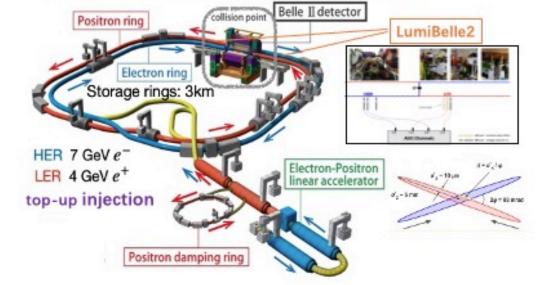


Investigation on injection-related beam loss at SuperKEKB

Meng LI
IHEP (Beijing) and IJCLab (Orsay)

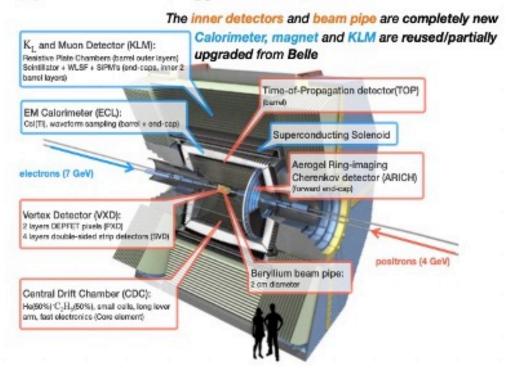
Acknowledgements

- → Jie Gao, Dou Wang (IHEP Beijing), Philip BAMBADE (IJCLab Orsay)
- → Naoko Iida, Yoshihiro Funakoshi, Yukiyoshi Ohnishi, Hiroyuki Nakayama, Hiroshi Kaji, Kenta Uno, Taichiro Koga (KEK Tsukuba)


Outline

- ☐ Introduction of injection issues at SuperKEKB
- ☐ Key findings for HER
- ☐ Conclusions and Outlook

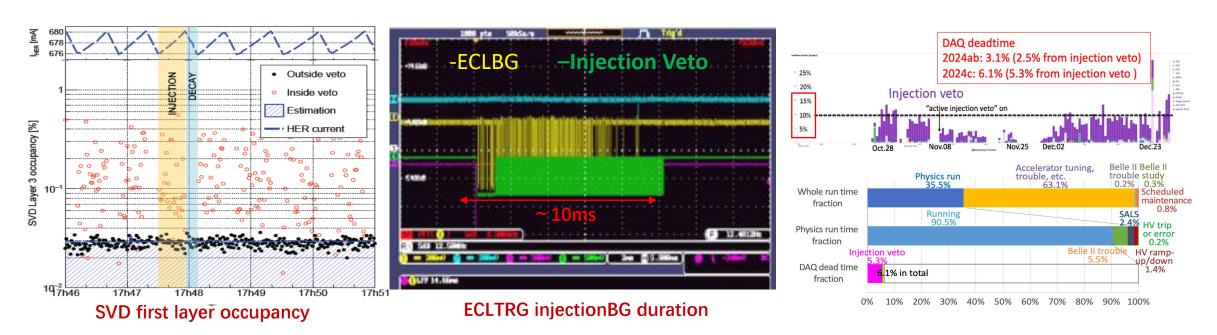
SuperKEKB/Belle II project


SuperKEKB

- Asymmetric-energy e⁺e⁻ collider
- $E_{cm} = M_{\Upsilon(4S)} \approx 10.58 \, \text{GeV}$, B factory
- Goal: $\mathcal{L}_{\text{peak}} = 6 \times 10^{35} \,\text{cm}^{-2} \text{s}^{-1}$
 - Nano-beam scheme and increased currents
 - $5.1 \times 10^{34} \,\mathrm{cm}^{-2} \mathrm{s}^{-1}$ (**Dec. 2024**, world record)

Belle II

- Target \mathcal{L}_{int} : 50 ab⁻¹
 - Physics data taking with full setup in March 2019
 - 575 fb⁻¹ has been recorded by December 2024
- Upgraded detectors, trigger and DAQ vs Belle


❖ The record luminosity at the end of 2024 was achieved under conditions where the injection was nearly saturated and the beam current could not be further increased.

SuperKEKB top-up injection and BelleII DAQ

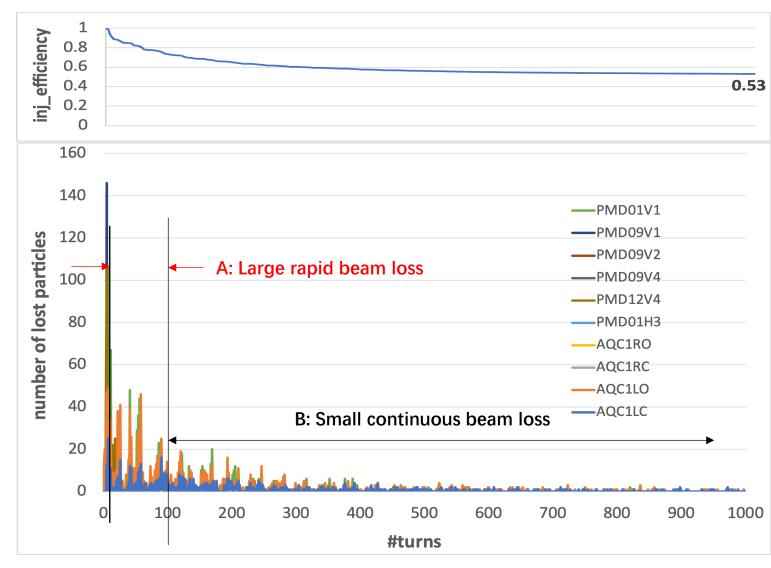
□ Injection strongly limit higher luminosity during recent operation


$$L = \frac{\gamma_{\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*} \right) \left(\frac{I_{\pm} \xi_{y\pm}}{\beta_y^*} \right) \left(\frac{R_L}{R_{\xi_y}} \right) \checkmark \text{high currents} \Rightarrow \text{reduced lifetimes} \Rightarrow \text{tried during 2024c run} \times \text{Small } \beta_y^* \Rightarrow \text{reduced DA} \Rightarrow \text{tried 0.8mm during 2022ab run} \times \text{Small } \beta_y^* \Rightarrow \text{reduced DA} \Rightarrow \text{tried 0.8mm during 2022ab run} \times \text{Small } \beta_y^* \Rightarrow \text{reduced DA} \Rightarrow \text{tried 0.8mm during 2022ab run} \times \text{Small } \beta_y^* \Rightarrow \text{reduced DA} \Rightarrow \text{tried 0.8mm during 2022ab run} \times \text{Small } \beta_y^* \Rightarrow \text{reduced DA} \Rightarrow \text{tried 0.8mm during 2022ab run} \times \text{Small } \beta_y^* \Rightarrow \text{reduced DA} \Rightarrow \text{tried 0.8mm during 2022ab run} \times \text{Small } \beta_y^* \Rightarrow \text{reduced DA} \Rightarrow \text{tried 0.8mm during 2022ab run} \times \text{Small } \beta_y^* \Rightarrow \text{reduced DA} \Rightarrow \text{tried 0.8mm during 2022ab run} \times \text{Small } \beta_y^* \Rightarrow \text{reduced DA} \Rightarrow \text{tried 0.8mm during 2022ab run} \times \text{Small } \beta_y^* \Rightarrow \text{reduced DA} \Rightarrow \text{tried 0.8mm during 2022ab run} \times \text{Small } \beta_y^* \Rightarrow \text{reduced DA} \Rightarrow \text{tried 0.8mm during 2022ab run} \times \text{Small } \beta_y^* \Rightarrow \text{reduced DA} \Rightarrow \text{tried 0.8mm during 2022ab run} \times \text{Small } \beta_y^* \Rightarrow \text{reduced DA} \Rightarrow \text{tried 0.8mm during 2022ab run} \times \text{Small } \beta_y^* \Rightarrow \text{reduced DA} \Rightarrow \text{tried 0.8mm during 2022ab run} \times \text{Small } \beta_y^* \Rightarrow \text{reduced DA} \Rightarrow \text{tried 0.8mm during 2022ab run} \times \text{Small } \beta_y^* \Rightarrow \text{reduced DA} \Rightarrow \text{tried 0.8mm during 2022ab run} \times \text{Small } \beta_y^* \Rightarrow \text{reduced DA} \Rightarrow \text{tried 0.8mm during 2022ab run} \times \text{Small } \beta_y^* \Rightarrow \text{reduced DA} \Rightarrow \text{tried 0.8mm during 2022ab run} \times \text{Small } \beta_y^* \Rightarrow \text{reduced DA} \Rightarrow \text{tried 0.8mm during 2022ab run} \times \text{Small } \beta_y^* \Rightarrow \text{reduced DA} \Rightarrow \text{tried 0.8mm during 2022ab run} \times \text{Small } \beta_y^* \Rightarrow \text{reduced DA} \Rightarrow \text{tried 0.8mm during 2022ab run} \times \text{Small } \beta_y^* \Rightarrow \text{reduced 0.8mm during 2022ab run} \times \text{Small } \beta_y^* \Rightarrow \text{reduced 0.8mm during 2022ab run} \times \text{Small } \beta_y^* \Rightarrow \text{reduced 0.8mm during 2022ab run} \times \text{Small } \beta_y^* \Rightarrow \text{reduced 0.8mm during 2022ab run} \times \text{Small } \beta_y^* \Rightarrow \text{reduced 0.8mm during 2022ab run} \times \text{Small } \beta_y^* \Rightarrow \text{reduced 0.8mm during 2022ab run} \times \text{Small } \beta_y^* \Rightarrow \text{reduced 0.8mm during 2022ab run} \times \text{Small } \beta_y^* \Rightarrow \text{reduced 0.8mm during$$

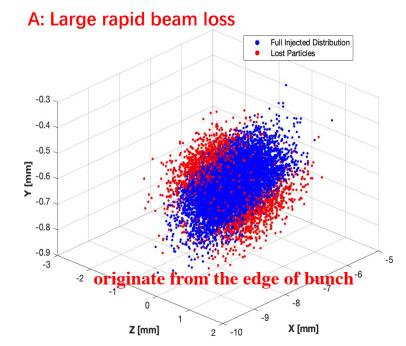
- Achieved injection efficiency during physics run almost lower than half of the required -> limit beam current
- Huge background appear just after beam injection and continues more than 10ms -> limit data taking efficiency -Belle II trigger is vetoed for a while after injection -> large DAQ deadtime of $5\sim15\%$
- > Injection-related issues are expected to become more severe for higher luminosity -> serious issue for target luminosity
- Detailed injection-related beam loss and background simulation is essential for improving injection efficiency and BG

Injection simulation based on realistic operation settings

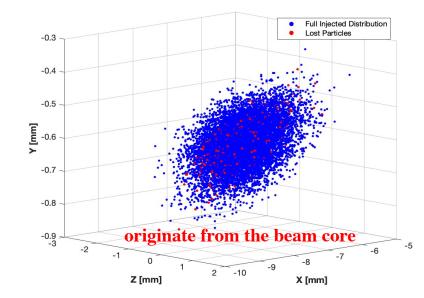
- **❖** Detailed HER injection simulations were performed and compared with dedicated experimental measurements.
 - Lattice: HER_CW60_0.9mm-can_rev.sad: $\beta_x^* = 60mm$, $\beta_y^* = 0.9mm$, crab waist=60% (from Ohnishi-san)
 - Injection distribution (from Yoshimoto-san) + emittance adjustments $(\gamma \varepsilon_x/\gamma \varepsilon_y = 200 \mu m/150 \mu m)$ + injection error $(2J_x = 0.58 \mu m)$



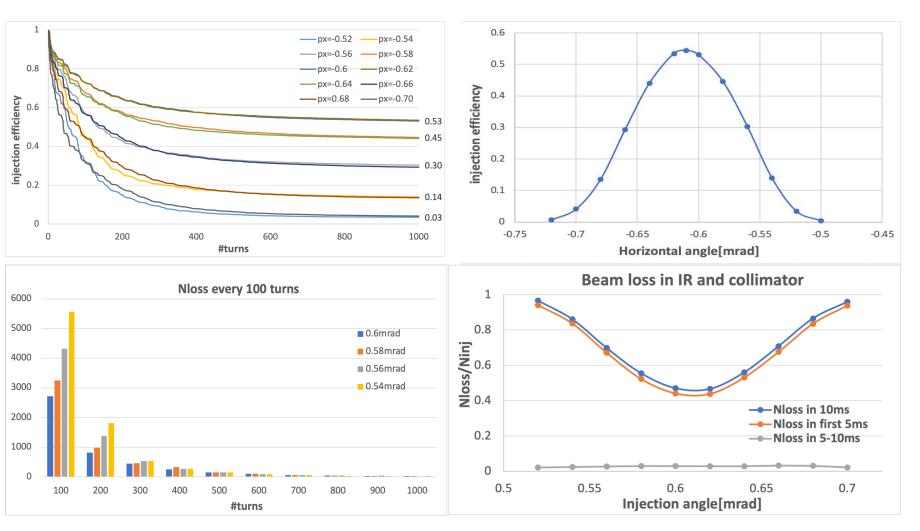
Beam-beam(weak-strong model)

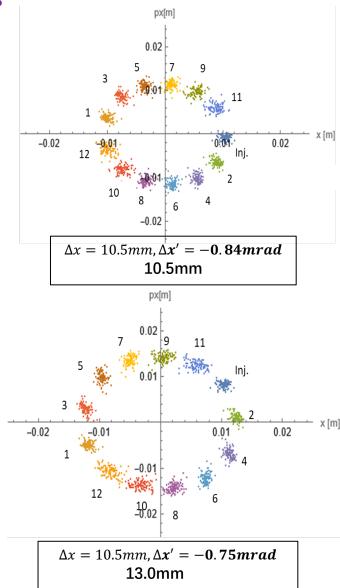

```
BEAMBEAM FBMBME = (BX = .08 BY = .0009 XANGLE = .0415 EMITX = 1.55e-09 EMITY = 26.9e-12 DP = .00075 SIGZ = .006 SLICE = 200 NP = 3.3e+10 STURN = 10 ) N_p = 3.31 \times 10^{10} \rightarrow I_b = 0.5 mA \rightarrow \xi_y = 0.017, \xi_x = 0.010 \text{ (based on 2024-6-27 operation emittance and bunch current)}
```

- Realistic IR beam pipe setting + Collimator (2024-06-26)
- Machine error: sextupole vertical mis-alignment (55µm Gauss random \rightarrow global coupling: $\varepsilon_y/\varepsilon_x = 0.6\%$) manufactory error from cancel coils (correct leakage field from QC1P in the LER)
- Bunch-by-bunch feedback(damping time=0.5ms) → Gaussian stored beam also included


Injection efficiency and beam loss

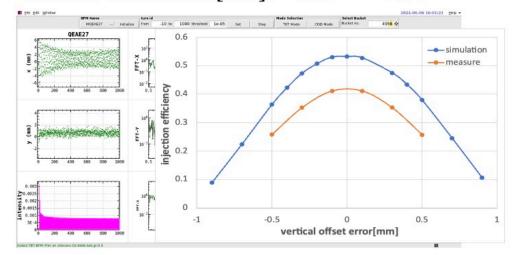
- ➤ There are 2 different types of beam loss:
- 1) large and fast beam loss in the first 100 turns(30%) →injection efficiency
- 2) small and continuous beam loss until 1000 turns(10%) →injection BG duration

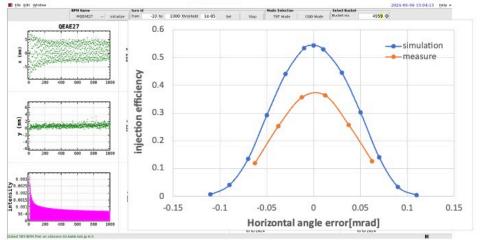



B: Small continuous beam loss

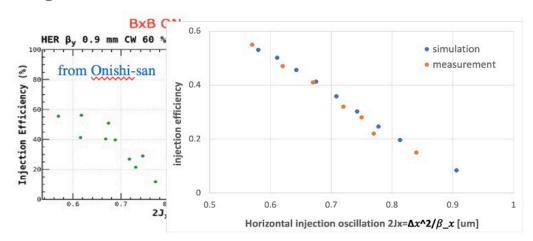
■ Finding1: Injection errors mainly affect injection efficiency

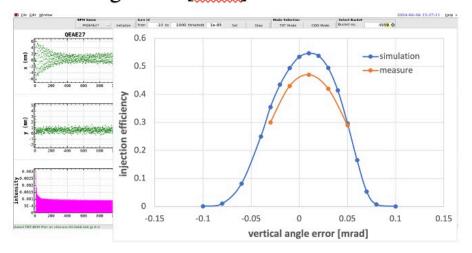
-> injection offset; injection angle; injected emittance; injection phase; x-y coupling



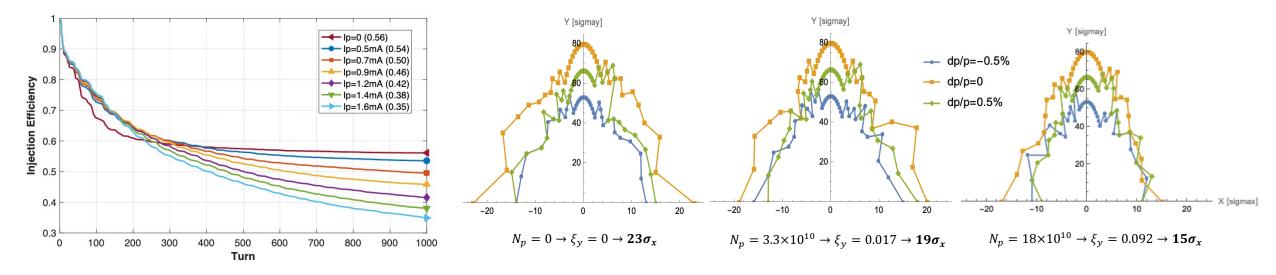

Measurement of Injection Error Effect on Injection(2024-06-06)

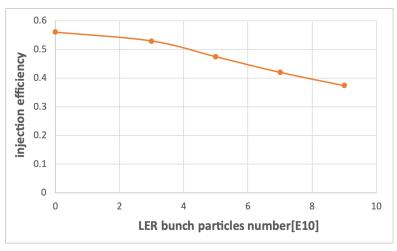
(with N. lida, Y. Ohnishi)

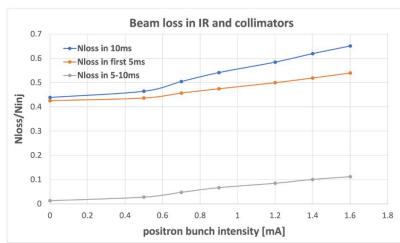

• Vertical Position Scan[mm]: $-0.06 \rightarrow -1.06$

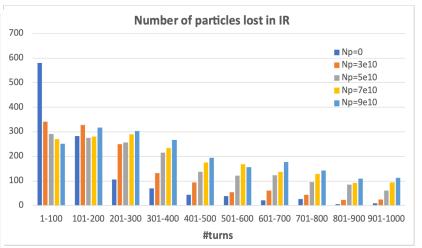

• Septum Angle Scan[\underline{mrad}]: 2.94 \rightarrow 3.06

• Septum Position Scan[mm]: 45.1 → 46.1


• Vertical Angle Scan[mrad]: $0.014 \rightarrow -0.054$

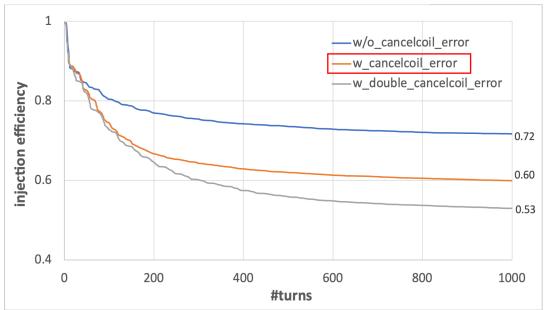


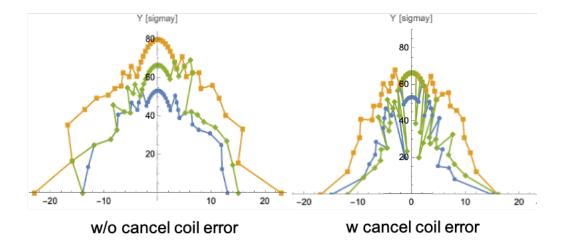

> The trend of injection efficiency with respect to the variation in error is consistent.


■ Finding2: Non-linearity in HER lattice affect both efficiency and background

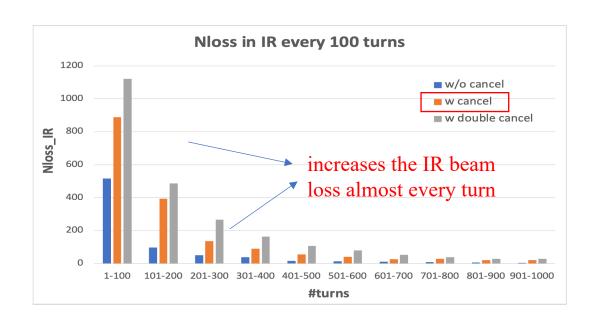
- -> Beam-beam effect; cancel coil error; crab waist collision
 - ❖ Beam-beam interaction can reduce the beam loss rate in the first 100 turns but increase the loss rate after 100 turns.
 - Strengthening the beam-beam interaction decreases DA, lowers injection efficiency, and increases injection background-related beam loss.

Measurement of Beam-beam effect on injection (2024-12-12)


(with Y. Funakoshi, H. Kaji, T. Koga, U. Bela)



☐ Cancel coil error affect both injection efficiency and background

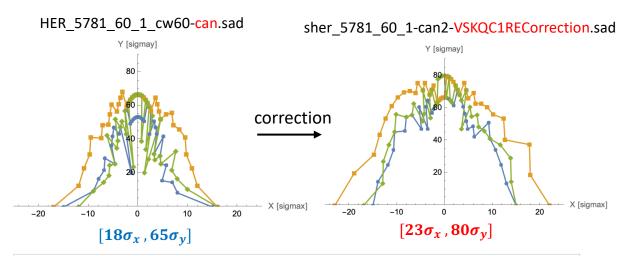

- Cancel coils in the HER should correct the leakage field from QC1LP and QC1RP in the LER.
- Skew sextupole and skew octupole increase (not cancelled) due to manufacturing mistake.

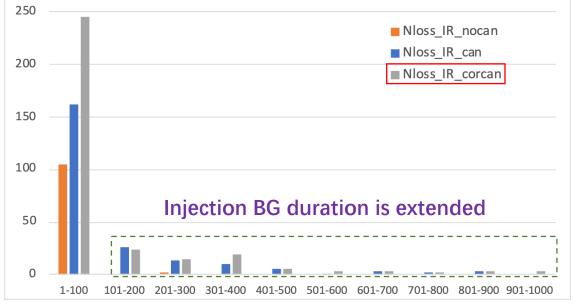
- ❖ Cancel coil error degrades the on-momentum DA: $80\sigma_y \rightarrow 65\sigma_y$, $22\sigma_x \rightarrow 16\sigma_x$
- Decrease the injection efficiency: $72\% \rightarrow 60\%$



□ Cancel coil error correction— based on 2024c lattice obtained from Ohnishi-san and kosio-san

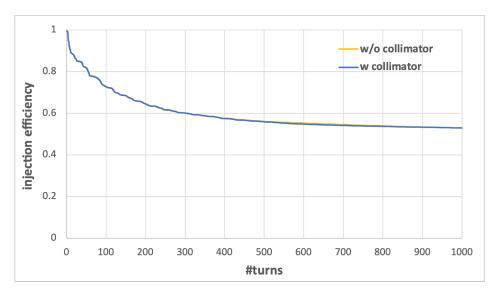
Cancel coil error correction: H. Kosio

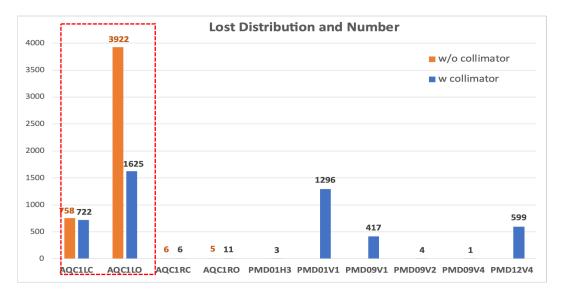

VSKQC1RE =(DX =-.0007 SK2=0)
pos=LINE["S", VSKQC1RE]=3014.9047
elm="VSKQC1RE";
Element["DX",elm]=Twiss["DX",elm];
Element["DY",elm]=Twiss["DY",elm];
Element["SK2",elm]=0.04;
CALC;
EMIT;


- → does not affect the orbit or linear optics
- \rightarrow L-side ΣSK2 = -0.32853, R-side ΣSK2 = -0.41576 (L-side ΣSK2) - (R-side ΣSK2) \sim -0.0872
- → correcting the SK2 imbalance between the left and right sides of the IP

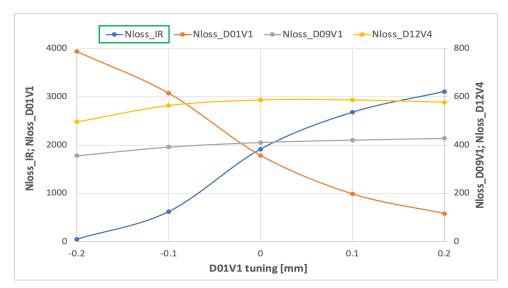
Placed a thin skew sextupole magnet, VSKQC1RE, before VKQC1RE of

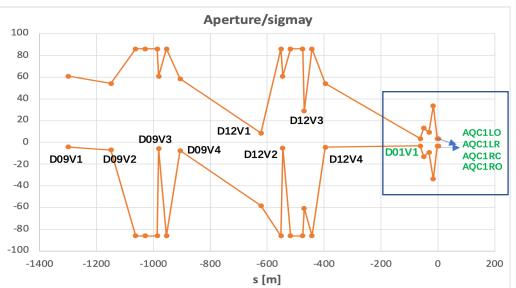
DA almost recovered after correction





- Collimator optimization is required to avoid increase of IR beam loss
- Validation experiment will be carried out in 2025c operation


■ Finding3: IR Beam loss can be suppressed by minor collimator aperture adjustment


> Current collimator settings are effective in protecting the IR region, but IR losses remain.

- > D01V1 plays a major role in this suppression
 - -relative aperture to the injection beam size of D01V1 is almost the same as that of the IR beam pipe

Collimator and beam-beam measurement (2024-12-26)

(with K. Uno, R. Ueki, H. Kaji, T. Koga, U. Bela)

☐ Tuning the collimator D01V1 and recording the injection related beam loss and background

Take data with collimator D01V1 position: original, +-100um, +-200um under two different beam current cases

- -> LER:240mA, HER:192mA, 393 bunches (corresponds to 1.4A and 1.1A with 2346 bunches) -> current best operation so condition
- -> LER:290mA, HER:230mA, 393 bunches (corresponds to 1.7A and 1.4A with 2346 bunches)-> a little future

-2.15

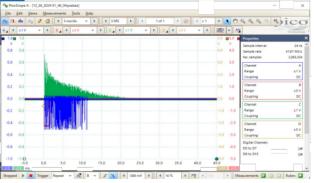
Data recording

12 26 2024 03:11:57

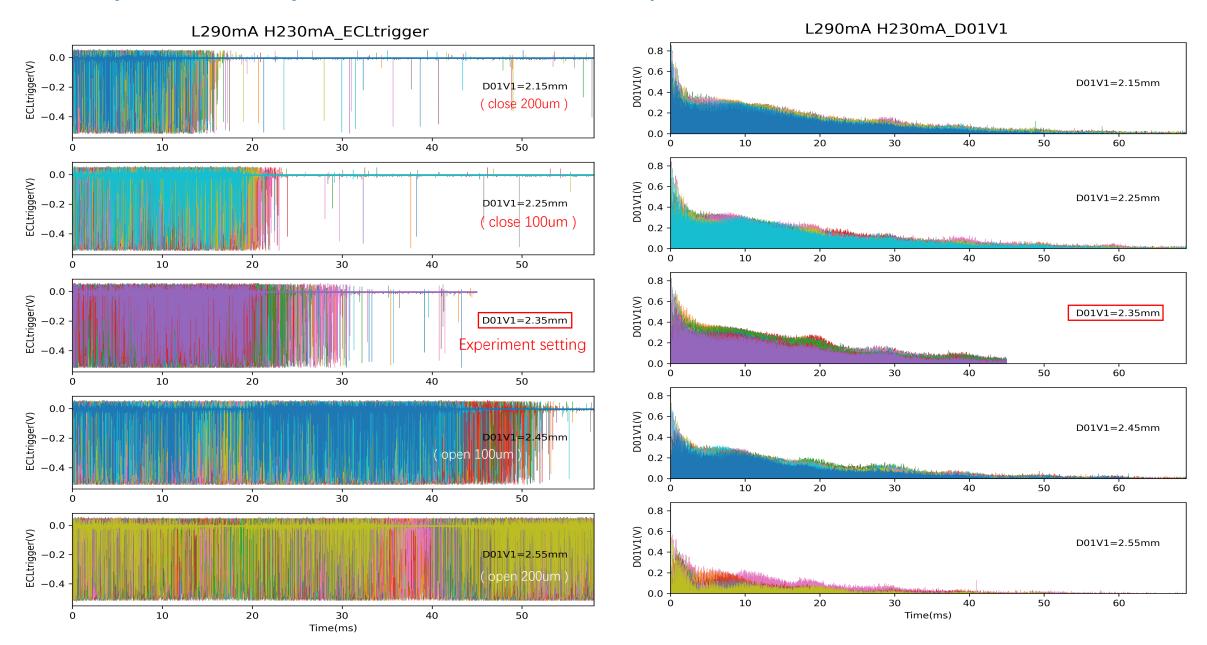
- -> injection efficiency -> TbT monitor
- -> beam loss pattern -> CLAWS at D01V1; CsI scintillator + PMT& EMT at D09V3, D12V1

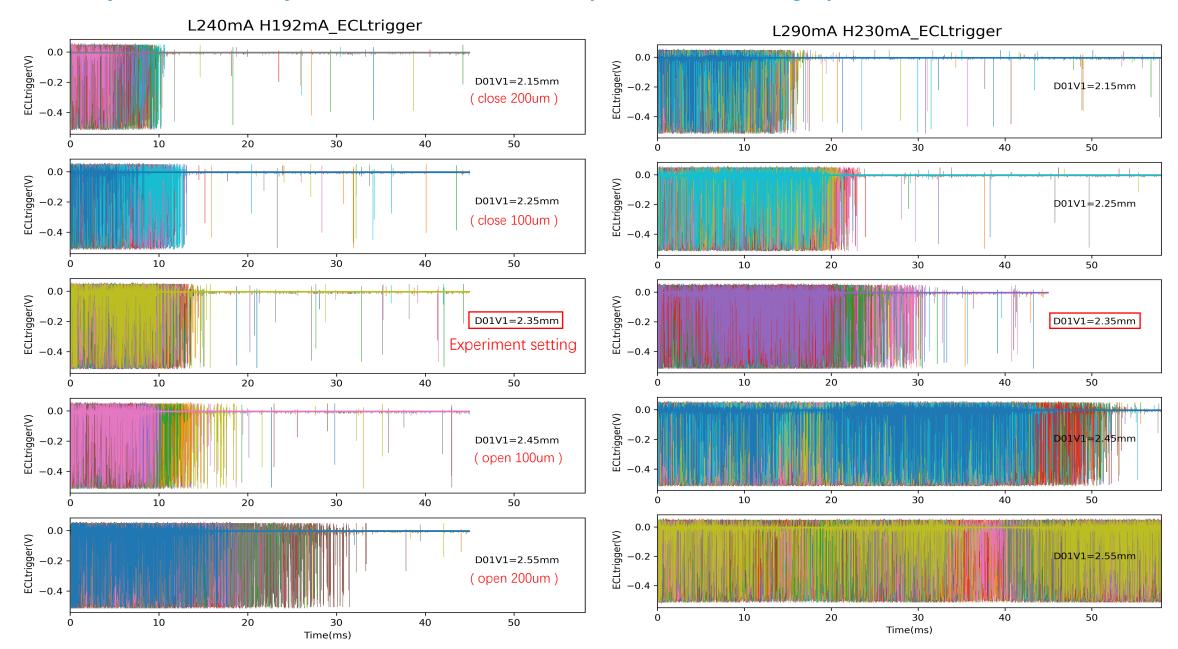
2.15

-> injection background duration -> ECLTRG

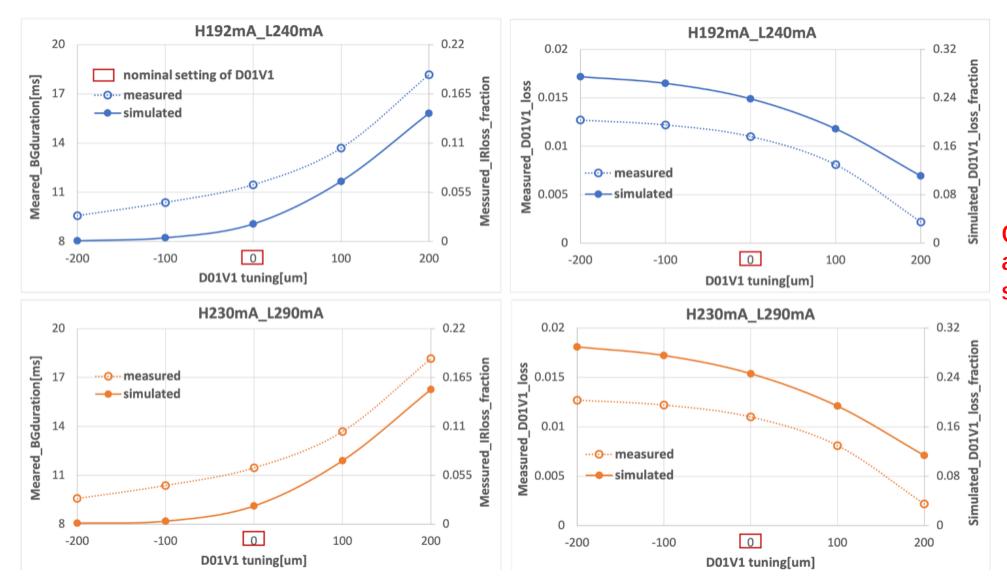

12 26 2024 03:16:47

	J	,												
collision; 393 bucnhes, HER 5Hz, LER 12.5Hz														
HER=192mA(0.49), LER=240mA(0.61)														
No	No start time end time D01C-V1-TOP[mm] D01C-V1-BTM[mm] record waveforms													
1	12_26_2024 01:46:04	12_26_2024 01:53:13	2.35	-2.35	37									
2	12_26_2024 01:54:42	12_26_2024 02:00:32	2.40	-2.40	-									
3	12_26_2024 02:00:34	12_26_2024 02:07:59	2.45	-2.45	34									
4	12_26_2024 02:10:23	12_26_2024 02:17:58	2.55	-2.55	29									
5	12_26_2024 02:18:00	12_26_2024 02:25:37	2.25	-2.25	43									
6	12_26_2024 02:26:16	12_26_2024 02:35:16	2.15	-2.15	45									
	02:	35:02: collimator return t	o 2.35mm, start to inc	rease current										
	HER=230mA(0.57), LER=290mA(0.83)													
No	start time	end time	D01C-V1-TOP[mm]	D01C-V1-BTM[mm]	record waveforms									
1	12_26_2024 02:42:40	12_26_2024 02:48:13	2.35	-2.35	35									
2	12_26_2024 02:48:47	12_26_2024 02:54:32	2.45	-2.45	34									
3	12_26_2024 02:56:24	12_26_2024 03:01:48	2.55	-2.55	34									
4	12_26_2024 03:03:01	12_26_2024 03:10:37	2.25	-2.25	39									
	No 1 2 3 4 5 6	No start time 1 12_26_2024 01:46:04 2 12_26_2024 01:54:42 3 12_26_2024 02:00:34 4 12_26_2024 02:10:23 5 12_26_2024 02:18:00 6 12_26_2024 02:26:16 02: No start time 1 12_26_2024 02:42:40 2 12_26_2024 02:48:47 3 12_26_2024 02:56:24	collision; 393 bucn HER=192mA(0) No start time end time 1 12_26_2024 01:46:04 12_26_2024 01:53:13 2 12_26_2024 01:54:42 12_26_2024 02:00:32 3 12_26_2024 02:00:34 12_26_2024 02:07:59 4 12_26_2024 02:18:00 12_26_2024 02:17:58 5 12_26_2024 02:18:00 12_26_2024 02:25:37 6 12_26_2024 02:26:16 12_26_2024 02:35:16 02:35:02: collimator return t HER=230mA(0) No start time end time 1 12_26_2024 02:42:40 12_26_2024 02:48:13 2 12_26_2024 02:48:47 12_26_2024 02:54:32 3 12_26_2024 02:56:24 12_26_2024 03:01:48	collision; 393 bucnhes, HER 5Hz, LER HER=192mA(0.49), LER=240mA(0.61) No start time end time D01C-V1-TOP[mm] 1 12_26_2024 01:46:04 12_26_2024 01:53:13 2.35 2 12_26_2024 01:54:42 12_26_2024 02:00:32 2.40 3 12_26_2024 02:00:34 12_26_2024 02:07:59 2.45 4 12_26_2024 02:10:23 12_26_2024 02:17:58 2.55 5 12_26_2024 02:18:00 12_26_2024 02:25:37 2.25 6 12_26_2024 02:26:16 12_26_2024 02:35:16 2.15 HER=230mA(0.57), LER=290mA(0.83) No start time end time D01C-V1-TOP[mm] 1 12_26_2024 02:42:40 12_26_2024 02:48:13 2.35 2 12_26_2024 02:48:47 12_26_2024 02:54:32 2.45 3 12_26_2024 02:56:24 12_26_2024 03:01:48 2.55	No start time end time D01C-V1-TOP[mm] D01C-V1-BTM[mm] 1 12_26_2024_01:46:04 12_26_2024_01:53:13 2.35 -2.35 2 12_26_2024_01:54:42 12_26_2024_02:00:32 2.40 -2.40 3 12_26_2024_02:00:34 12_26_2024_02:07:59 2.45 -2.45 4 12_26_2024_02:10:23 12_26_2024_02:17:58 2.55 -2.55 5 12_26_2024_02:18:00 12_26_2024_02:53:7 2.25 -2.25 6 12_26_2024_02:26:16 12_26_2024_02:35:16 2.15 -2.15 O2:35:02: collimator return to 2.35mm, start to increase current HER=230mA(0.57), LER=290mA(0.83) No start time end time D01C-V1-TOP[mm] D01C-V1-BTM[mm] 1 12_26_2024_02:42:40 12_26_2024_02:48:13 2.35 -2.35 2 12_26_2024_02:48:47 12_26_2024_02:54:32 2.45 -2.45 3 12_26_2024_02:56:24 12_26_2024_03:01:48 2.55 -2.55									




□ Preliminary analysis

-- The injection BG is very sensitive to collimator D01V1 aperture


□ Preliminary analysis

-- The injection BG is very sensitive to bunch current(beam-beam strength)

□ Detailed analysis

- Local pedestal correction & Integration of D01V1 signals after 5ms → estimate beam loss on D01V1
- Calculate ECLTRG duration automatically → estimate injection BG duration
- Update simulation match to measurement setting

Good qualitative agreement with simulation results

□ Collimator tuning to share beam loss on D01V1

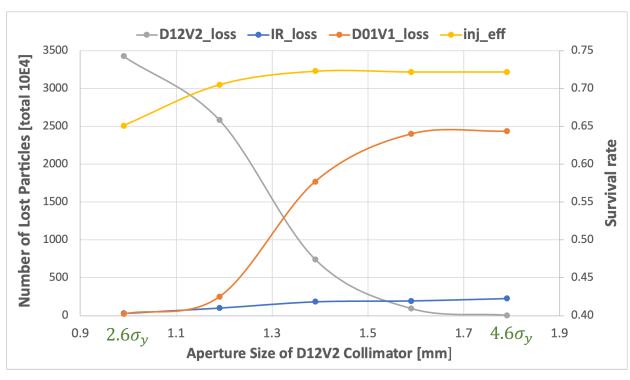
								D01 P01H4 D01H3 D02H4 D02H3 D02								001 400143 00214 201110 002	
	Name	PosRel	AbsPos	BX	BY	sigmax	sigmay	dx1	dx2	dy1	dy2	dx1/sigx	dx2/sigx	dy1/sigy	dy2/sigy		Digoto in the same of the same
	PMD09V1	-1299.111	126.345	25.607	15.472	0.000515	0.000392	0.052	-0.052	0.025	-0.00239	100.930	-100.930	63.788	-6.098		D01V1 e- e+ D02H1 D02H1 D02H2 D03
	PMD09V2	-1149.053	276.403	31.625	19.438	0.000573	0.000439	0.052	-0.052	0.025	-0.0036	90.820	-90.820	56.910	-8.195	D12 D12	D01V1 D02V1 D02H1 D03
	PMD09H1	-1062.401	363.055	39.731	7.703	0.000642	0.000277	0.052	-0.01304	0.025	-0.025	81.028	-20.319	90.404	-90.404	D12V3	TSUKUBA DO3H1
D09	PMD09H2	-1029.702	395.754	39.728	7.703	0.000642	0.000277	0.052	-0.01144	0.025	-0.025	81.031	-17.827	90.401	-90.401	D12H3	
DUS	PMD09H3	-986.730	438.726	39.731	7.703	0.000642	0.000277	0.052	-0.01203	0.025	-0.025	81.028	-18.746	90.404	-90.404	D12V2	
	PMD09V3	-981.531	443.925	25.602	15.474	0.000515	0.000392	0.052	-0.052	0.025	-0.00269	100.939	-100.939	63.783	-6.863	D12H1	SuperVEVD Main Ding
	PMD09H4	-954.031	471.425	39.728	7.703	0.000642	0.000277	0.052	-0.01094	0.025	-0.025	81.031	-17.048	90.401	-90.401	17	SuperKEKB Main Ring
	PMD09V4	-905.559	519.898	23.222	16.738	0.000491	0.000408	0.052	-0.052	0.025	-0.00291	105.987	-105.987	61.327	-7.138		i \\
	PMD12V1	-621.386	804.070	23.217	16.741	0.000491	0.000408	0.052	-0.052	0.00381	-0.025	105.997	-105.997	9.346	-61.323	D11 HER	LER DO4
	PMD12H1	-551.217	874.239	39.731	7.703	0.000642	0.000277	0.052	-0.01159	0.025	-0.025	81.028	-18.060	90.404	-90.404		!
	PMD12V2	-546.018	879.438	25.607	15.472	0.000515	0.000392	0.052	-0.052	0.025	-0.00179	100.930	-100.930	63.788	-4.567	U	
D12	PMD12H2	-518.518	906.938	39.728	7.703	0.000642	0.000277	0.052	-0.01144	0.025	-0.025	81.031	-17.827	90.401	-90.401	as o	GLE
D12	PMD12H3	-475.547	949.909	39.731	7.703	0.000642	0.000277	0.052	-0.01151	0.025	-0.025	81.028	-17.935	90.404	-90.404	VIGGLER	
	PMD12V3	-470.348	955.108	25.607	15.472	0.000515	0.000392	0.052	-0.052	0.01208	-0.025	100.930	-100.930	30.822	-63.788	N N	: Horizontal Collimator, KEKB HER(50x104) type D05V1
	PMD12H4	-442.848	982.608	39.728	7.703	0.000642	0.000277	0.052	-0.01162	0.025	-0.025	81.031	-18.107	90.401	-90.401	i i	: Vertical Collimator, KEKB HER(50x104) type
	PMD12V4	-395.960	1029.496	31.621	19.439	0.000573	0.000439	0.052	-0.052	0.025	-0.0022	90.826	-90.826	56.907	-5.008	-+-	: Horizontal Collimator, SuperKEKB LER(f90x220) type
	PMD01V1	-61.744	1363.712	40.106	46.183	0.000645	0.000677	0.02	-0.02	0.00235	-0.00236	31.018	-31.018	3.471	-3.485	D10 D09V4	-
D01	PMD01H3	-49.604	1375.853	7.055	190.029	0.000270	0.001374	0.005	-0.005	0.02	-0.02	18.489	-18.489	14.561	-14.561	D09V3	Vertical Collinator, Superkeks Lek(190x220) type
D01	PMD01H4	-30.901	1394.555	16.700	386.308	0.000416	0.001958	0.00798	-0.00796	0.02	-0.02	19.180	-19.132	10.213	-10.213	Q D09H3	: Horizontal Collimator, SuperKEKB LER(f90) type
	PMD01H5	-16.826	1408.630	30.934	28.651	0.000566	0.000533	0.00981	-0.00978	0.02	-0.02	17.324	-17.271	37.500	-37.500	D09H2	: Horizontal Collimator, SuperKEKB HER(f80x220) type
100	AQC2LO	-3.050	1422.406	410.410	456.246	0.002063	0.002128	0.035	-0.035	0.035	-0.035	16.969	-16.969	16.445	-16.445	D09H1 D09V2	: Vertical Collimator, SuperKEKB HER(f80x220) type
	AQC2LC	-2.700	1422.756	391.339	528.109	0.002014	0.002290	0.035	-0.035	0.035	-0.035	17.377	-17.377	15.285	-15.285	D09V2	FUJI D06V2
	AQC1LO	-1.600	1423.856	63.028	1653.443	0.000808	0.004052	0.015	-0.015	0.015	-0.015	18.558	-18.558	3.702	-3.702		
IR_QCS	AQC1LC	-1.410	1424.046	37.852	1733.991	0.000626	0.004149	0.015	-0.015	0.015	-0.015	23.946	-23.946	3.615	-3.615	D09	D06H4 D06
IIQ00	MOTILO	1.410	1426.866	37.635	1744.590	0.000625	0.004162	0.015	-0.015	0.015	-0.015	24.015	-24.015	3.604	-3.604		e- 1 e+ D06H3
	AQC1RO	1.600	1427.056	61.798	1694.979	0.000800	0.004102	0.015	-0.015	0.015	-0.015	18.741	-18.741	3.657	-3.657		
	AQC2RC	2.920	1428.376	478.045	516.408	0.002226	0.002264	0.035	-0.035	0.035	-0.035	15.723	-15.723	15.458	-15.458		ARES
	AQC2RO	3.110	1428.566	499.507	472.116	0.002275	0.002165	0.035	-0.035	0.035	-0.035	15.381	-15.381	16.166	-16.166		D08 ARES D07
I	1	r ·	1 1	1	1				1	1		1					

D01H4 posus, posus D02H3 pos

□ Preliminary Vertical Collimator Scan: PMD12V2; PMD12V4

D12V4 Tuning

 $3.0\sigma_{\rm v}$


1.5

→ D12V4_loss → IR_loss → D01V1_loss → inj_eff 0.75 Number of Lost Particles [total 10E4] 3500 0.70 2500 0.65 2000 0.60 Survival 0.55 1500 0.50 1000 500 0.45 0.40

Aperture Size of D12V4 Collimator [mm]

1.9

D12V2 Tuning

• Tightening collimator apertures (D12V2, D12V4) effectively reduces IR beam loss and D01V1 loss.

 $5.0\sigma_{\rm v}$

2.1

- However, to suppress the IR beam loss, larger aperture adjustments are required for D12V4 and D12V2 compared with D01V1.
- D12V4 demonstrates higher sensitivity to aperture changes compared to D12V2.

□ Preliminary Horizontal Collimator Scan: PMD01H3

PosRel	ReAX	ReAY	PMD01H3	d=5.00mm	d=4.46mm	d=3.65mm	
Poskei	KeAX	KeAt	d/sigmaxi	18.50	16.50	13.50	
1.600	18.74	3.66	AQC1RO	23	22	6	
1.410	24.02	3.60	AQC1RC	19	12	5	
1.170	21.34	3.70	APIR.517	5	2	1	
-1.410	23.95	3.62	AQC1LC	23	10	7	
-1.600	18.56	3.70	AQC1LO	157	137	64	
			IR_loss	227	183	83	
-61.744	.744 31.02 3.47		PMD01V1	2437	2456	2252	
-49.604	18.50	14.56	PMD01H3	0	8	359	
-395.960	90.83	5.01	PMD12V4	100	111	62	
-546.018	100.93	4.57	PMD12V2	5	5	3	
-905.559	105.987	7.14	PMD09V4	1	1	1	
-1149.053	90.82	8.20	PMD09V2	1	1	1	
-1299.1107	100.93	6.10	PMD09V1	5	5	0	
			Mask_loss	2549	2587	2678	
sigmax_in	j@D01H3 :	= 0.27mm	Total_loss	2776	2770	2761	
			INJ_efficiency	0.722	0.722	0.723	

Question: What is the minimum achievable collimator aperture?

- ->Preliminary collimator tuning for individual collimators only.
- ->still need to optimize several of them together.

- Tightening collimator D01H3 aperture reduces IR beam loss, but the effect was less sensitive compared to vertical collimation.
- Injection efficiency remained stable even with extreme aperture reduction.

Conclusions and outlook

- > A more realistic simulation mechanism for injection-related beam loss has been developed
- Verification experiments have been conducted based on its main findings
- Qualitative agreement is observed between simulation and experimental data:
 - comparison includes raw waveform features and further data analysis
 - simulation updated with beam parameters and machine conditions from the measurement day

- ☐ Further investigation of injection-related beam loss and background
 - Detailed tune scan(betatron-synchrotron resonance,...)
 - ❖ More realistic collimator model including tip-scattering & collimator optimization program integration
 - **Connect SAD simulated injection beam loss with Geant4 simulation**
 - ❖ More validation experiments (CLAWS at D01V1, ECLTRG,...)

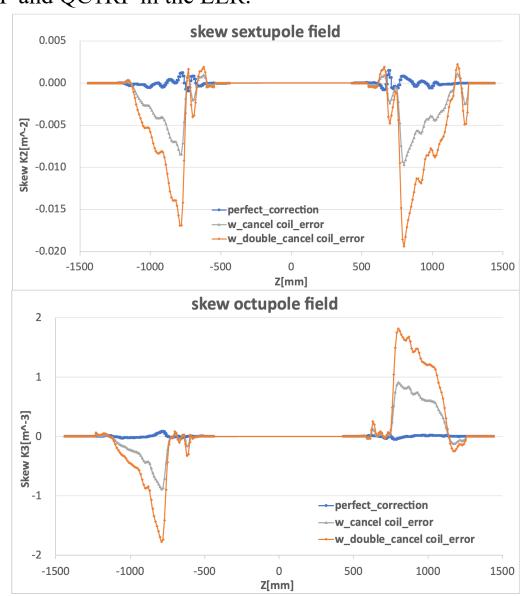
Back up

■ Finding2: Non-linear factors affect both injection efficiency and background

➤ Manufacturing error of cancel coil in HER

Cancel coils in the HER should correct the leakage field from QC1LP and QC1RP in the LER.

 Normal winding and skew winding coils correct both normal and skew field by using one power supply.



• Skew sextupole and skew octupole increase (not cancelled) due to manufacturing mistake.

Table 24: Measured integral leak fields at R_{ref}=10 mm

		L, Tm	QCSR, Tm		
Multipole coefficient	without cancelling	with cancelling	without cancelling	with cancelling	
b_3	3.36×10 ⁻³	2.32×10 ⁻⁵	-3.53×10^{-3}	1.27×10 ⁻⁵	
b_4	-7.58×10^{-4}	-2.83×10^{-6}	8.02×10^{-4}	4.39×10^{-6}	
b_5	1.57×10^{-4}	3.66×10^{-6}	-1.67×10^{-4}	-3.73×10 ⁻⁶	
b_6	-2.98×10^{-5}	7.8×10^{-7}	3.24×10 ⁻⁵	2.35×10^{-6}	
a_3	-2.42×10^{-4}	-3.88×10^{-4}	-2.52×10^{-4}	-4.93×10 ⁻⁴	
a_4	-5.88×10^{-5}	-1.16×10 ⁻⁴	4.94×10^{-5}	1.71×10^{-4}	
a_5	-1.48×10^{-5}	-1.48×10 ⁻⁵	6.26×10^{-6}	-8.31×10 ⁻⁶	
a_6	1.88×10 ⁻⁵	1.48×10 ⁻⁵	-4.31×10 ⁻⁶	-1.09×10 ⁻⁶	

Y. Ohnishi

□ Preliminary Vertical Collimator Scan: PMD12V2; PMD12V4

PosRel	ReAX	ReAY	PMD12V2	d=1.79mm	d=1.39mm	d=0.99mm	PMD12V4	d=2.20mm	d=1.76mm	d=1.32mm
Poskei	NEAN	REAT	d/sigmaxi	4.57	3.57	2.57	d/sigmaxi	5.00	4.00	3.00
1.600	18.74	3.66	AQC1RO	23	29	7	AQC1RO	23	15	4
1.410	24.02	3.60	AQC1RC	19	15	2	AQC1RC	19	20	0
1.170	21.34	3.70	APIR.517	5	1	0	APIR.517	5	1	0
-1.410	23.95	3.62	AQC1LC	23	12	1	AQC1LC	23	9	1
-1.600	18.56	3.70	AQC1LO	157	139	20	AQC1LO	157	99	2
			IR_loss	227	196	30	IR_loss	227	144	7
-61.744	31.02	3.47	PMD01V1	2437	1770	22	PMD01V1	2437	1480	14
-395.960	90.83	5.00	PMD12V4	100	41	0	PMD12V4	100	1143	3262
-546.018	100.93	4.57	PMD12V2	5	744	3428	PMD12V2	5	6	0
-905.559	105.987	7.14	PMD09V4	1	1	0	PMD09V4	1	0	0
-1149.053	90.82	8.20	PMD09V2	1	1	0	PMD09V2	1	1	1
-1299.1107	100.93	6.10	PMD09V1	5	5	0	PMD09V1	5	4	1
sigmax_in	sigmax_inj@D12V2 = 0.40mm			2549	2562	3450	Mask_loss	2549	2634	3278
sigmax_in	sigmax_inj@D12V4 = 0.44mm			2776	2758	3480	Total_loss	2776	2778	3285
			INJ_efficiency	0.722	0.723	0.651	INJ_efficiency	0.722	0.721	0.671

- Tightening collimator apertures (D12V2, D12V4) effectively reduces IR beam loss.
- D12V4 demonstrates higher sensitivity to aperture changes compared to D12V2.