

New Particle Discovery Potential

The 2025 International Workshop on the High Energy Circular Electron Positron Collider

November 10th 2025, Guangzhou, China

The BSM Potential of CEPC

see talk by Yongchao Zhang

figure from CEPC WP 2505.24810

Juraj Klarić 2/56

The BSM Potential of CEPC

see talk by Yongchao Zhang



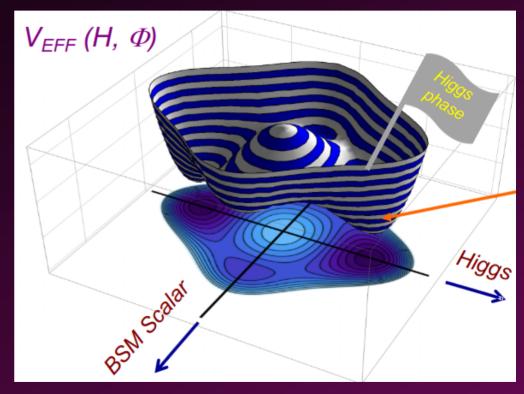
figure from CEPC WP 2505.24810

Juraj Klarić 3/56

The BSM Potential of CEPC

see talk by Yongchao Zhang

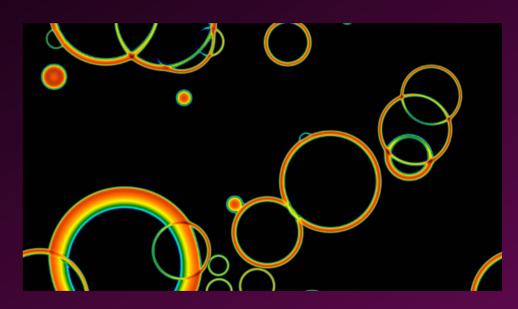
figure from CEPC WP 2505.24810


Juraj Klarić 4/56

The Higgs Boson as a Portal to New Particles

see talk by Andreas Crivellin

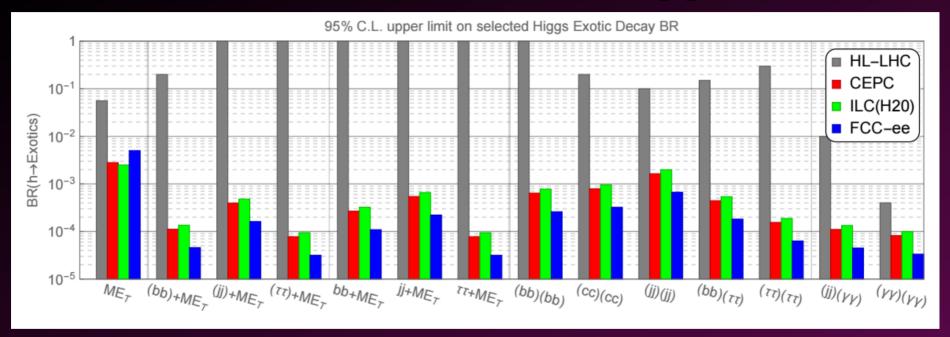
Higgs and the thermal history of the Universe


- In the SM, there are no first-order phase transitions (FOPT)
- Modifications of the Higgs potential could lead to a FOPT
- Large deviation from equilibrium can lead to baryogenesis
- Colliding bubbles of true vacuum –
 Gravitational Waves?
- Potential complementarity between GW observatories (LISA) and future colliders?

See talk by M.J. Ramsey -Musolf

Higgs and the thermal history of the Universe

- In the SM, there are no first-order phase transitions (FOPT)
- Modifications of the Higgs potential could lead to a FOPT
- Large deviation from equilibrium can lead to baryogenesis
- Colliding bubbles of true vacuum –
 Gravitational Waves?
- Potential complementarity between GW observatories (LISA) and future colliders?

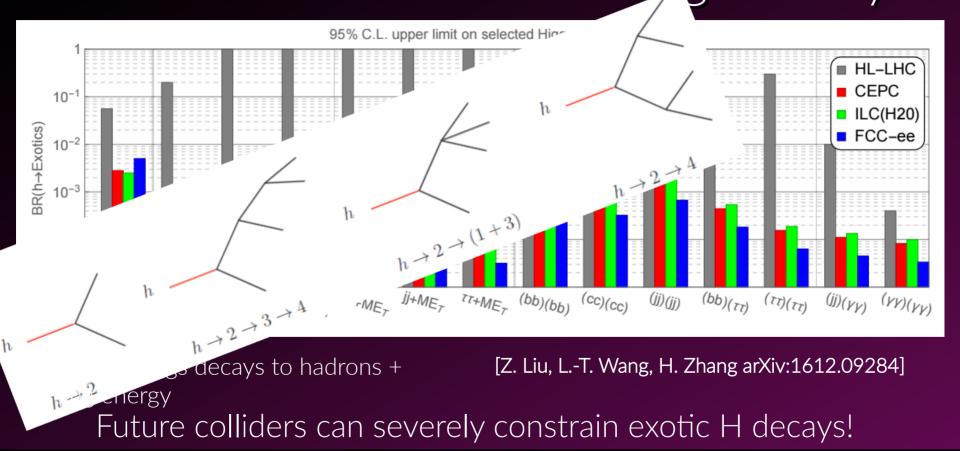


D. Weir 1705.01783

See talk by M.J. Ramsey - Musolf

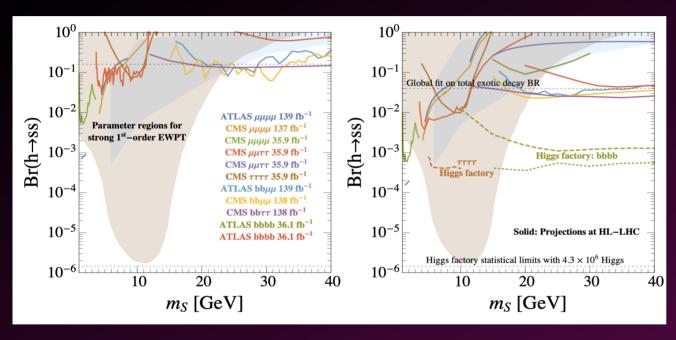
Juraj Klarić'

Probes of EWPT in Exotic Higgs Decays?


Search for Higgs decays to hadrons + missing energy

[Z. Liu, L.-T. Wang, H. Zhang arXiv:1612.09284]

Future colliders can severely constrain exotic H decays!

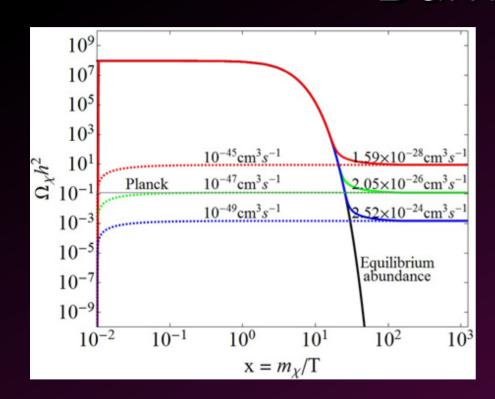

Juraj Klarić 8/56

Probes of EWPT in Exotic Higgs Decays?

Juraj Klarić 9/56

Probes of EWPT in Exotic Higgs Decays

- Protic decays at CEPC probe a large portion of 1st order EWPT parameter space
- Crucial channels at h-factories:
 - $h \rightarrow bbbb$
 - $h \rightarrow \tau \tau \tau \tau$

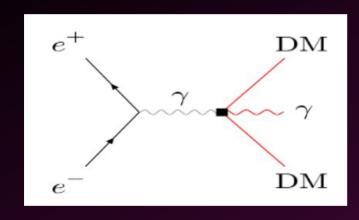

[Carena, Kozaczuk, Liu, Ou, Ramsey-Musolf, Shelton, Wang & Xie, 2203.08206]

Juraj Klarić 10/56

Dark Matter and Dark Sectors

Juraj Klarić 11/56

Dark Matter

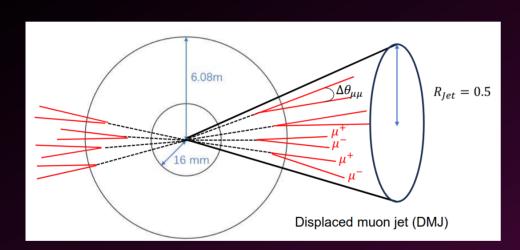


[fig from 1311.5297]

- A variety of DM scenarios could be tested:
 - WIMPs produced via thermal freezeout
 - FIMPs produced via freeze-in
- Many possible production mechanisms
- If produced in an EFT regime, DM abundance sensitive reheating

$$Y_{\rm DM}(T) \sim \frac{5 \times 10^4 \, M_{Pl}}{g_{*s}(T) \sqrt{g_{*}(T)} \, \pi^8} \left(\frac{T_{\rm RH}^5 - T^5}{\Lambda^6} \right)_{\gamma}^{\gamma}$$

see the talk by Sahabub Jahedi

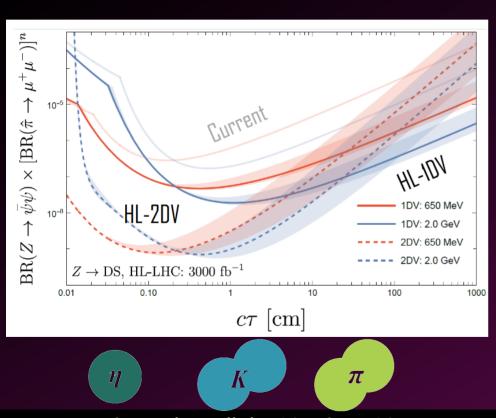


from the talk by Sahabub Jahedi

- Plethora of possible signatures
- Monophoton
- Dark Quarks:
 - dark showers
 - dark mesons
- orders of magnitude improvement at the CEPC

see talks by Changbin Xi and Linfeng Li

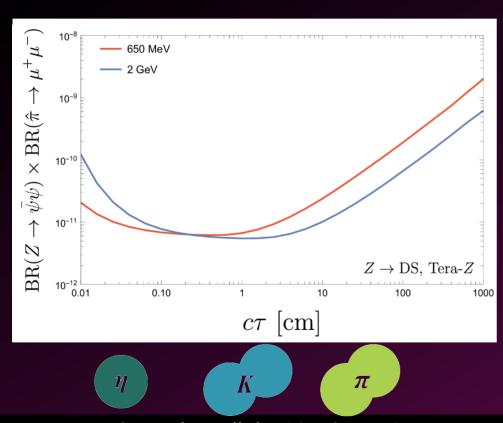
Juraj Klarić 13/56



from the talk by Changbin Xi

- Plethora of possible signatures
- Monophoton
- Dark Quarks:
 - dark showers
 - dark mesons
- orders of magnitude improvement at the CEPC

see talks by Changbin Xi and Linfeng Li


Juraj Klarić 14/56

- Plethora of possible signatures
- Monophoton
- Dark Quarks:
 - dark showers
 - dark mesons
- orders of magnitude improvement at the CEPC

see talks by Changbin Xi and Linfeng Li

Juraj Klarić

- Plethora of possible signatures
- Monophoton
- Dark Quarks:
 - dark showers
 - dark mesons
- orders of magnitude improvement at the CEPC

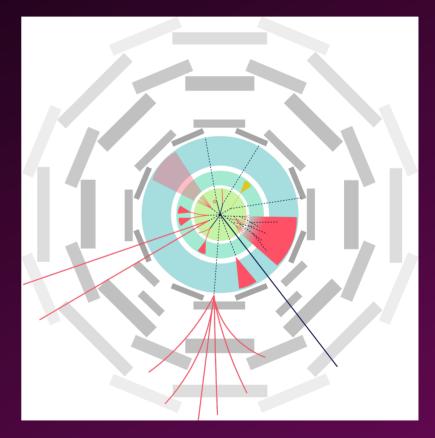
see talks by Changbin Xi and Linfeng Li

Juraj Klarić

Long-Lived Particles

Juraj Klarić 17/56

Long-lived Particles

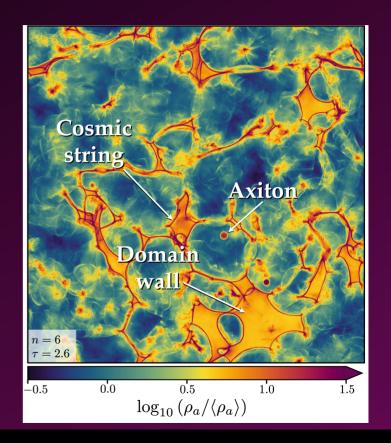

Renormalizable portals

- Scalars
- Vectors
- Fermions

Non-renormalizable portal

Pseudo-scalars:
 Axions and axion-like particles

See talk by Xiang Chen, Ziyang Sun, Liang Li



Axions and ALPs

- Pseudoscalar pseudo-Nambu-Goldstone bosons arising from approximate BSM symmetries broken at some scale $f_a >> v$
- Light ALPs are excellent DM candidates through misalignment/decays of topological defects
- Coupling to the SM through the effective Lagrangian:

$$\mathcal{L}_{\text{eff}} = \frac{1}{2} (\partial_{\mu} a)(\partial^{\mu} a) - \frac{m_{a,0}^{2}}{2} a^{2} + \frac{\partial^{\mu} a}{f_{a}} \sum_{F} \bar{\psi}_{F} \gamma_{\mu} C_{F} \psi_{F}$$
$$- C_{aGG} \frac{\alpha_{s}}{8\pi} \frac{a}{f_{a}} G_{\mu\nu}^{a} \tilde{G}^{\mu\nu,a} - C_{aWW} \frac{\alpha_{2}}{8\pi} \frac{a}{f_{a}} W_{\mu\nu}^{A} \tilde{W}^{\mu\nu,A}$$
$$- C_{aBB} \frac{\alpha_{1}}{8\pi} \frac{a}{f_{a}} B_{\mu\nu} \tilde{B}^{\mu\nu}.$$

Sensitivity to ALPs

- Heavy ALPs can mediators between the SM and DM
 - Can easily reproduce the observed DM abundance
- mono-photon signature if the ALP is long-lived and escapes detection

from the talk by Shou-Shan Bao

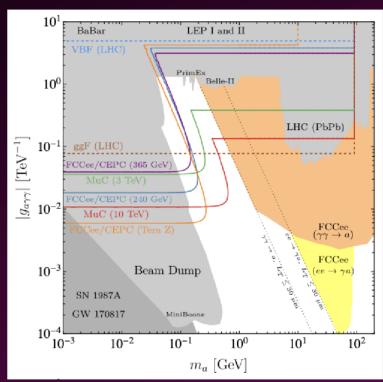
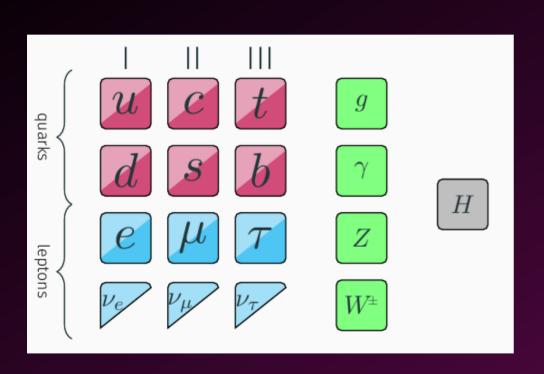
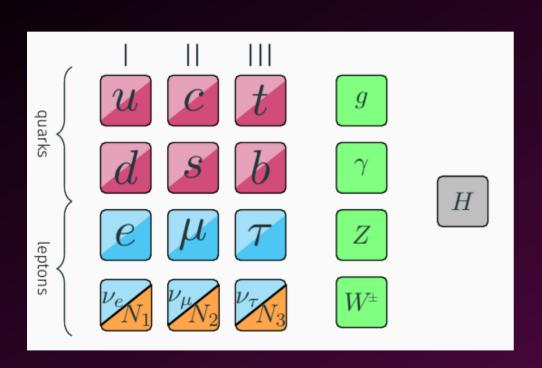



fig. from 2505.10023

Juraj Klarić 20/56

 Adding three singlet fermions can simultaneously solve several puzzles of particle physics


v - masses

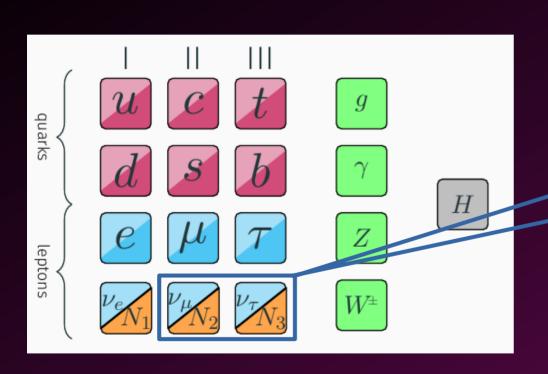
 The only renormalizable coupling is to the Higgs and leptons:

- Heavy Neutral Leptons (HNLs)

Non-renormalizable couplings in principle also possible

Juraj Klarić 21/56

 Adding three singlet fermions can simultaneously solve several puzzles of particle physics

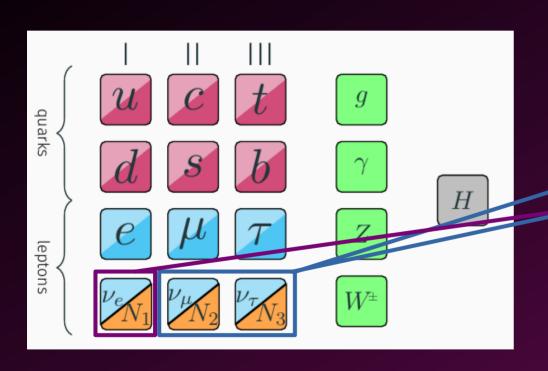

v - masses

• The only renormalizable coupling is to the Higgs and leptons:

- Heavy Neutral Leptons (HNLs)

Non-renormalizable couplings in principle also possible

Juraj Klarić 22/50



 Adding three singlet fermions can simultaneously solve several puzzles of particle physics

v - masses BAU Dark Matte

- The only renormalizable coupling is to the Higgs and leptons:
 - Heavy Neutral Leptons (HNLs)
- Non-renormalizable couplings in principle also possible

Juraj Klarić 23/56

 Adding three singlet fermions can simultaneously solve several puzzles of particle physics

v - masses BAU Dark Matter

- The only renormalizable coupling is to the Higgs and leptons:
 - Heavy Neutral Leptons (HNLs)
- Non-renormalizable couplings in principle also possible

Juraj Klarić 24/56

How Heavy are HNLs?

The Seesaw Lagrangian

$$\mathrm{L} \supset rac{1}{2} ig(\overline{
u_L} \quad \overline{
u_R^c} ig) egin{pmatrix} 0 & m_D \ m_D^T & 0 \end{pmatrix} egin{pmatrix}
u_L^c \
u_R \end{pmatrix}$$

$$m_{\nu} = m_D$$

Neutrino masses are extremely small

$$m_{\nu} \lesssim 0.8 \,\mathrm{eV}$$

Unknown Japanese Artist, MFA Boston

How Heavy are HNLs?

The Seesaw Lagrangian

$$\mathrm{L} \supset \frac{1}{2} \begin{pmatrix} \overline{\nu_L} & \overline{\nu_R^c} \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D^T & 0 \end{pmatrix} \begin{pmatrix} \nu_L^c \\ \nu_R \end{pmatrix}$$

 $m_{\nu}=m_{D}$

Neutrino masses

are extremely small

$$m_{\nu} \lesssim 0.8 \,\mathrm{eV}$$

Everything not forbidden is compulsory.

M. Gell-Mann

Unknown Japanese Artist, MFA Boston

How Heavy are HNLs?

The Seesaw Lagrangian

$$\mathrm{L} \supset rac{1}{2} ig(\overline{
u_L} \quad \overline{
u_R^c} ig) egin{pmatrix} 0 & m_D \ m_D^T & M_M \end{pmatrix} egin{pmatrix}
u_L^c \
u_R \end{pmatrix}$$

$$m_{\nu} = -m_D M_M^{-1} m_D^T$$

Neutrino masses

are extremely small

$$m_{\nu} \lesssim 0.8 \,\mathrm{eV}$$

Everything not forbidden is compulsory.

M. Gell-Mann

Unknown Japanese Artist, MFA Boston

How Heavy are HNLs?

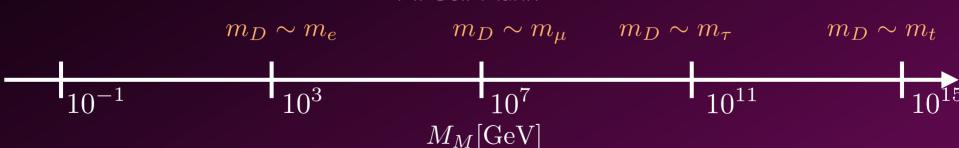
The Seesaw Lagrangian

$$\mathrm{L} \supset rac{1}{2} egin{pmatrix} \overline{
u_L} & \overline{
u_R^c} \end{pmatrix} egin{pmatrix} 0 & m_D \ m_D^T & M_M \end{pmatrix} egin{pmatrix}
u_L^c \
u_R \end{pmatrix}$$

$$m_{\nu} = -m_D M_M^{-1} m_D^T$$

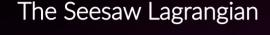
Neutrino masses

are extremely small


$$m_{\nu} \lesssim 0.8 \,\mathrm{eV}$$

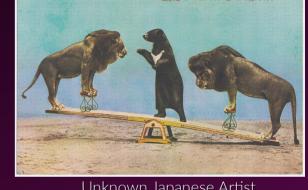
Everything not forbidden is compulsory.

M. Gell-Mann



Unknown Japanese Artist, MFA Boston

How Heavy are HNLs?


$$\mathrm{L} \supset \frac{1}{2} \begin{pmatrix} \overline{\nu_L} & \overline{\nu_R^c} \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D^T & M_M \end{pmatrix} \begin{pmatrix} \nu_L^c \\ \nu_R \end{pmatrix}$$

$$m_{\nu} = -m_D M_M^{-1} m_D^T$$

Neutrino masses

are extremely small

$$m_{\nu} \lesssim 0.8 \,\mathrm{eV}$$

Unknown Japanese Artist, MFA Boston

Everything not forbidden is compulsory.

M. Gell-Mann

 $m_D \sim m_e$

 $m_D \sim m_u$

 $m_D \sim m_{ au}$

 $m_D \sim m_t$

Juraj Klarić

How Heavy are HNLs?

The Seesaw Lagrangian

$$\mathrm{L} \supset rac{1}{2} egin{pmatrix} \overline{
u_L} & \overline{
u_R^c} \end{pmatrix} egin{pmatrix} 0 & m_D \ m_D^T & M_M \end{pmatrix} egin{pmatrix}
u_L^c \
u_R \end{pmatrix}$$

$$m_{\nu} = -m_D M_M^{-1} m_D^T$$

Neutrino masses

are extremely small

$$m_{\nu} \lesssim 0.8 \,\mathrm{eV}$$

Unknown Japanese Artist, MFA Boston

Everything not forbidden is compulsory.

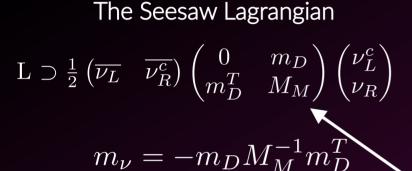
M. Gell-Mann

 $m_D \sim m_e$

 $m_D \sim m_\mu$

 $\overline{m}_D \sim \overline{m}_{ au}$

 $m_D \sim m_t$



Low-scale linear and inverse seesaws $M_M[{
m GeV}]$

Canonical type-I seesaw

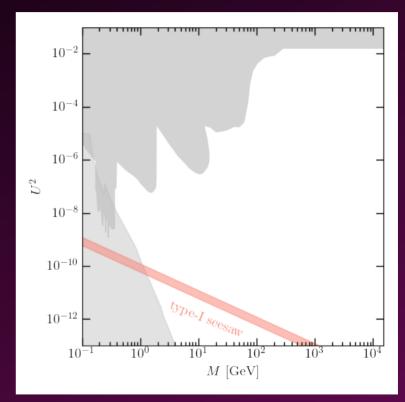
How Heavy are HNLs?

Neutrino masses

are extremely small

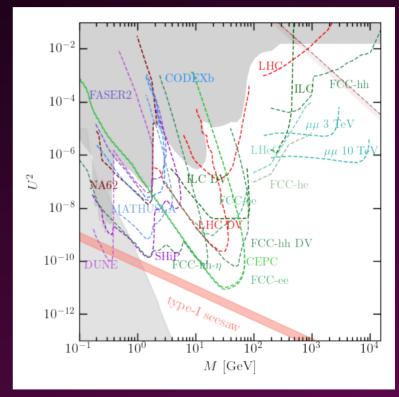
$$m_{\nu} \lesssim 0.8 \,\mathrm{eV}$$

Everything not forbidden is compulsory.
M. Gell-Mann


Unknown Japanese Artist, MFA Boston

Juraj Klarić 31/56

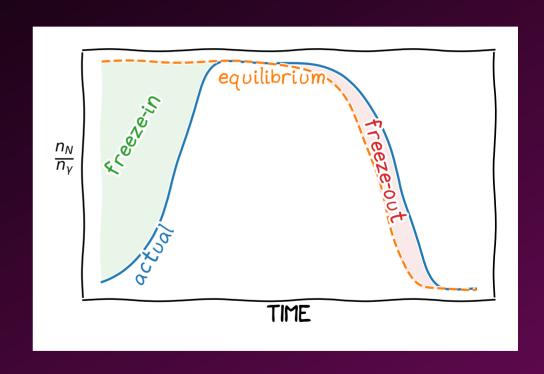
How dow we look for HNLs?


$$V_{\nu}/e_{\nu}$$
 V_{ν}/e_{ν}
 V_{ν}/e_{ν}

[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]

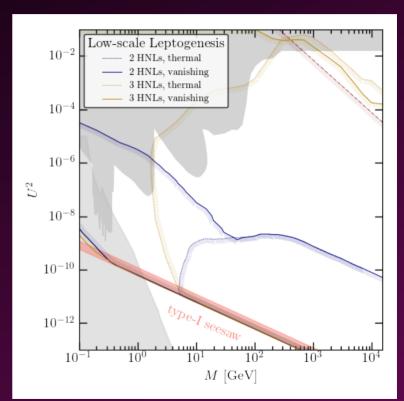
How dow we look for HNLs?

$$V_{\nu}/e_{
u}$$
 $V_{\nu}/e_{
u}$
 V_{ν


[figure adapted from Snowmass WPs 2203.08039 and 2203.05502]

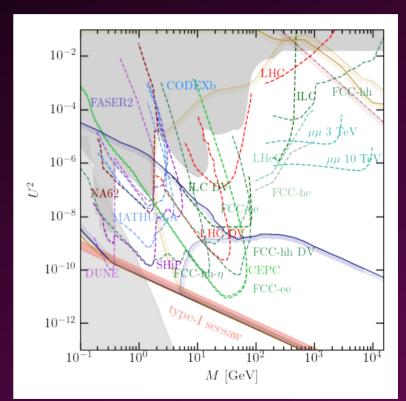
Juraj Klarić 33/56

HNLs and the Baryon Asymmetry of the Universe

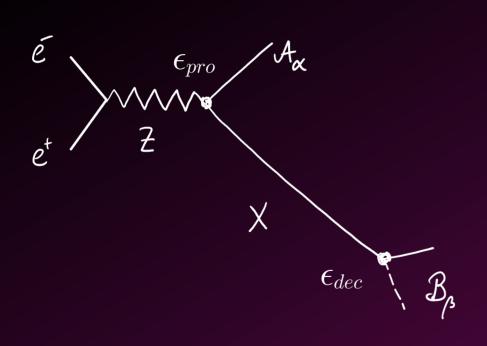

- Three [Sakharov '67] conditions:
- 1. Baryon number violation
 - sphaleron processes violate B+L ✓
 - L violation from HNLs ✓
- 2. C and CP violation
 - HNL decays and oscillations ✓
- 3. Deviation from equilibrium
 - freeze-in and freeze-out of HNLs ✓

Juraj Klarić 34/56

The parameter space of leptogenesis


- With 2 HNLs leptogenesis is possible for all masses above 100 MeV
- Leptogenesis is possible in the entire experimentally accessible parameter space for 3 HNLs
- Both vanishing (no additional interactions) and thermal (high-scale additional interactions) leptogeneses within reach of CEPC
- Leptogenesis within reach of HL-LHC
- High complementarity between colliders and dedicated LLP searches

[figure adapted from Snowmass WPs 2203.08039 and 2203.05502] [leptogenesis bounds from JK/Timiryasov/Shaposhnikov 2103.16545 and Drewes/Georis/JK 2106.16226] 35/56


The parameter space of leptogenesis

- With 2 HNLs leptogenesis is possible for all masses above 100 MeV
- Leptogenesis is possible in the entire experimentally accessible parameter space for 3 HNLs
- Both vanishing (no additional interactions) and thermal (high-scale additional interactions) leptogeneses within reach of CEPC
- Leptogenesis within reach of HL-LHC
- High complementarity between colliders and dedicated LLP searches

[figure adapted from Snowmass WPs 2203.08039 and 2203.05502] [leptogenesis bounds from JK/Timiryasov/Shaposhnikov 2103.16545 and Drewes/Georis/JK 2106.16226] 36/56

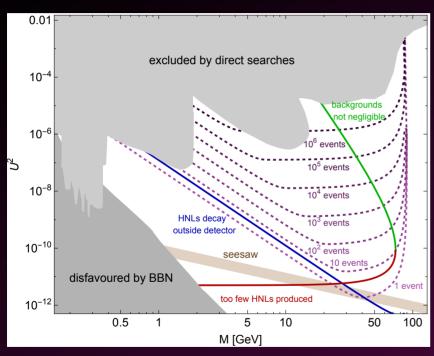
Sensitivity to LLPs at Z factories

- new particle $m{X}$ coupled to $m{Z}$ boson via small coupling $\epsilon_{pro} \! \ll \! 1$
- produced together with some SM particle A_{α}
- flies through the detector over a macroscopic distance l
- decay suppressed by $\epsilon_{dec} \ll 1$
- decays back into SM particles B_{eta}

Juraj Klarić 37/56

How to estimate Tera-Z sensitivity?

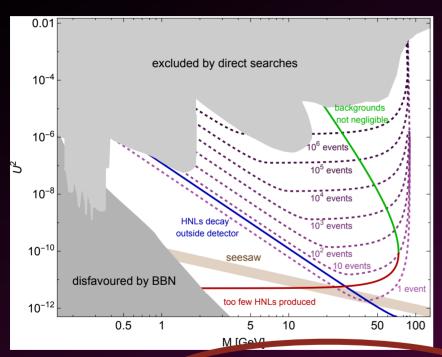
 Total number of produced X particles given by the fraction of Z-bosons Decay length of X particle in lab frame


$$N_{pro} = N_Z \epsilon_{pro} \hat{Br}(Z \to XA)$$
 $\lambda = \frac{p/m}{\Gamma}$

• Number of observed events in detector of length l_1 with a minimal displacement l_0

$$N_{obs} = N_Z \epsilon_{pro} \hat{Br}(Z \to XA) [\exp(-l_0/\lambda) - \exp(-l_1/\lambda)]$$

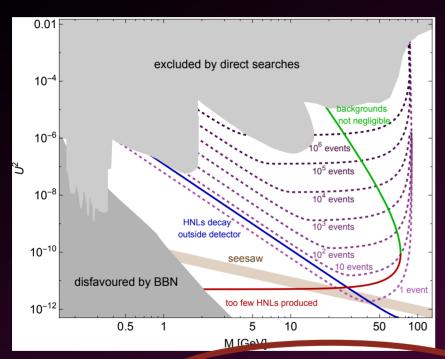
from Drewes, Li, JK 2511.23461


Juraj Klarić 38/50

We can disentangle the limits of HNL searches

$$N_{obs} = N_Z \epsilon_{pro} \hat{Br}(Z \to XA) [\exp(-l_0/\lambda) - \exp(-l_1/\lambda)]$$

Juraj Klarić 39/56

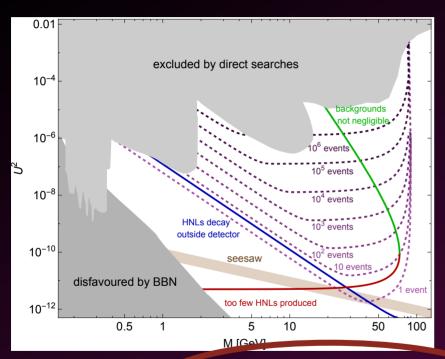


We can disentangle the limits of HNL searches

 total possible number of produced states

$$N_{obs} = N_Z \epsilon_{pro} \hat{Br}(Z \to XA) [\exp(-l_0/\lambda) - \exp(-l_1/\lambda)]$$

Juraj Klarić 40/56

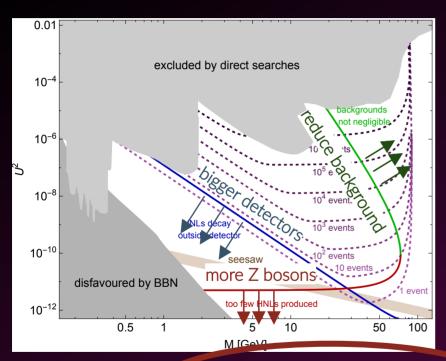


We can disentangle the limits of HNL searches

- total possible number of produced states
- Number of states that decay within the detector volume

$$N_{obs} = N_Z \epsilon_{pro} \hat{Br}(Z \to XA) [\exp(-l_0/\lambda) - \exp(-l_1/\lambda)]$$

Juraj Klarić 41/56



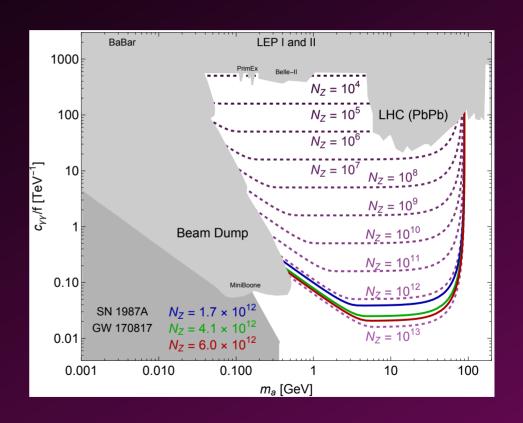
We can disentangle the limits of HNL searches

- total possible number of produced states
- Number of states that decay within the detector volume
- states decay too fast to be observed as displaced vertices

$$N_{obs} = N_Z \epsilon_{pro} \hat{Br}(Z \to XA) [\exp(-l_0/\lambda) - \exp(-l_1/\lambda)]$$

Juraj Klarić 42/56

We can disentangle the limits of HNL searches


- total possible number of produced states
- Number of states that decay within the detector volume
- states decay too fast to be observed as displaced vertices

$$N_{obs} = N_Z \epsilon_{pro} \hat{Br}(Z \to XA) [\exp(-l_0/\lambda) - \exp(-l_1/\lambda)]$$

Juraj Klarić 43/56

- Expected sensitivity highly depends on the number of Zbosons
- Reduced background due to 3γ events: no displacement needed
- Sensitivity depends on production/decay coupling relations

$$c_{Z\gamma} = -s_w^2 c_{\gamma\gamma}$$

Juraj Klarić 44/56

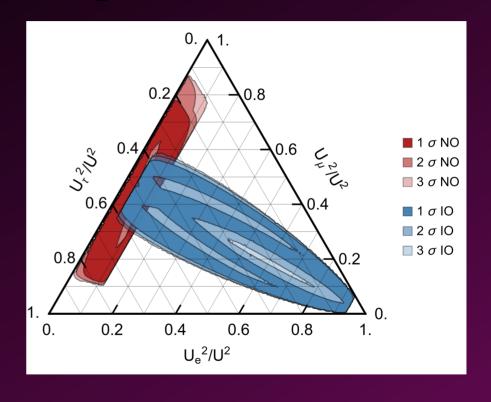
Beyond Discovery:

Tera-Z factories BSM testing facilities

Juraj Klarić 45/56

HNL branching ratios

 HNL branching ratios are highly constrained by the measured parameters in the minimal model (2 HNLs)


[Snowmass white paper 2203.08039]

 Leptogenesis imposes further constraints on the branching ratios

[Antusch/Cazzato/Drewes/Fischer/Garbrecht/Gueter/JK 1710.03744]

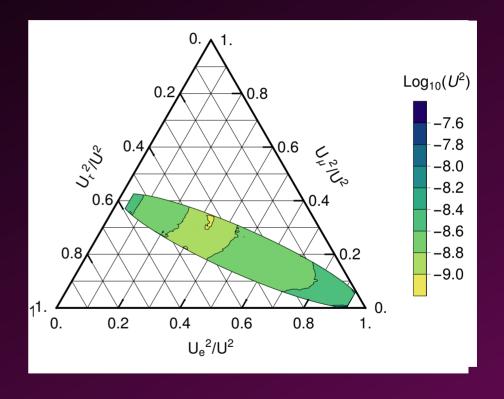
 Branching ratios become even more predictive when combined with Flavor and CP symmetries

[Drewes/Georis/Hagedorn/JK 2412.10254]

Juraj Klarić 46/56

HNL branching ratios

 HNL branching ratios are highly constrained by the measured parameters in the minimal model (2 HNLs)


[Snowmass white paper 2203.08039]

 Leptogenesis imposes further constraints on the branching ratios

[Antusch/Cazzato/Drewes/Fischer/Garbrecht/Gueter/JK 1710.03744]

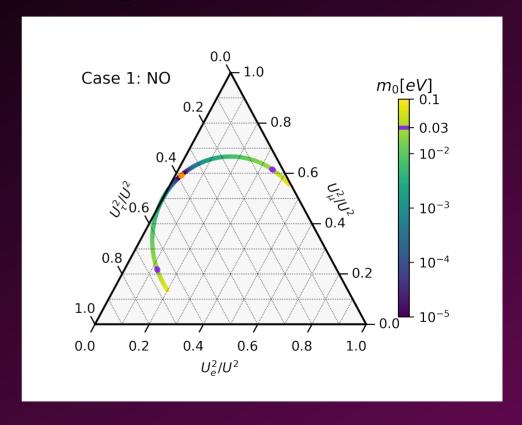
 Branching ratios become even more predictive when combined with Flavor and CP symmetries

[Drewes/Georis/Hagedorn/JK 2412.10254]

Juraj Klarić 47/56

HNL branching ratios

 HNL branching ratios are highly constrained by the measured parameters in the minimal model (2 HNLs)


[Snowmass white paper 2203.08039]

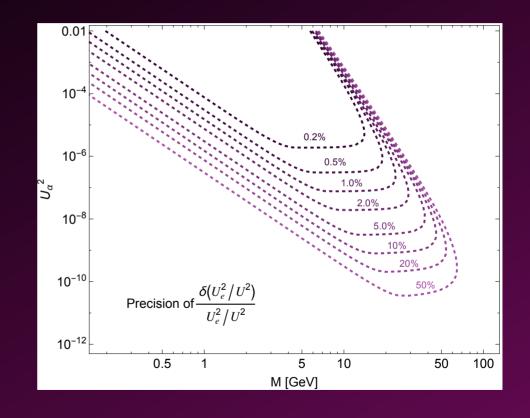
 Leptogenesis imposes further constraints on the branching ratios

[Antusch/Cazzato/Drewes/Fischer/Garbrecht/Gueter/JK 1710.03744]

 Branching ratios become even more predictive when combined with Flavor and CP symmetries

[Drewes/Georis/Hagedorn/JK 2412.10254]

Juraj Klarić 48/56

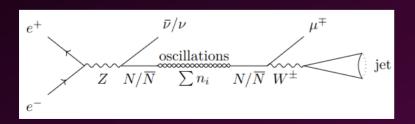

Precision BSM at Tera-Z

- Large number of events allows us to measure the HNL branching ratios
- Certain parts of parameter space can lead to sub-percent level precision measurements

$$\frac{\delta(N_{\rm obs}^{\mathcal{A}_{\alpha},\mathcal{B}_{\beta}}/N_{\rm obs})}{N_{\rm obs}^{\mathcal{A}_{\alpha},\mathcal{B}_{\beta}}/N_{\rm obs}} = \sqrt{\frac{1}{N_{\rm obs}^{\mathcal{A}_{\alpha},\mathcal{B}_{\beta}}} - \frac{1}{N_{\rm obs}}}.$$

[Antusch/Cazzato/Drewes/Fischer/Garbrecht/Gueter/JK 1710.03744]

[Drewes, Li, JK 2511.23461]

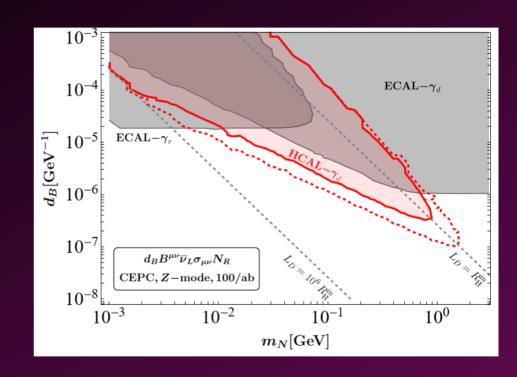



Juraj Klarić 49/56

HNL properties at e⁺e⁻ colliders

Many more observables:

- Lepton Number Violation
- Lepton Flavor Violation
- HNL oscillations in colliders
 - Deeply related to leptogenesis!

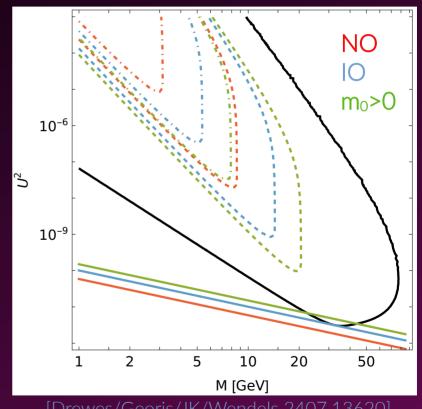

[Antusch et. al. 1710.03744]

Juraj Klarić [Antusch et. al. 2308.07297] 50/56

HNL properties at e⁺e⁻ colliders

Many more observables:

- Lepton Number Violation
- Lepton Flavor Violation
- HNL oscillations in colliders
 - Deeply related to leptogenesis!
- Dipole portal operator couplings



[Li, Liang, Jiang, arXiv:2510.26649] see talk by Jinhan Liang

Juraj Klarić [Antusch et. al. 2308.07297] 51/56

Reconstructing all parameters?

- Measuring all parameters is challenging with 2 HNLs due to degeneracies in observables
- Less degeneracy with 3 HNLs: for kinematically distinguishable HNLs, all 9 mixing angles U^2_{ai} could be measured independently.
- we can identify the region where all parameters can be measured at a Tera-Z factory

[Drewes/Georis/JK/Wendels 2407.13620]

Juraj Klarić 52/56

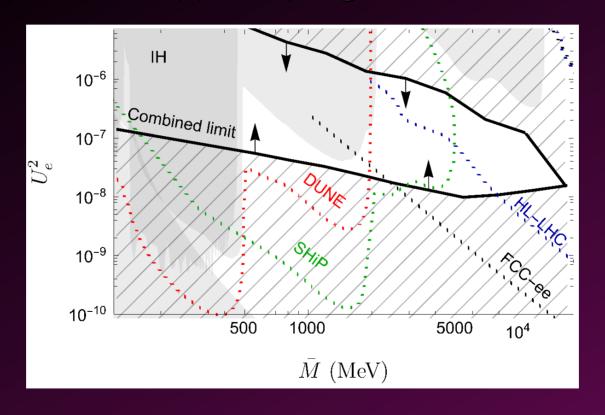
Conclusions

- Exciting times ahead!
- Future colliders can directly probe new BSM particles (apologies if I missed your favorite BSM scenario)
- Explanations to several puzzles of particle physics are within the reach
- Future colliders can go beyond discovery and directly test BSM scenarios

Juraj Klarić 53/50

Conclusions

- Exciting times ahead!
- Future colliders can directly probe new BSM particles (apologies if I missed your favorite BSM scenario)
- Explanations to several puzzles of particle physics are within the reach
- Future colliders can go beyond discovery and directly Thank you! test BSM scenarios


Juraj Klarić

Back-up

Juraj Klarić 55/56

Combined Bounds

IH + suppressed $Ov\beta\beta$ + leptogenesis + direct searches

Juraj Klarić 56/56