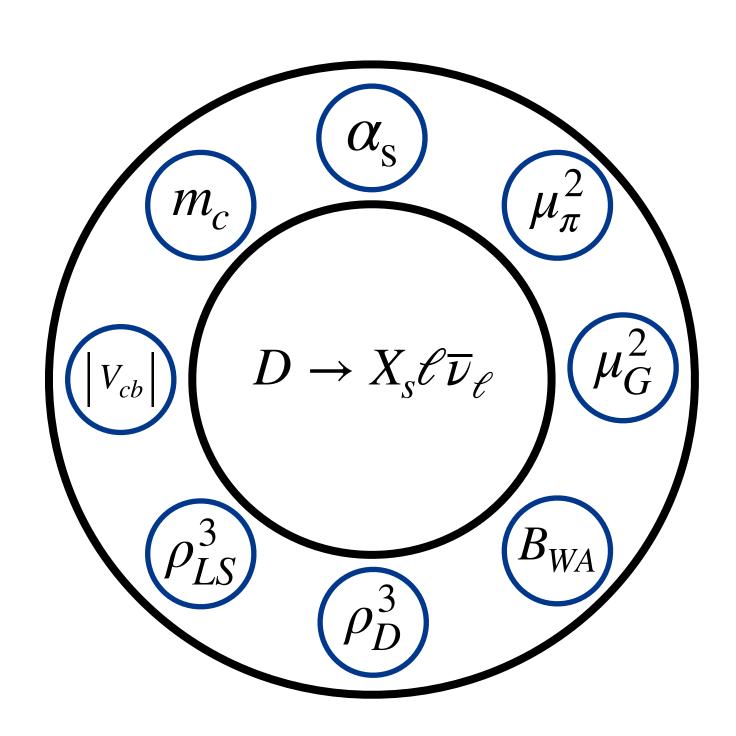


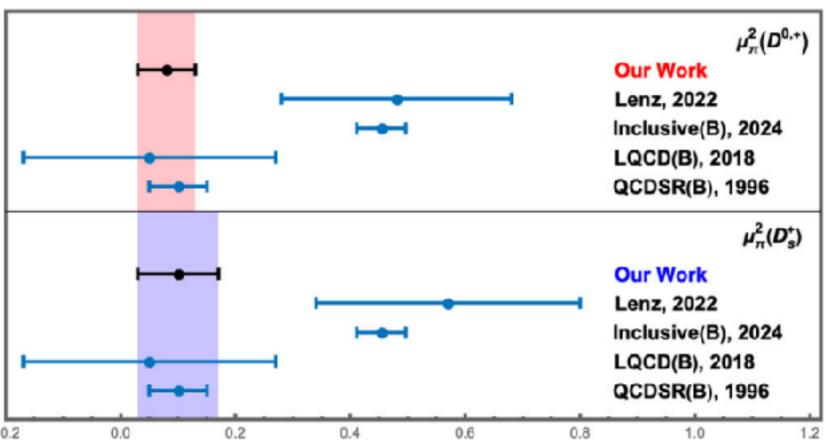
FIG. Comparison of the $\alpha_{\rm s}(5~{\rm GeV})$ and $\alpha_{\rm s}(m_c)$ results with the $\alpha_{\rm s}$ determinations at different energy scales.

Discussion

Recent studies determine the HQE parameters from $D \to X_c \ell \overline{\nu}$, providing good precision.

[JHEP 05 (2025) 061], [Eur.Phys.J.C 85 (2025) 9, 1011]





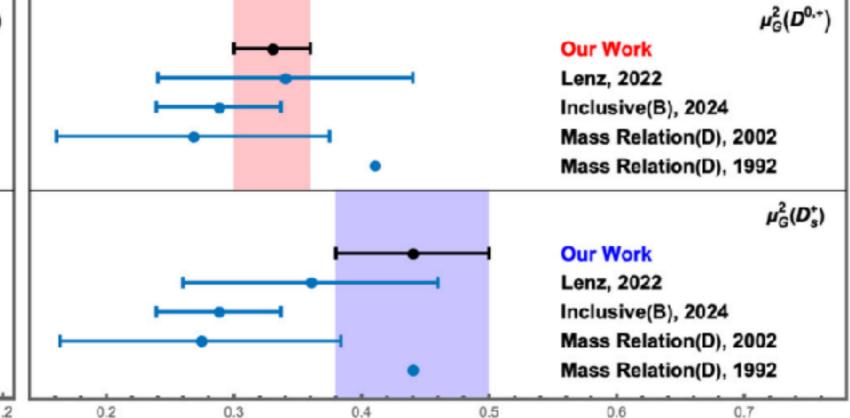


Fig. 1 The comparison between the results for μ_{π}^2 (left) and μ_{G}^2 (right) in "Our work" and those obtained in the literature. The "Inclusive(B), 2024" [38] results are obtained in a global fit to semi-leptonic inclusive B decay observables for the corresponding B meson parameters in the kinetic mass scheme, which are related to the D meson ones by the heavy quark symmetry. The "LQCD(B), 2018" [50] and "QCDSR(B),

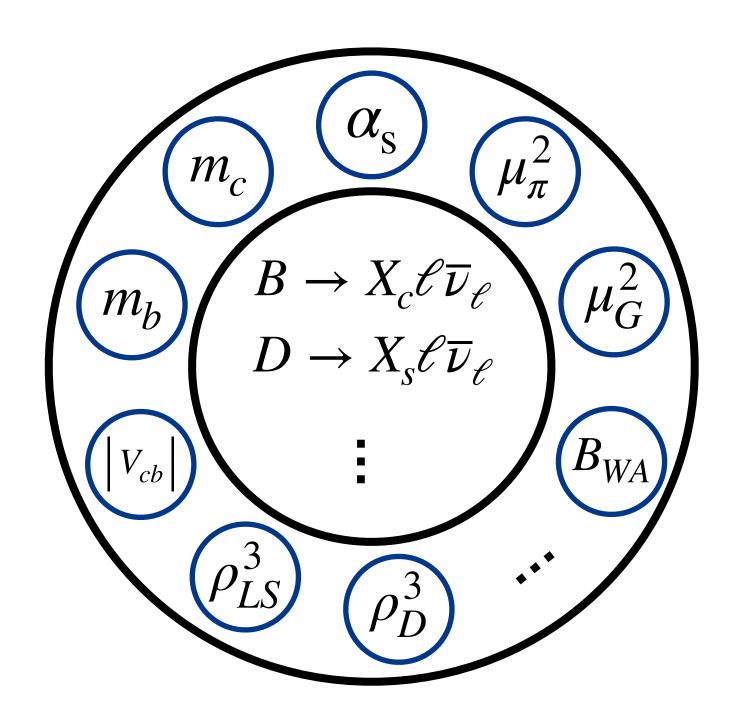
1996" [51] results for μ_{π}^2 are also for the *B* meson, calculated by using lattice QCD and QCD sum rules, respectively. The "Mass Relation(D), 2002" [52] and "Mass Relation(D), 1992" [53] results for μ_G^2 are obtained by using the two versions of mass relations between the $D_{(s)}$ and $D_{(s)}^*$ mesons

Eur.Phys.J.C 85 (2025) 9, 1011

Discussion

Eventually, a global fit combing multi-processes, multiple observables is expected,

- Simultaneously extract α_s and other parameters.
- Validate the consistency of the HQE theory.



CEPC Tera-Z provides valuable experimental input!

Particle	BESIII	$STCF (1 ab^{-1})$	Belle II (50 ab ⁻¹ on $\Upsilon(4S)$)	LHCb (300 fb^{-1})	CEPC (TDR)
B^0, \bar{B}^0	-	-	$5.4 imes 10^{10}$	3×10^{13}	4.8×10^{11}
B^\pm	-	-	5.7×10^{10}	3×10^{13}	4.8×10^{11}
$B^0_s,ar{B}^0_s$	-	-	$6.0 \times 10^8 \ (5 \ \mathrm{ab^{-1}} \ \mathrm{on} \ \Upsilon(5S))$	1×10^{13}	$1.2 imes 10^{11}$
B_c^\pm	-	-	-	1×10^{11}	$7.2 imes 10^8$
$\Lambda_b^0,ar{\Lambda}_b^0$	-	-	-	2×10^{13}	1×10^{11}
$D^0,ar{D}^0$	1.2×10^8	7.2×10^9	4.8×10^{10}	7×10^{14}	8.3×10^{11}
D^\pm	$1.2 imes 10^8$	$5.6 imes10^9$	$4.8 imes 10^{10}$	$3 imes 10^{14}$	$4.9 imes 10^{11}$
D_s^\pm	1×10^7	$1.8 imes 10^9$	$1.6 imes 10^{10}$	1×10^{14}	$1.8 imes 10^{11}$
Λ_c^\pm	$0.3 imes 10^7$	$1.1 imes 10^9$	$1.6 imes 10^{10}$	1×10^{14}	$6.2 imes 10^{10}$
$ au^+ au^-$	3.6×10^8	$3.6 imes 10^9$	4.5×10^{10}		1.2×10^{11}

[2025 Chinese Phys. C 49 103003] Expected yields of b-hadrons, c-hadrons, and τ leptons at BESIII, STCF, Belle II, LHCb Upgrade II, and CEPC.

Summary

As a fundamental parameter of QCD, $\alpha_{\rm s}$ widely entangled in the observables of semileptonic decays of heavy mesons.

- The HQE expression of $\Gamma\left(B\to X_c\ell\bar{\nu}_\ell\right)$ shows enough sensitivity to support a determination of $\alpha_{\rm s}$ with a precision comparable to the existing approaches.
 - A 2σ larger $\alpha_{\rm s}(m_{\rm Z})$ is obtained, which is correlated to the $|V_{cb}|$ puzzle.
- Eventually, a global fit combing multi-processes, multiple observables is expected.
- CEPC provides valuable experimental input:
 - Precise $|V_{ch}|$ determination.
 - Provide experimental data of semileptonic B/D decays.

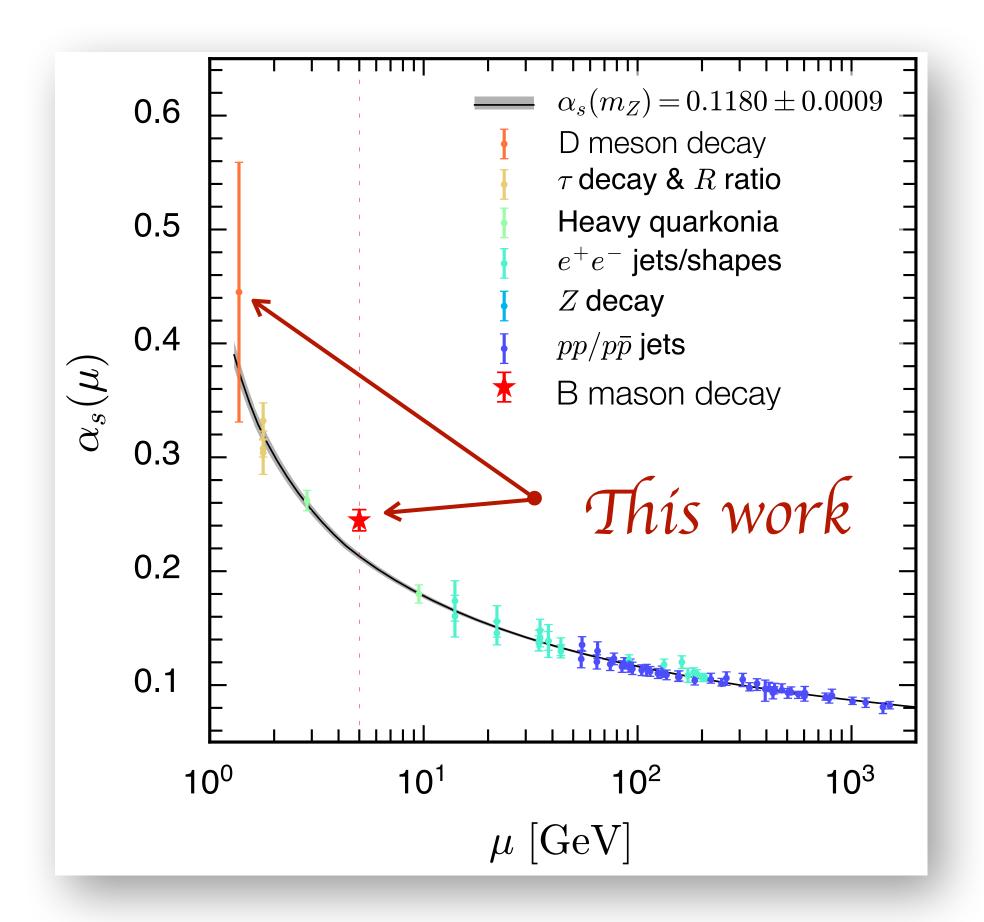
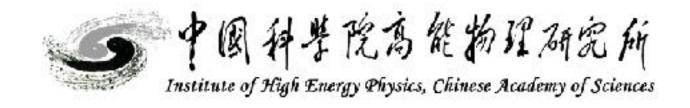


FIG. The $\alpha_{\rm s}(5\,{\rm GeV})$ and $\alpha_{\rm s}(m_c)$ result compared with the $\alpha_{\rm s}$ measurements at other energy scales.



Thanks for your attention

Yuzhi Che

Institute of High Energy Physics Chinese Academy of Sciences

arXiv:2412.02480,

with Long Chen, Jinfei Wu, Xinchou Lou, Xiang Chen, Xin Guan, Yan-Qing Ma, Manqi Ruan.

The 2025 International Workshop on the High Energy Circular Electron Positron Collider