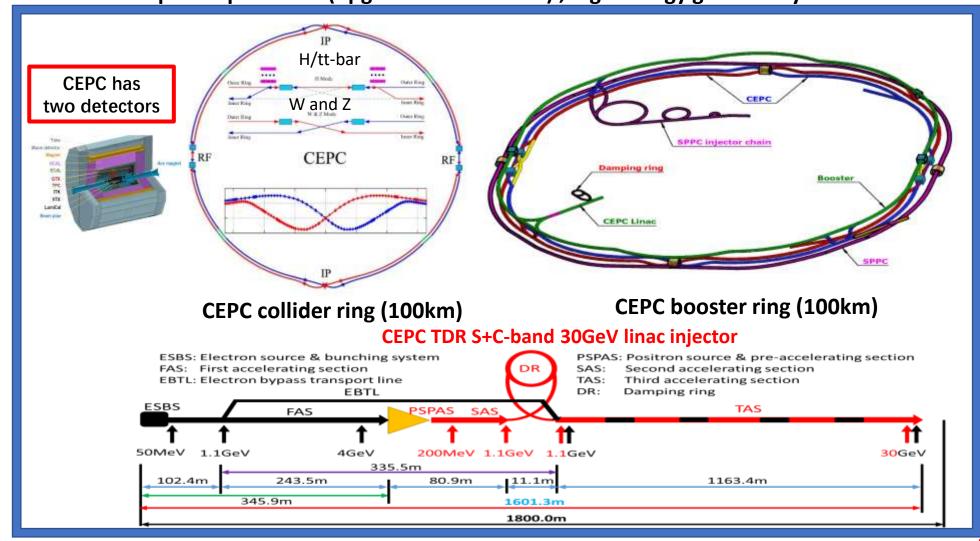


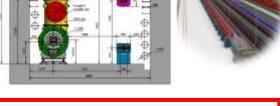
The CEPC Accelerator EDR Status and Plan

J. Gao

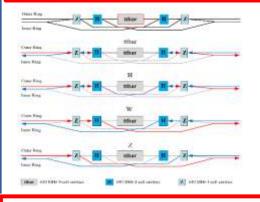
IHEP


Contents

- Introduction
- CEPC accelerator EDR progress status according EDR plan with milestone
- CEPC technology industrial preparations and international collaborations
- Summary

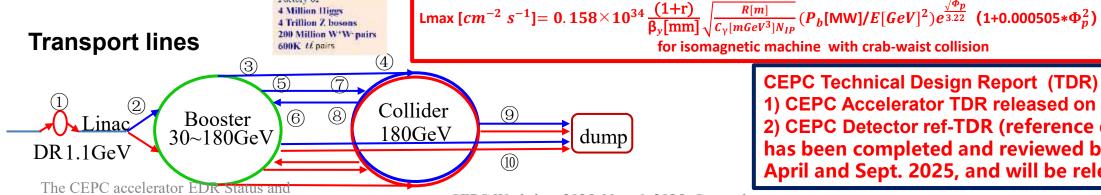


CEPC Higgs Factory and SppC Layout in TDR/EDR


CEPC as a Higgs Factory: H, W, Z, upgradable to ttbar, followed by a SppC (a Hadron collider) ~125TeV 30MW SR power per beam (upgradable to 50MW), high energy gamma ray 100Kev~100MeV

CEPC/SppC in the same tunnel

Z,W, Higgs and ttbar energies


CEPC Accelerator System Parameters in TDR/EDR

Linac Collider **Booster**

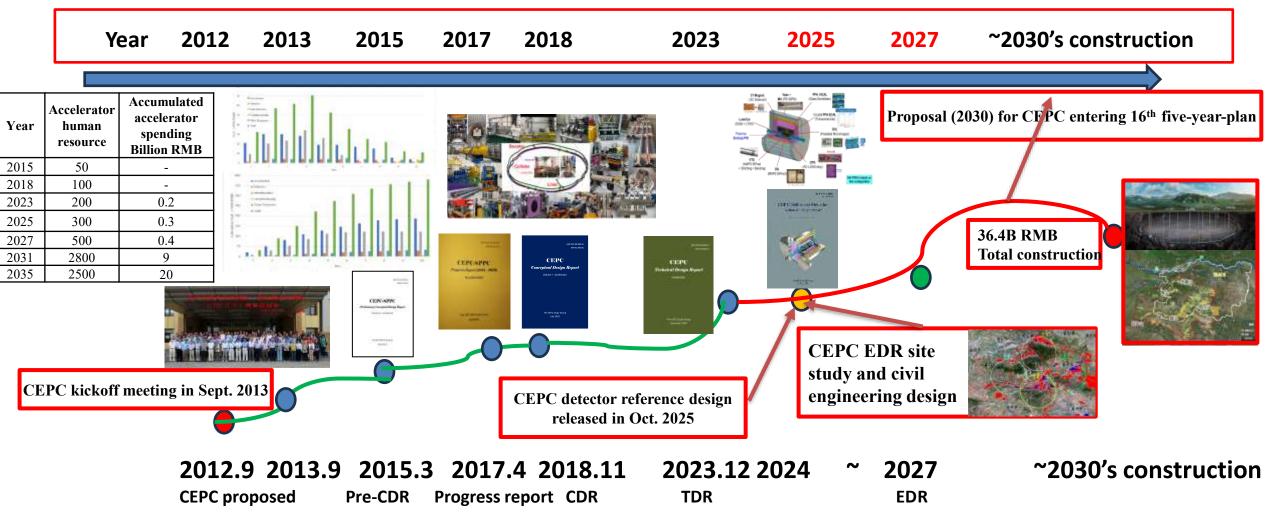
Parameter	Symbol	Unit	Baseline			tt	H	I	W		\overline{Z}
rarameter	Symbol	Unit	Dasenne			Off axis injection	Off axis injection	On axis injection	Off axis injection	Off axis	injection
Energy	E_{e} - $/E_{e+}$	GeV	30	Circumfer.	km				9.955		
	L _{e-1} L _{e+}			Injection energy	GeV				30		
Repetition rate	f_{rep}	Hz	100	Extraction energy	GeV	180	12	0	80	4	5.5
Bunch				Bunch number		35	268	261+7	1297	3978	5967
number per pulse			1 or 2	Maximum bunch charge	пC	0.99	0.7	20.3	0.73	0.8	0.81
Bunch		пC	1.5 (3)	Beam current	mA	0.11	0.94	0.98	2.85	9.5	14.4
charge		iiC	1.5 (3)	SR power	MW	0.93	0.94	1.66	0.94	0.323	0.49
Energy			_	Emittance	nm	2.83	1.2	26	0.56	0	.19
spread	$\sigma_{\!E}$		1.5×10^{-3}	RF frequency	GHz				1.3		
-F-5mm				RF voltage	GV	9.7	2.1	17	0.87	0	.46
Emittance	\mathcal{E}_r	nm	6.5	Full injection from empty	h	0.1	0.14	0.16	0.27	1.8	0.8

	Higgs	Z	W	tī			
Number of IPs	2						
Circumference (km)		99	.955				
SR power per beam (MW)			30				
Energy (GeV)	120	45.5	80	180			
Bunch number	268	11934	1297	35			
Emittance $\varepsilon_{x}/\varepsilon_{y}$ (nm/pm)	0.64/1.3	0.27/1.4	0.87/1.7	1.4/4.7			
Beam size at IP σ_x/σ_y (um/nm)	14/36	6/35	13/42	39/113			
Bunch length (natural/total) (mm)	2.3/4.1	2.5/8.7	2.5/4.9	2.2/2.9			
Beam-beam parameters ξ_x/ξ_y	0.015/0.11	0.004/0.127	0.012/0.113	0.071/0.1			
RF frequency (MHz)		6	50				
Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹)	5.0	115	16	0.5			
Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹) From J. Gao's formula below	5	115	12	0.59			

Running scenarios: Higgs 10 years, Z 2 years, W 1 year, ttbar 5 years

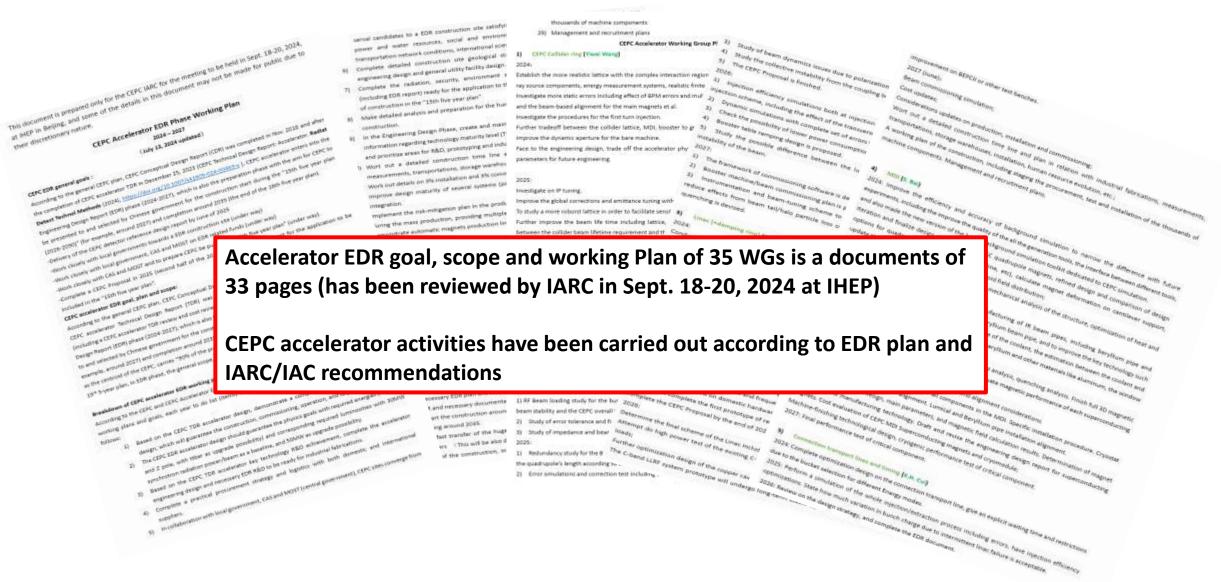
Factory of

CEPC Technical Design Report (TDR) includes:


for isomagnetic machine with crab-waist collision

- 1) CEPC Accelerator TDR released on Dec. 25, 2023
- 2) CEPC Detector ref-TDR (reference design) has been completed and reviewed by IDRC in April and Sept. 2025, and will be released in 2025

(J. Gao's formula)


CEPC Milestones and Timeline

J. Gao, "The Status of the CEPC Project in EDR", submitted to IJMPA, 2025, arXiv:2505.04663, https://doi.org/10.48550/arXiv.2505.04663

CEPC EDR Goal, Scope and Plan

CEPC Key System EDR Progresses-1

CEPC Accelerator Key System EDR Progresses

- -2025 March 20, CEPC booster magnet automatic fabrication line ready for construction (under construction, to be completed in 2025-2026)
- -2025 April 17, CEPC polarization cathode material and test facility ready for fabrication
- -2025 April 25, CEPC vacuum chamber NEG coating automatic fabrication line ready for construction (under construction, to be completed in 2025-2026)
- -2025 April 28, 650MHz full size cryomodule ready for construction (under construction, to be completed in 2025-2026)
- -2025 Feb. CEPC accelerator survey started (99.955428km)
- -2025 July, CEPC accelerator components, vertical shafts (10) and horizontal access tunnels (12) naming systems are decided
- -2025 July, CEPC booster detailed installation scheme studies started

CEPC Accelerator Key System EDR International Mini Reviews (Required by IARC)

- -2025 April 24, CEPC alignment and installation EDR international mini review
- -2025 May 14,15, CEPC cryogenic system (+650MHz cryomodule) EDR international mini review
- -2025 May 29, CEPC booster dipole and sextupole combined magnet EDR international mini review
- -2025 June 9-10, CEPC MDI EDR international mini review
- -2025 June 9-10, CEPC EDR site geological feasibility study review
- -2025 July 31, CEPC vacuum chamber type EDR international mini review

CEPC Accelerator EDR Key Progresses-2

- -2024 Dec 9, CEPC EDR site geological study and civil engineering design tasks Have been assigned to "Power China Hua Dong Engineering Corporation Limited (HDEC)"
- -2025 June 9-10, CEPC site geological study and site selection choice review meeting was held and CEPC Xinmi Site of Henan province was recommended as the proposed construction site to Chinese government, and more detailed studies will be completed by the end of 2025.
- -2025 Sept . 5, CEPC EDR accelerator and civil engineering cost have been updated.
- -2025 Sept. 8, CEPC accelerator/auxiliary facilities TDR/EDR progresses and site geological study/selection/civil engineering design status and progresses have been included in the CEPC Proposal

IARC+IAC 2024 Recommendations and Reactions

CEPC Alignment Review Meeting Timetable

April 24-25, 2025, IHEP, HEPS Campus

Date & Time: April 24-25, 2025, 9:00-18:00 Beijing Time (UTC+8)

Format: Online Meeting & Onsite ZOOM Meeting ID: 95671697572

Password: 250421

Review Committee

No	Neme	Institution	Title
1	He Xinoye (chair)	USTC	Professor
2	Helene Mainaud Durand	CERN	Professor
3	Li Zongelum	Information Engineering University	Professor
4	Dong Keliang	BUCEA	Professor
5	Zhang Chao	USTC	Professor
6	Jiang Zhiqiang	SARI	Professor
7	Gao Jie	THEP	Professor
м	t.m Zhanke	The First Geodetic Survey Team of the Ministry of Natural Resources	Principal Engineer
9	Fas Baixing	Information Engineering University	Associate

CEPC SRF Cryogenic System **EDR Design Peer Review**

Brochure

Date & Time: Tuesday, May 13, 2025, 3:00 PM Beijing Time (UTC+8)

Format: Online Meeting & Onsite:

Topic: CEPC Cryogonic System Design Post Review

Meeting ID: 98679216208

Begin Time: 2025-05-13T15-00-00

Meeting URL: https://mou.us/y/08/79230298/pmd=laWAzNIFoxg89b92KDz818a2upDC0P1

Oasie meeting room: IHEP Main building A415

Review Committee:

No.	Neme	Institution	Einel
E)	Corlo Paguni (Revsew committee chair)	INFN	corlo poganiejem inficit
2	Akim Virgininosi	KEK	skira yumamotos@kek.jp
7	Eqt Kako	KEK	výt kakouřkek je
4	Roberto Kersevan	Retired from CERN Transmater, company	jobeno korsewnigermich r kerseynigermsandes com
5	Nuno Elias	ESS	Num classics eu
6	Serem Barbanom	DESY	serena barbanotti ji desy de
7	Jie Guo	THEP, CAS	gaogiëshep ac en
8	Wei Lu	IHEP, CAS	weils@ihep.ac.cn

Mini-Review for CEPC Booster Combined Magnets

Brochure

Date & Times Thursday, May 29th, 2025, 3:00 PM Beijing Time (UTC+8)

Formati Online Meeting & Onsite:

Topic: Mini-Review for CEPC Booster Combined Magnets

Begin Time: 2025-05-29T15-00:00 Morting URL: https://goom.iw/y98353925525?pwal-8tp70HA67USOh7cefp0px07RtVcl8Mc1

Direction: 180 min

Ousite meeting room: IHEF Main building A419

Review Committee:

No	Name	bennton	Emoil
1	Mika Masurova (Review-committee chair)	KEK	mika manunwajekek je
2	Helene Manuard Durand	CERN	Helene Manual Durand@cern.ch
3	Sidonn Agately	JINR	söderintä juur.ru
4	Biogini Morio Enrico	INFN-LNF	marica biogeneicht info #
5	Kazuhira Ohmi	KEK	ohm@gowt.kek.jp
ü	Kenatrium Michael	CERN	nichsel koonanos@com.ch
7	Anth Morcos	ALBA	jman/wai/cells.es
8.	Jie Gan	THEP	parjijshep ac ca
9	Quigas Yau	DMP	умоцициоблиции ж сп
10	Xeoye He	USEC	syho@wei:odu.cn
11	Your Ches	WHU	chenyaan/950mba.oda.ca
12	Jiseli Worg	THEP	wang kitakep ac en
13	Fusan Clam	THEP	chenfs@ihep.sc.cn.

Mini-Review of CEPC MDI

CEPC MDI Mini-Review Committee

9-10 June 2025

The CEPC Study Group, bosed at the Institute of High Energy Physics (IHEP), has been developing a next generation e*e" collider initially as a Higgs factors, with energy reach extending to Z. WW, and topquark pair production, and upgrade potential to a high-energy pp collider. The CEPC project has progressed significantly since the 2018 Conceptual Design Report, focusing on design optimization, key technology R&D, and technical system studies. A Technical Design Report was released in December 2023. Presently the project is the Engineering Design Report (EDR) Plane.

The International Review Committee, chaired by Dr. Manuela Boscolo (RNEN), was asked to conduct a review of the Machine-Detector-Interface (MDI) of CEPC. This review shall cover all asperts of the design of

The CEPC MDI Review Committee useding was hold virtually from 9 to 10 June 2025. A total of 9 talks were presented on a variety of topics. The charge to the review committee was

- Is the MDI system design is complete?
- 2. Does the se quadrupole and cryostat design satisfy the design requirements?
- 3. Will the MDI mechanical system design reach the design goal?
- 4. Will the MDI system alignment scheme reach the design goal?
- 5. Is the beam included background well considered and controlled?

The Beview Committee was invited to evaluate the progress on the MDI design and to make comments. It was regrested that this Committee report responding to the above charge be forwarded to Prof. Jis Gao and Dr. Harrya Shi by July 4th.

1 Executive Summary

After the CEPC TDR release in December 2023, the critical Engineering Design Report (EDR) Phase has started. Prototypes on key technologies are ongoing, and more are planned to start in the near future.

The Committee wishes to congratulate the CEPC MDI team on the great progress and on the excellent

The next section provides answers to the different charge questions, the following sections contain comments and recommendations related to the individual presentations.

According to the recommendations of IARC and IAC in 2024, all five International mini-reviews have been carried out in 2025:

- 1) Alignment (April 24-25, 2025)
- 2) SRF cryogenic system (May 13, 2025)
- 3) Combined booster magnet (May 29, 2025)
- 4) MDI (June 9-10, 2025)
- 5) Vacuum chamber (July 31, 2025)

Preliminary replies to the mini review reports have been sent to mini review committee chairs and IARC/IAC chairs also

CEPC Synchrotron Radiation Shielding Schemes

Review Meeting

31th July, 2025, Online & Beijing

Topic: Verification of the CEPC TDR vacuum chamber shielding design in comparison with antechamber vacuum system with photon absorbers

Final Committee Report

Submitted 19th August, 2025

Committee Members

Adolfo Esposito, INFN Mika Masuzawa KEK Wen Kang, IHEP

Markus Widorski, CERN Roberto Kersevan, CERN Guanghong Wang, SARI

CEPC-MDI-Mini-Review Committee Members

Manuela Boscolo INFN Frascati, Chair UTSC

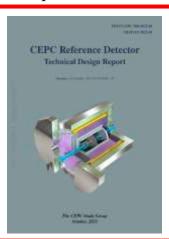
Xiaoye He Qu Huamin THEP

Roberto Kersevan CERN/Transmutex SA

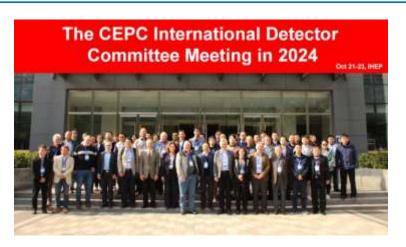
Michael Koratzinos Hirovuki Nakayama KEK

Preliminary replies to the IARC (2024) report has been sent to IARC/IAC chairs

CEPC IARC, IDRC and IAC Meetings since EDR


CEPC IARC meeting was held from Sept. 18-20, 2024 https://indico.ihep.ac.cn/event/22311/

CEPC IARC meeting was held from Sept. 16-19, 2025



CEPC IAC meeting in 2024 was held from Oct. 29-30, 2024 https://indico.ihep.ac.cn/event/23450/timetable/

CEPC IAC meeting will be held from Nov. 20-21, 2025

CEPC Detector Reference
Design Report submitted
to arXiv on Oct. 7, 2025
https://arxiv.org/abs/2510.05260

The International Detector Review Committee (IDRC) held its inaugural meeting at IHEP, Oct 21-23, 2024, to review the status and plan of Ref-TDR.

https://indico.ihep.ac.cn/event/23265/

CEPC IDRC meeting was held from April 14-16, 2025 https://indico.ihep.ac.cn/event/25539

CEPC IDRC meeting was held on Sept. 10, 17 and 24, 2025

2nd IARC EDR Review Meeting Talks (2025)

	Beijing time	Talk time	Speaker	Title	Talk n.	Sep 17th 2025	9:00	25'+5'	Luyang Zhao	Conventional facility and control methods for the tunnel temperature	0
Sep 16th						Wednesday	9:30	25'+5'	Wen Kang	CEPC booster magnet production line	14
2025	9:00	15'	IARC preparatio	n meeting (closed)			10:00	25'+5'	Yongsheng Ma	CEPC vacuum chamber production line	15
Tuesday	9:05	5'	Yifang Wang	Welcome			10:30	30'	Coffee break		
1 desday			111111111111111111111111111111111111111		1		11:00	25'+5'	Dapeng Jin	Control system	16
				CEPC general status and news	2		11:30	25'+5'	Xiaohao Cui	Collimators in the collider rings	17
				CEPC Accelerator EDR Status and beyond	2		12:00	25'+5'	Song Jin/Lei Ye	DeepC electronic documentation system	18
		30'	Coffee break				12:30	90'	Lunch		
	10:30	25'+5'	RuiGe/Mei Li	Summary of cryogenic system mini review	3		14:00	25'+5'	Zusheng Zhou	CEPC high efficiency klystron development	19
	11:00			Summary of alignment mini review	4		14:30	25'+5'	Na Wang/Yudong Liu	CEPC collective effects	20
	11:30		Sha Bai/Haoyu Shi	Summary of MDI mini review	5		15:00	25'+5'	Zhe Duan	CEPC polarization studies	21
		23'+3"		Communication of the second of			15:30	30'	Coffee break		
		25'+5'	Dou wang	Summary of booster dipole magnet+sextupole mini review	6		16:00	30'	IARC discussion a closed if needed)	sion and Q/A with CEPC accelerator speakers (partly led)	
	12:30	90'	Lunch				17:00	60'	,	Closed session	
	14:00	25'+5'	Guangyi Tang	Summary of vacuum chamber mini review	7						
	14:30	25'+5'	Haijing Wang	CEPC survey and hardward design status	8						
	15:00	25'+5'	Xiaolong Wang	T + 11 + 1 C+1 TD +	9	Sep 18th 2025	9:00	25'+5'	Jinhui Chen	Injection/extraction system	22
			Coffee break			Thursday	9:30	25'+5'	Jingyu Zhang	CEPC linac injector	23
	13.50	30		Solenoid compensation scheme and alternative			10:00	25'+5'	Dazhang Li	CEPC plasma injector	24
	16:00	25'+5'	Y 1W/P1 W/ 9h G	schemes	10		10:30	30'	Coffee break		
				Simulation of injection at commissioning and			11:00	25'+5'	Daheng Ji	HEPS and BEPCII-U commissioning experiences	
	16:30	25'+5'		orbit correction	11		11:30	25'+5'	Jianfeng Liu	Civil engineering design	25
		_0 . 0	Viwei				12:00	25'+5'	Qingjin Xu	SppC high field magnet dipole development	26
	17:00		Wang/Rin	Studies of the tolerance to machine errors at all	12		12:30	90'	Lunch		
			Wang	energies			14:00	90'	IARC discussion a closed if needed)	and Q/A with CEPC accelerator speakers (partly	
	17:30	30'	IARC members	Closed session			15:30	30'	Coffee break		
				The talks in red are required by	., T A 1	DC	16:00	120'	IARC members	Closed session	
				The talks in red are required by	y IA	NC	18:30	180'	Banquet		

CEPC IARC EDR Review Report (2025)

Second CEPC IARC EDR Review Report

CEPC IARC EDR Review Committee

19 September 2025

The CEPC Study Group, hosted by the Institute of High Energy Physics (IHEP), has been working on the design and development of a forefront e^+e^- collider as a Higgs factory that can extend to energies corresponding to the production of Z, WW and top-quark pairs, with the upgrade potential to a \sim 100 TeV pp collider. The CEPC represents a grand plan proposed, studied, and to be constructed by Chinese scientists in close collaboration with international partners. The CEPC Accelerator Technical Design Report was released in Desember 2023, which documents the design, the outcomes of the R&D of key technologies, the technical systems, and the cost estimate of the CEPC e^+e^- collider. Going beyond the accelerator TDR and preparing the CEPC for the construction that may begin in 2027-8, the CEPC Study Group has started the Engineering Design Study for which the outcome will be documented in a formal report (EDR). The CEPC Study Group plans to submit a proposal to the Chinese government requesting the inclusion of the CEPC in the 15th Five Year Plan. The International Accelerator Review Committee (IARC), chaired by Dr. Maria Enrica Bingini (INFN, Frascati) is asked to conduct the review on the development of the CEPC accelerator technical systems within the context of the EDR study. The Committee is specifically asked to review and comment on the following aspects:

- 1. Have the CEPC accelerator activities been carried out according to the EDR plan?
- Has the CEPC accelerator team implemented or been addressing the recommendations and suggestions given by the IARC and the IAC in 2024?
- 3. Are the studies and replies to the concerns of the IARC's and the IAC's concerns satisfactory?
- 4. Is the overall EDR progress on track since the 2024 review?
- 5. Are there weak points in the CEPC accelerator EDR program? If so how can they be remedied?
- 6. Any other issues you notice or any improvements you may suggest

It is requested that a Committee report responding to these charges be forwarded to the CEPC Steering Committee Chair, Professor Yifang Wang by October 20, 2025.

CEPC accelerator team will continue to work EDR and address the recommendations from IARC towards the goal for construction

1 Executive Summary

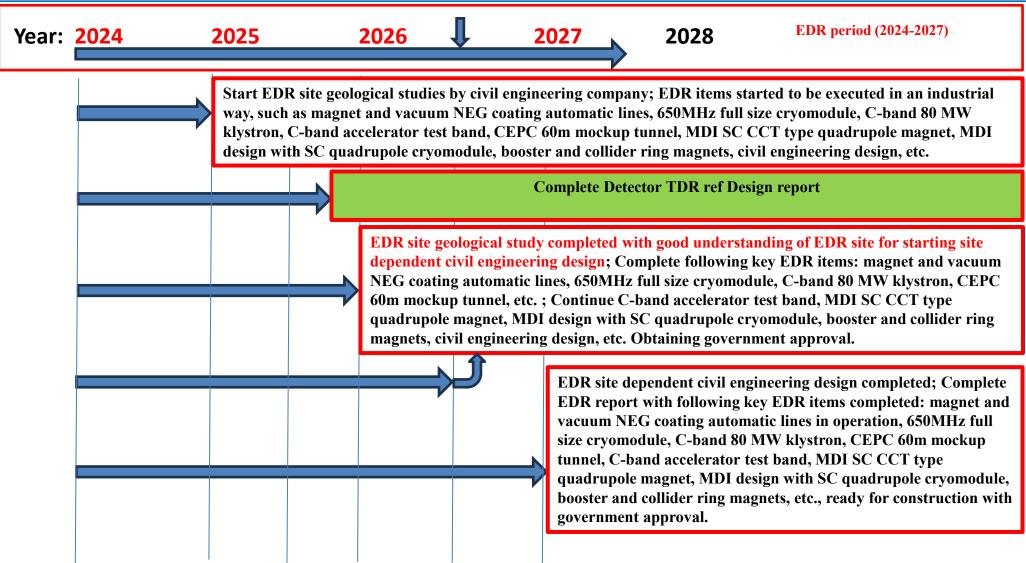
The second CEPC IARC EDR Review meeting was held in-person (with a few members joining on Zoom) at IHEP over the period of September 16-19, 2025.

The committee was invited to evaluate the advancement made since last year's review (September 2024) of the Engineering Design Study towards the construction of CEPC. A total of 26 talks were presented on the most challenging topics.

The committee wishes to congratulate the CEPC accelerator team for the excellent progress toward completion of the EDR phase,

The committee appreciated the quality of most of the presentations and was impressed by the achievements shown. The committee was pleased to see that many of the key systems, such as, for example, the high-efficiency klystron R&D, are progressing at full speed and with successful results.

An important change since the previous meeting of the committee is the choice of the site, which represents a major milestone for the project. Many work packages can now become more concrete.


2.5 Key Recommendations

The Committee has issued comments and recommendations for the different topics and presentations, which
are given in Section A. The most significant of these recommendations are shown below:

- (A.3.2.2) Pursue a highly reliable and sustainable CEPC cryogenics system enabling to realize full helium resource recovery and conservation in any major failures in superconducting magnets, RF system operations associated by fundamental infrastructure;
- (A.4.2.2) Define, build and measure the surface geodetic network; prepare the corresponding geodetic reference frames and the related transformation systems to be used for the civil engineering tender documents, survey layouts and CAD systems;
- (A.4.2.4) Develop and qualify an automated measurement system and its specific alignment targets to fulfill the alignment requirements in the arcs;
- (A.5.2) Progress and optimize the MDI region design, after deciding on the compensation scheme, and start prototyping work, especially for the final focus quadrupoles;
- (A.13.2.2) For conventional facilities, analyze dynamic changes on various timescales to ensure that
 the necessary stability and environmental condition can be maintained during operation and periods of
 shutdowns and access;
- (A.25.2.2) As civil engineering work now concentrates on a specific site, exploit the new opportunities
 to make rapid progress on the many systems that are closely connected to civil engineering and need
 site-specific guidelines and parameters.

CEPC EDR Milestones

Table 1: CEPC parameters in EDR

	Higgs (3T)	Z (2T)	W (3T)	$t\overline{t}$ (3T)		
Number of IPs			2				
Circumference (km)	99.955						
Half crossing angle at IP (mrad)			16.5				
Bending radius (km)			10.7				
SR power per beam (MW)	30	30 10		30	30		
Energy (GeV)	120	45	5.5	80	180		
Energy loss per turn (GeV)	1.8	0.0	37	0.357	9.1		
Damping time $\tau_x/\tau_y/\tau_z$ (ms)	44.6/44.6/22.3	816/83	16/408	150/150/7 5	13.2/13.2/ 6.6		
Piwinski angle	4.88	24	.23	5.98	1.23		
Bunch number	268	11934	3978	1297	35		
Bunch spacing (ns)	553.9	23.1	69.2	184.6	3969.8		
$[\times 23.08 \text{ ns}]$	24	1	3	8	172		
Train gap [%]	55	1	7	17	58		
Bunch population (10 ¹¹)	1.3	1	.4	1.35	2.0		
Beam current (mA)	16.7	803.5	267.8	84.1	3.3		
Phase advance of arc FODO (°)	90	6	0	60	90		
Momentum compaction (10 ⁻⁵)	0.71	1.	43	1.43	0.71		
Beta functions at IP β_x^*/β_v^* (m/mm)	0.3/1	0.13	/0.9	0.21/1	1.04/2.7		
Emittance $\varepsilon_x/\varepsilon_v$ (nm/pm)	0.64/1.3	0.27	//1.4	0.87/1.7	1.4/4.7		
Betatron tune n_x/n_y	445/445	317	/317	317/317	445/445		
Beam size at IP s_x/s_y (um/nm)	14/36	6/	35	13/42	39/113		
Bunch length (natural/total) (mm)	2.3/4.1	2.5	/8.7	2.5/4.9	2.2/2.9		
Energy spread (natural/total) (%)	0.10/0.17	0.04	/0.13	0.07/0.14	0.15/0.20		
Energy acceptance (DA/RF) (%)	1.6/2.2	1.0	/1.7	1.05/2.5	2.0/2.6		
Beam-beam parameters x_x/x_y	0.015/0.11	0.004	/0.127	0.012/0.11	0.071/0.1		
RF voltage (GV)	2.2	0.	12	0.7	10		
RF frequency (MHz)			650				
Harmonic number		2	16720				
Longitudinal tune n _s	0.049	0.035		0.062	0.078		
Beam lifetime (Bhabha/beamstrahlung) (min)	40/40	90/2800 6		60/195	81/23		
Beam lifetime requirement (min)	18	7	7	22	18		
Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹)	5.0	115	38	16	0.5		

Table 2: CEPC main parameters with 50 MW upgrade

	Higgs (3T)	Z (2T)	W (3T)	<i>t</i> t (3T)			
Number of IPs	Number of IPs 2						
Circumference (km)	99.955						
Half crossing angle at IP (mrad)		10	5.5				
Bending radius (km)		10).7				
SR power per beam (MW)		. 5	50				
Energy (GeV)	120	45.5	80	180			
Energy loss per turn (GeV)	1.8	0.037	0.357	9.1			
Damping time $\tau_x/\tau_y/\tau_z$ (ms)	44.6/44.6/22.3	816/816/40 8	150/150/75	13.2/13.2/6.6			
Piwinski angle	4.88	29.52	5.98	1.23			
Bunch number	446	13104	2162	58			
Bunch spacing (ns)	277.0	23.1	138.5	2585.0			
$[\times 23.08 \text{ ns}]$	12	1	6	112			
Train gap [%]	63	9	10	55			
Bunch population (10 ¹¹)	1.3	2.14	1.35	2.0			
Beam current (mA)	27.8	1340.9	140.2	5.5			
Phase advance of arc FODO (°)	90	60	60	90			
Momentum compaction (10 ⁻⁵)	0.71	1.43	1.43	0.71			
Beta functions at IP β_x^*/β_y^* (m/mm)	0.3/1	0.13/0.9	0.21/1	1.04/2.7			
Emittance $\varepsilon_{r}/\varepsilon_{v}$ (nm/pm)	0.64/1.3	0.27/1.4	0.87/1.7	1.4/4.7			
Betatron tune $v_{\rm r}/v_{\rm v}$	445/445	317/317	317/317	445/445			
Beam size at IP σ_{x}/σ_{y} (um/nm)	14/36	6/35	13/42	39/113			
Bunch length (natural/total) (mm)	2.3/4.1	2.7/10.6	2.5/4.9	2.2/2.9			
Energy spread (natural/total) (%)	0.10/0.17	0.04/0.15	0.07/0.14	0.15/0.20			
Energy acceptance (DA/RF) (%)	1.6/2.2	1.0/1.5	1.05/2.5	2.0/2.6			
Beam-beam parameters ξ_x/ξ_y	0.015/0.11	0.0045/0.13	0.012/0.113	0.071/0.1			
RF voltage (GV)	2.2	0.1	0.7	10			
RF frequency (MHz)	650						
Harmonic number			5720				
Longitudinal tune v_s	0.049	0.032	0.062	0.078			
Beam lifetime (Bhabha/beamstrahlung) (min)	40/40	90/930	60/195	81/23			
Beam lifetime requirement (min)	20	81	25	18			
Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹)	8.3	192	26.7	0.8			

Table 3: CEPC low lum. with 3T detector @ Z for 1st stage running Table 4: CEPC high lum. with 3T detector @Z assuming for 2nd stage running

The Z mode running of the CEPC detector Ref Technical Design Report has been based on the 3T detector magnetic field, and TPC technology has been adopted

	Z (3	ST)		7	Z
Number of IPs	2		Number of IPs	2	2
G: 6 (1)	00.6		Circumference (km)	99.9	955
Circumference (km)	99.9		SR power per beam (MW)	30	50
SR power per beam (MW)	8.7	12.1	Half crossing angle at IP (mrad)	16	5.5
Half crossing angle at IP (mrad)	16	.5	Bending radius (km)	10).7
Bending radius (km)	10	7	Energy (GeV)	45	5.5
- ' '			Energy loss per turn (GeV)	0.0	37
Energy (GeV)	45		Damping time $\tau_x/\tau_z/\tau_z$ (ms)	816/81	16/408
Energy loss per turn (GeV)	0.0				•
Damping time $\tau_{x}/\tau_{y}/\tau_{z}$ (ms) Piwinski angle	816/81		Piwinski angle	24.2	29.5
	39		Bunch number	11934	13104
Bunch number Bunch spacing (ns)	69		Bunch spacing (ns)	23.1	23.1
Bunch population (10 ¹¹)	1.22	1.7		(17% gap)	(9% gap)
Beam current (mA)	233.2	325.0	Bunch population (10 ¹¹)	1.4	2.1
Phase advance of arc FODO (°)	90	60	Beam current (mA)	806.9	1345.2
Momentum compaction (10 ⁻⁵)	0.71	1.43	Phase advance of arc FODO (°)	6	
Beta functions at IP β_x^*/β_y^*			Momentum compaction (10 ⁻⁵)	1.4	43
m/mm)	0.2/1.0	0.13/1.0	Beta functions at IP β_x^*/β_y^* (m/mm)	0.13	/1.0
Emittance $\varepsilon_{y}/\varepsilon_{y}$ (nm/pm)	0.092/1.7	0.27/ 5.1	Emittance $\varepsilon_{x}/\varepsilon_{y}$ (nm/pm)	0.27	¹ /5.1
Betatron tune $v_{\rm r}/v_{\rm v}$	445/445	317/317	Betatron tune v_x/v_y	317/	/317
Beam size at IP $\sigma_{\rm r}/\sigma_{\rm p}$ (um/nm)	4/42	6/72	Beam size at IP σ_r/σ_v (um/nm)	6/	
Bunch length (natural/total) (mm)	2.1/8.3	2.1/8.8	Bunch length (natural/total) (mm)	2.5/9.3	2.2/10.6
Energy spread (natural/total) (%)	0.04/0.11	0.04/0.15	Energy spread (natural/total) (%)	0.04/0.15	0.04/0.15
Energy acceptance (DA/RF) (%)	1.0/1.9	1.0/2.2	Energy acceptance (DA/RF) (%)	1.2/1.7	1.2/2.1
Beam-beam parameters ξ_x/ξ_y	0.0065/0.11	0.0053/0.082	Beam-beam parameters ξ_x/ξ_y	0.0045/0.069	0.0046/0.074
RF voltage (GV)	0.09	0.16	RF voltage (GV)	0.12	0.15
RF frequency (MHz)	650 (2 ce	ll cavity)	RF frequency (MHz)	650 (1 ce	
Longitudinal tune v_s	0.021	0.041	Harmonic number	216	•
Beam lifetime	120/200	150/180	Longitudinal tune v_s	0.035	0.040
Bhabha/beamstrahlung) (min)	120/200	130/180	,		
Beam lifetime requirement (min)	6		Beam lifetime (Bhabha/beamstrahlung) (min)	170/95800	120/932
Hourglass Factor	0.9		Beam lifetime requirement (min)	77	81
Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹)	24	26	Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹)	50.3	95.2

Table 5: Main Booster parameters at injection energy.

	Unit	tt	Н	W	2	Z			
Circumference	km		•	99.955	99.955				
Beam energy	GeV			30	30				
Bunch number		35	268	1297	3978	5967			
Threshold of single bunch	۸	8.68	6.3		5.8				
current	μA	0.00	0.3		3.6				
Threshold of beam current									
(limited by coupled bunch	mA	97	106	100	93	96			
instability)	- C	1.1	0.70	0.01	0.07	0.0			
Bunch charge	nC	1.1	0.78	0.81	0.87	0.9			
Single bunch current	μA	3.4	2.3	2.4	2.65	2.69			
Beam current	mA	0.12	0.62	3.1	10.5	16.0			
Growth time (coupled bunch	ms	2530	530	100	29.1	18.7			
instability)	0./			0.005					
Energy spread	%			0.025	0.025				
Synchrotron radiation loss/turn	MeV			6.5	6.5				
Momentum compaction factor	10-5			1.12					
Emittance	nm			0.076					
Natural chromaticity	H/V			-372/-26	9				
RF frequency	MHz			1300					
Harmonic number			_	433440					
RF voltage	MV	761.0	346.0		300.0				
Betatron tune v_x/v_y			3	321.23/117	7.18				
Longitudinal tune		0.14	0.0943		0.0879				
RF energy acceptance	%	5.7	3.8	3.6					
Damping time	S			3.1					
Bunch length of linac beam	mm			0.4					
Energy spread of linac beam	%			0.15					
Emittance of linac beam	nm			6.5					

Table 6: Main Booster parameters at extraction energy.

				H .	w		?
	Unit	Off axis	Off axis	On axis	Off axis	Off axis	injection
		injection	injection	injection	injection		,
Circumference	km			99.95	5	,	
Beam energy	GeV	180	12	20	80	45	5.5
Bunch number		35	268	261+7	1297	3978	5967
Maximum bunch charge	nC	0.99	0.7	20.3	0.73	0.8	0.81
Maximum single bunch current	μΑ	3.0	2.1	61.2	2.2	2.4	2.42
Threshold of single bunch current	μΑ	91.5	7	0	22.16	9.	57
Threshold of beam current	mA	0.3		1	4	1	6
(limited by RF system)							
Beam current	mA	0.11	0.56	0.98	2.85	9.5	14.4
Growth time (coupled bunch instability)	ms	16611	2359	1215	297.8	49.5	31.6
Bunches per pulse of Linac		1		1	1	2	2
Time for ramping up	S	7.1	4	.3	2.4		.0
Injection duration for top-up (Both beams)	S	29.2	23.1	31.8	38.1	132.4	
Injection interval for top-up	S	65	3	8	155	15:	3.5
Current decay during injection interval				3%			
Energy spread	%	0.15	0.0)99	0.066	0.0	37
Synchrotron radiation loss/turn	GeV	8.45	1.	69	0.33	0.0	34
Momentum compaction factor	10-5			1.12			
Emittance	nm	2.83	1.	26	0.56	0.	19
Natural chromaticity	H/V			-372/-2	269		
Betatron tune v_x/v_y				321.27/1	17.19		
RF frequency	MHz			1300)		
Harmonic number		433440					
RF voltage	GV				0.4	46	
Longitudinal tune		0.14	0.0	943	0.0879	0.0	879
RF energy acceptance	%	1.78	1.	59	2.6	3.	.4
Damping time	ms	14.2	47	7.6	160.8	87	79
Natural bunch length	mm	1.8		85	1.3	0.	75
Full injection from empty ring	h	0.1	0.14	0.16	0.27	1.8	0.8

Table 7: Main parameters of the Linac.

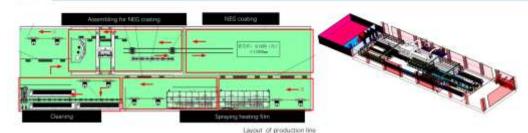
Parameter	Symbol	Unit	Baseline
Energy	E_{e} / E_{e+}	GeV	30
Repetition rate	f_{ren}	Hz	100
Bunch number per pulse	1		1 or 2
Bunch charge		nC	1.5 (3)
Energy spread	$\sigma_{\!E}$		1.5×10^{-3}
Emittance	\mathcal{E}_r	nm	6.5

Table 6: Main Parameters of the Linac Accelerating Structures

Parameter	Unit	S-ba	nd	C-band
Frequency	MHz	286	0	5720
Length	m	3.1	2.0	1.8
Cavity mode		$2\pi/3$	3	$3\pi/4$
Aperture	mm	19~26	25	12~16
Gradient	MV/	22/27	22	40
Gradient	m	22121		40
Cells		86	55	89
Number of Acc.		93	16	470
Stru.		93		4/0
Number of Klystron		34		236
Klystron Power	MW	80		50


Table 8: Main Parameters of the Damping Ring

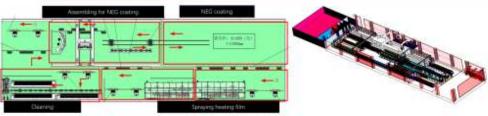
	DD 1/2 0
F (G)	DR V3.0
Energy (Gev)	1.1
Circumference (m)	147.5
Number of trains	2 (4)*
Number of bunches/trian	1 (2)#
Total current (mA)	12.4 (24.8)*
Bending radius (m)	2.87
Dipole strength B_0 (T)	1.28
U_0 (keV/turn)	94.6
Damping time $\tau_x/\tau_y/\tau_z$ (ms)	11.4/ 11.4/ 5.7
Phase/cell (degree)	60/60
Momentum compaction	0.013
Storage time (ms)	20 (40)*
Natural energy spread (%)	0.056
Norm. natural emittance (mm-mrad)	94.4
Inject bunch length (mm)	4.4
Extract bunch length (mm)	4.4
Norm. inject emittance (mm-mrad)	2500
Norm. extract emittanece x/y (mm-	166 (97)* / 75 (3)*
mrad)	
Energy spread inj/ext (%)	0.18 / 0.056
Energy acceptance by RF (%)	1.8
RF frequency f_{RF} (MHz)	650
Harmonic number	320
$V_{RF}(MV)$	2.5
Longitudinal tune	0.0387


CEPC Key Taks in EDR-1

CEPC Booster Magnet Automatic Production Line in EDR

Status: construction started, to be completed in 2025-2026

CEPC NEG Coated Vacuum Chamber (200km) **Automatic Production Line in EDR**

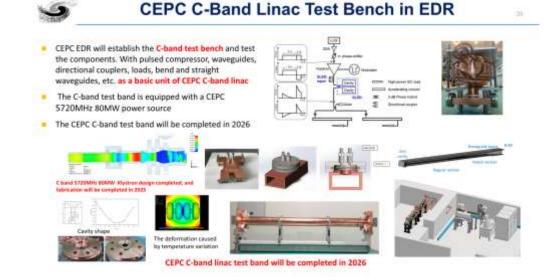


CEPC NEG Coated Vacuum Chamber (200km) **Automatic Production Line in EDR**

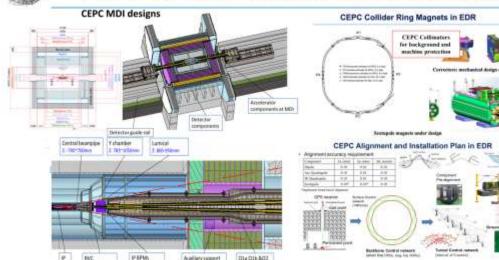
Status: construction started, to be completed in 2025-2026

CEPC 650MHz SRF Development in EDR

CEPC collider ring 650MHz 2*cell short test module has been completed in TDR phase

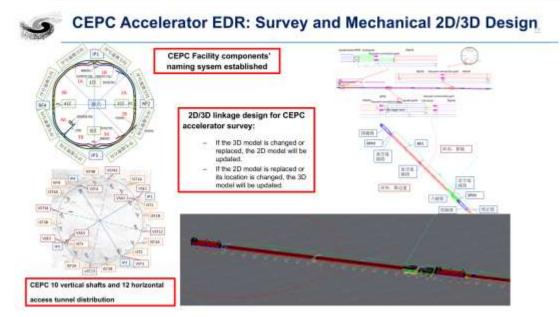


The collider Higgs mode for 30 MW SR power per beam will use 32 units of 11 m-long collider cryomodules will contain six 650 MHz 2-cell cavities, and therefore, a full size 650 MHz cryomodule will be developed in EDR Status: construction started, to be completed in 2026

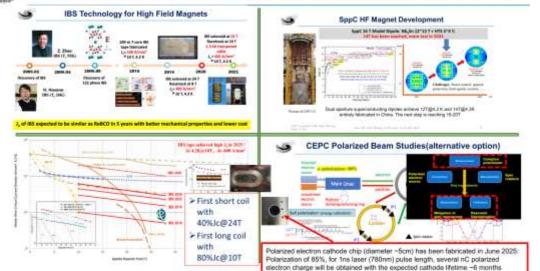


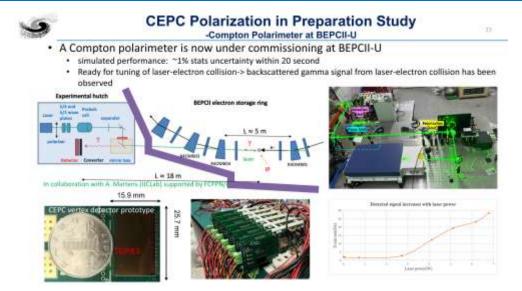
CEPC Key Taks in EDR-2

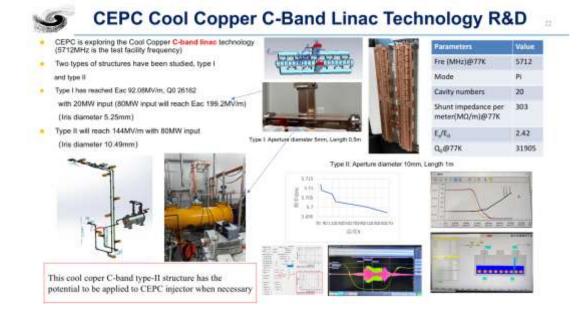
Other CEPC Accelerator and MDI EDR Activities


Design parameters of SC quadrupoles with CCT coil

• Design parameters of Q1a, Q1b, Q2 magnet with iron-free CCT coil @ Higgs


	Oliv	QW	01	Direct winding CCT coil is preferred for CEPO
Field gradient (T-m)	142.3	87.4	96.7	
Magnetic length (no	1.21	121	1.5	A CONTROL OF THE PARTY OF THE P
Eschalies current (A)	780 (Traditional) 750 (Direct winding)	640	740	
Conductor claimeter (HTS or LTS, mm)	9.7	0.8	0.8	
Carrent density (A/mm²)	(2050 11900	5270	1910	
Maximum dipole field in apenuto (Gs)	. 32h	124	127	
Stored energy (KI)	16.7	152	36.1	
Peak field in coil (T)	4.3	3.6	42	
Integrated field furmence		*2×10+		
(Single aperture) Coll (seer radius (rine)	20	28	31	AND DESCRIPTION OF THE PERSON
(Single aperture) Cvil outer radian (min)	30.5	36	44.	IHEP fabricated
Magnet reschoolcal length (re)	1.23	1.23	1.53	CEPC CCT coil
Net weight (kg)	25	32	43	prototype with
Total weight of Q1a, Q1b, Q2 (kg)		100		direct winding,
For pumparison, old act weight with iron option (ligh	- 16	Ole 91. QIb 124. QZ 215 all engine QIA QIB QZ 452.		inner diameter
ta Direct winding CCT coil				long
reliminary design ound 0.7mm conductor, curried angle: 24 deg.	inovinoseessoes in	- /		b Q2 Direct winding CCT coil
layers CCT quadrapole coil. The inner radius	of the coil is 20mm			ind 0.8mm conductor, canted angle: 24 deg
	under study)			vers CCT quadrapole cost.
D calculation in OPERA-3D	40.55.000.000.000		Afte	er correction, local dipole field decreases to less than 150Gs (Higgs




CEPC Key Taks in EDR-3

Advanced Technologies Development in Progress

Quantity

310

42

144

498

134

52

186

752

86

1912

2758

Quantity

Quantity

Hardware types

CEPC Accelerator Components-Types and Quantities

There are 244 types of hardware along beam, with a total quantity of 105354*.

*When counting the quantity, the vacuum chambers are not included, because the detailed vacuum chambers chould be decigned after the vacuum

snoula be a	esigned after the	vacuum	KI IIIodules	1	12
segmentation and layout definition.		Beam instrument	6	2418	
	TT 1	0 4'4	Vacuum devices	3	18402
Collider	Hardware types	Quantity	Waveguides	1	12
Magnets	58	25280	Cryogenic	1	12
EMS	1	32	devices		
RF modules	1	32	Total	30	40466
Collimators	5	64	Linac	Hardware	Quant
Beam instrument	7	7134		types	
Vacuum devices	4	19130	Magnets	34	690
Waveguides	1	32	Accelerator devices	14	1164
Cryogenic	1	32	Beam instrument	10	244
devices			Vacuum devices	4	7585
		20	DD 1 '	7	7
MDI devices	5	20	RP devices	7	/
MDI devices Total	5 83	51756	Total	69	9690

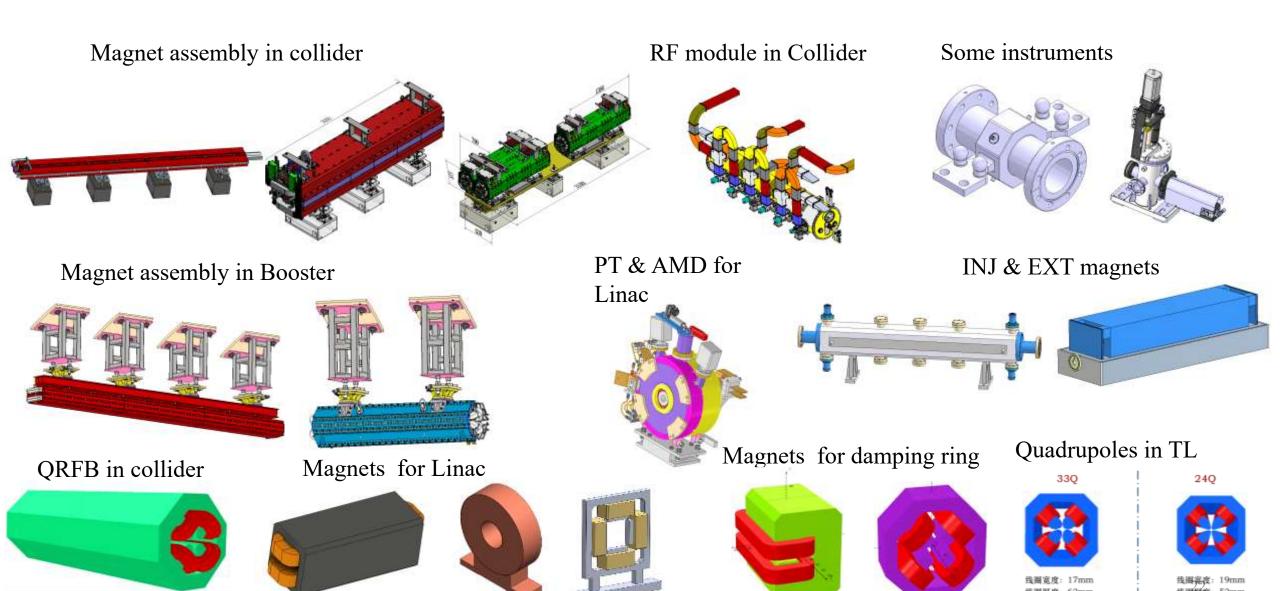
Booster	Hardware types	Quantity	Damping Ring
Magnets	18	19610	Magnets
RF modules	1	12	Cavity
Beam instrument	6	2418	Beam instrument
Vacuum devices	3	18402	Vacuum devices
Waveguides	1	12	Total
Cryogenic	1	12	INJ&EXT
devices			LSM
Total	30	40466	Kicker
Linac	Hardware	Quantity	Total
M	types	600	Transport line
Magnets	34	690	2.6
Accelerator devices	14	1164	Magnets
Ream instrument	10	244	Beam instrument

	•
Magnets	8
Cavity	1
Beam instrument	3
Vacuum devices	3
Total	15
INJ&EXT	Hardware types
INJ&EXT LSM	Hardware types 23
LSM	23

Vacuum devices

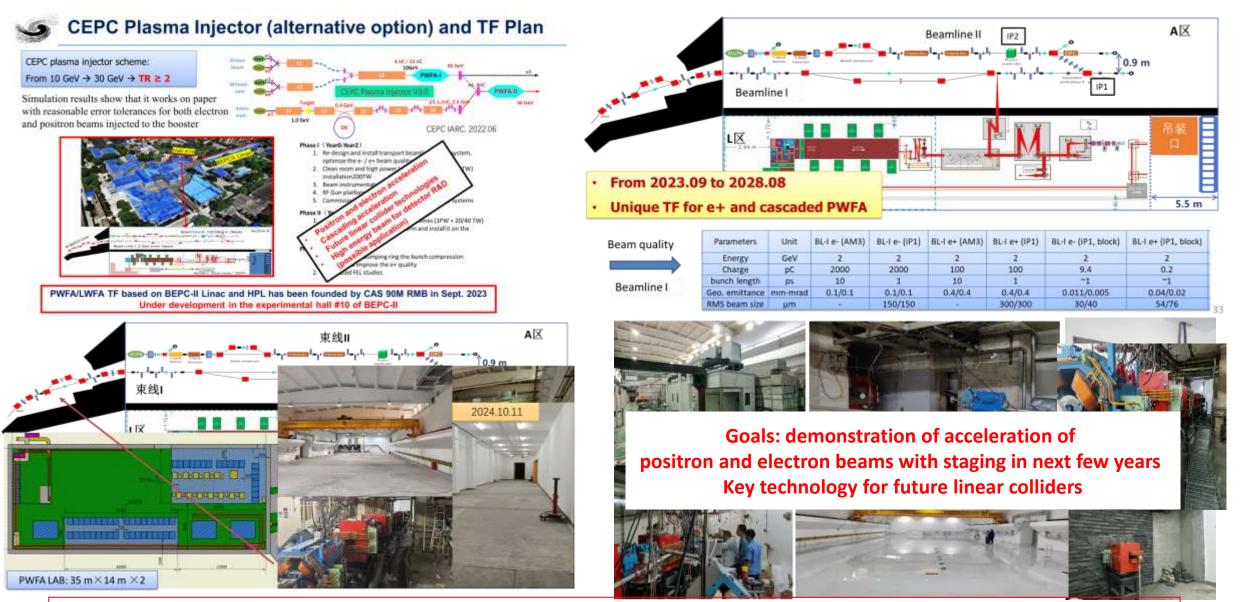
DUMP

Total


9

5

20



CEPC Accelerator Components Types

BEPCII-based PWFA Test Facility Development Status

Dazhang Li, Wei Lu and Jie Gao, Research highlights on plasma-based acceleration at IHEP, AAPPS Bulletin (2025) 35:3, https://doi.org/10.1007/s43673-025-00143-z

Green CEPC and Sustainability Efforts

- SR power per beam: 30 MW (CEPC-TDR p965)
 - Total electricity consumption: 262 MW
 - RF power (109 MW)
 - Magnet (58 MW)
 - Utilities (44 MW)
 - Cryogenics (11.6 MW)
 - Other auxiliary power combined (29 MW)
- SR power per beam: 50 MW (CEPC-TDR p967)
 - Total electricity consumption: 340 MW
 - RF power (177 MW)
 - Magnet (58 MW)
 - Utilities (54 MW)
 - Cryogenics (11.1 MW)

Other auxiliary power combined (29 MW)

Need to improve these

Need to

improve these

Participated the 4th edition of the Sustainable High Energy Physics (HEP) workshop, May 12-15, 2025, with green CEPC and sustainability presentation and Panel discussions https://indico.global/event/4745/

On-going sustainability projects:

- High efficiency klystron:
 - 650 MHz
 - 80 MW C-band
- Permanent magnets transport lines

Permanent quadrupole's prototypes for CEPC collider rings

- Recovery of waste heat (HEPS)
- Recovery and recycling of Helium
- Photovoltaic (PV) power generation systems (HEPS)

Prototypes have been developed addressing green collider technologies

Power efficiency, energy recycling, and clean energy generation are being addressed as comprehensive measures for sustainable operation

Publication: Dou Wang; Jie Gao; Yuhui Li; Jinshu Huang; Song Jin; Manqi Ruan; Mingshui Chen; Shanzhen Chen, "The carbon footprint and CO2 reduction optimization of CEPC", *RDMT*, https://doi.org/10.1007/s41605-025-00535-7 (2025).

Participating and Potential Collaborating Companies in China (CIPC) and Worldwide

System Magnet Power supplier 3 Vacuum Mechanics **RF** Power SRF/RF 6 Cryogenics Instrumentation Control Survey and 10 alignment Radiation 11 protection

e-e+Sources

CEPC Industrial Promotion Consortium (CIPC, established in Nov. 2017)

Potential international collaborating suppliers worldwide

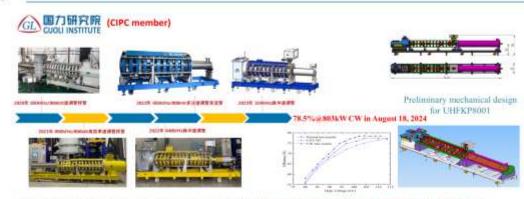
CEPC Industrial Preparation

Large-scale Cryogenic Refrigeration & Liquefaction Equipment 中国語画 (CIPC member)

First 18kW@4.5K helium refrigerator fabricated in in China passes inspection

- -It was developed by the Institute of TIPC, CAS, and integrated and manufactured by Fullcryo.
- -The super large horizontal cold box with a length of 28m and a diameter of 4.2m achieves ultra-high vacuum and extremely low leakage.
- -The horizontal cold box at megawatt-level is the largest of its kind in China and even in the world.
- -The horizontal cold box system has exceeded the set targets.
- -On-site testing: 1. The airtightness test of each internal channel revealed a pressure drop of 0, surpassing the target value of 0.02 bar. 2. The overall leakage rate is 9.1×10⁻¹⁰ Pa.m³/s, surpassing the target value of 1×10⁻⁷ Pa.m³/s.
- -Expected Goals: Achieving 3 operational mode adjustments: the cooling capacity ≥ 18kW@4.5K; the cooling capacity in the superfluid helium temperature range ≥4kW@2K.

2019 185 - RISP, CERN - HL-LHC, Fermilab - PIP-II, Shanghai - SHINE


RRR300 niobium material procurement in progress

北京中科富海低温科技有限公司 Beijing Sinoscience Fullcryo Technology CO., Ltd. (CIPC member)

CEPC cryogenic system need four 14kW@4K cryogenic refrigerators. SppC needs 18kW@4.5K helium refrigerator as well

CEPC 650MHz 800kW CW High Efficiency Klystrons

Kunshan National Research Institute has successively developed 650MHz/800KW klystron sample tubes, 650MHz/800KW high-efficiency klystron sample tubes, 648MHz pulse klystron tubes, 650MHz/800KW multi-injection klystron beam tubes, and the latest 3243/Hz pulse klystron tubes Electro vacuum products for 50 years. Provide high power thyristor of GL1536A in batches for BEPCII in 2012.

40

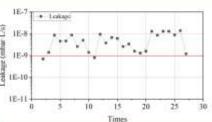
HE-RACING Technology and OTIC on SRF Technologies (CIPC members)

10GeV 1.3GHz and 650MHz SRF accelerators (ttar)

We had built the business relationship with many great continues such as DESY, MSU, Fermish, ILAB, INFN, STFC, CERN, TRIUMS, BI, ZANCH, DEP, BS, RECAT etc.

9

RF Shielding all Metal Gate Vacuum Valve


Htc. 日揚科技 SHZK

Two prototypes of RF shielding All metal DE PROFESSIONAL en developed, and the leakage of one of them have been tested.

■ The delivery inspection leakage test results for two valves , conducted by the manufacturer, were found to be < 1×10⁸ mbar -L/s (30 times open and closed).

 The difference of leakage by IHEP & manufacture will be checked and retested in next.

Tested by IHEP
 Expectation leakage < 1×10-9 mbar -L/s

CEPC needs ~1700 all metal valves

CEPC International Collaboration-1

HKUST IAS23 HEP Conference, Feb. 14-16, 2023, **Hong Kong**

https://indico.cern.ch/event/1215937/

The 2024 HKUST IAS Mini workshop and conference were held from Jan. 18-19, and Jan. 22-25, 2024, respectively.

https://indico.cern.ch/event/1335278/timetable/?view=standard

The 2025 HKUST IAS fundamental physics conference: Jan. 14-17, 2025, Hong Kong

https://indico.cern.ch/event/1454867/overview

CEPC Workshop EU Edition (Barcelona, Spain) June 16-19, 2025

https://indico.ifae.es/event/2054/overview

The 2026 HKUST IAS fundamental physics conference Jan. 12-16, 2026, Hong Kong

CEPC Workshop EU, April 7-10, 2026, Lisbon, Portugal

The 2023 International Workshop on Circular **Electron Positron Collider, EU Edition,** University of Edinburgh, July 3-6, 2023 https://indico.ph.ed.ac.uk/event/259/overview

The 2024 international workshop on the high energy Circular Electron Positron Collider (CEPC) was held from Oct. 23-27, 2024, Hangzhou, China https://indico.ihep.ac.cn/event/22089/

The 2025 international workshop on the high energy Circular Electron Positron Collider (CEPC) will be held from Nov. 6-10, 2025, Guangzhou, China https://indico.ihep.ac.cn/event/25300/

CEPC Workshop 2025, Nov. 6, 2025, Guangzhou

The 2023 international workshop on the high energy Circular **Electron Positron Collider (CEPC)**

https://indico.ihep.ac.cn/event/19316/

The 2024 international workshop of CEPC **EU-Edition** were held in Marseille, France, April 8-11, 2024.

https://indico.in2p3.fr/event/20053/overview

FCPPNL, Bordeaux, France, June 10-14, 2024 https://indico.in2p3.fr/event/20434/overview

FCPPNL, Qingdao, China, July 21-25, 2025 https://indico.ihep.ac.cn/event/25400/

CEPC International Collaboration-4

Since March 4th 2025 (kick off meeting), IHEP has joined an international collaboration on beam-beam effects at SuperKEKB among CERN, IHEP, KEK and USTC. (As recommended and encouraged by IARC and IAC)

IHEP has participated all SuperKEKB international collaboration meetings and one Ph.D student Meng Li and one Post Doc. Chuntao Lin from IHEP have long stay at KEK on SuperKEKB injection related background and beam-beam effects joint studies.

Prof. Jie GAO from IHEP has sent presentations to the collaboration about the possible reason why SuperKEKB's design luminosity (80*10^34@βy=0.3mm) could not be achieved, and it is recommended that the next round SuperKEKB experiment go to βy=1.79mm (instead of stay at βy=1mm and smaller) possibly achieved luminosity would be around 8.7*10^34cm^-2s^-1 (about a factor of ten lower than the design goal), close to the Super KEK B post-LS1(1) luminosity target goal of 10*10^34cm^-2s^-1. If on axis injection is adopted,

and the analytical formulae Eq. 1 and Eq. 2

the luminosity could reach $14.6*10^34$ cm²-2s¹-1 with β y=1mm.

Super KEK B is an important high luminosity e+e- collider in operation with crab waist scheme, and it is important to learn the experimental experiences for future advanced colliders such as Higgs factories of CEPC and FCC Analyses of Super KEK B Luminosities Compared with Theoretical Formulae with DA Limitation Effects

J. Goo
HEP

Sth Super KEK International Carlaboration on Beam-Blaze (KOVED) Westing August 25, 2025

The oral presentation will be in Nov. 2025

Eq. 1 and Eq. 2 could be found in following reference:

J. Gao, "The CEPC Project Status", Nov. 2025, arXiv:2505.04663, https://doi.org/10.48550/arXiv.2505.04663

Table 2: Comparison of Super KEK designed and experimental luminosities with Jie Gao's luminosity analytical formulae, Eq. 1 and Eq. 2

Summary

- CEPC accelerator full spectrum EDR activities including EDR site geological investigation and civil engineering design have progressed well according to EDR plan
- IARC/IAC recommendations have been well taken into account and all five international mini
 reviews have been conducted in 2025
- CEPC detector reference design report has been reviewed by IDRC in April and Sept. 2025, which
 promote also MDI activities in general
- CEPC IARC 2025 meeting report is a good guide for the following EDR works
- CEPC will keep and strengthen strong international and industrial collaborations
- CEPC goal is to complete EDR and continue to prepare and apply for construction in the 16th five year plan and start construction around 2030's

Acknowledgements

Thanks go to CEPC-SppC team's hard works, international and CIPC collaborations

Special thanks to CEPC IB, SC, IAC, IARC and IDRC committee's advices, suggestions and supports

Thanks for your attention