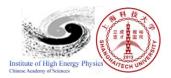
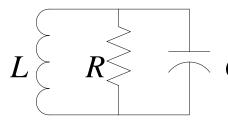

The 2025 International Workshop on the High Energy Circular Electron Positron Collider

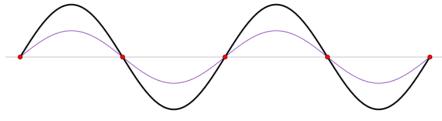
November 5 – 10, 2025 - Guangzhou Dongfan Hotel


A forward looking strategical view on SRF technologies

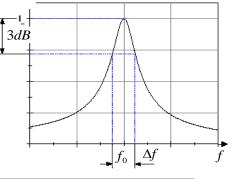
Guangzhou, 7 November 2025

Carlo Pagani carlo.pagani @mi.infn.it




Superconducting RF resonators (cavities)

An RF cavity, the accelerating element, is a container in which a non-conservative electric field is stored or travelling. When a bunched particle beam passes through it, the field has to be properly oriented.



High Q for low losses \Longrightarrow Small R_s for high Q

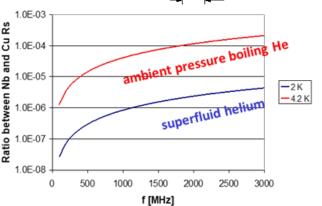
$$Q = \omega \frac{U}{P_{diss}}$$

$$Q = \frac{G}{R_s}$$

 $Q = \omega \frac{U}{P_{diss}}$ U = stored energy $Q = \frac{G}{R}$ R_s = surface resistance R_s = cavity geometrical factor

SC cavities still dissipate power, since not all electrons are in Cooper pairs. Dissipation is at cryogenic temperature

$$P_{diss} = \frac{R_s}{2} \int_{S} H^2 dS$$


$$P_{diss} = \frac{R_s}{2} \int_{S} H^2 dS$$

$$R_s[n\Omega] = 9 \times 10^4 \frac{f^2[\text{GHz}]}{T[\text{K}]} \exp\left(-\frac{a}{T[\text{K}]}\right)$$

$$R_s[m\Omega] = 7.8 f^{\frac{1}{2}}[\text{GHz}]$$

SuperConducting

NC or RT **NormalConducting**

SRF Workshops since 1980

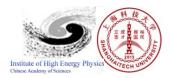
1 st

SRF Workshop 1980

Karlsruhe, Germany July 2-4 1980

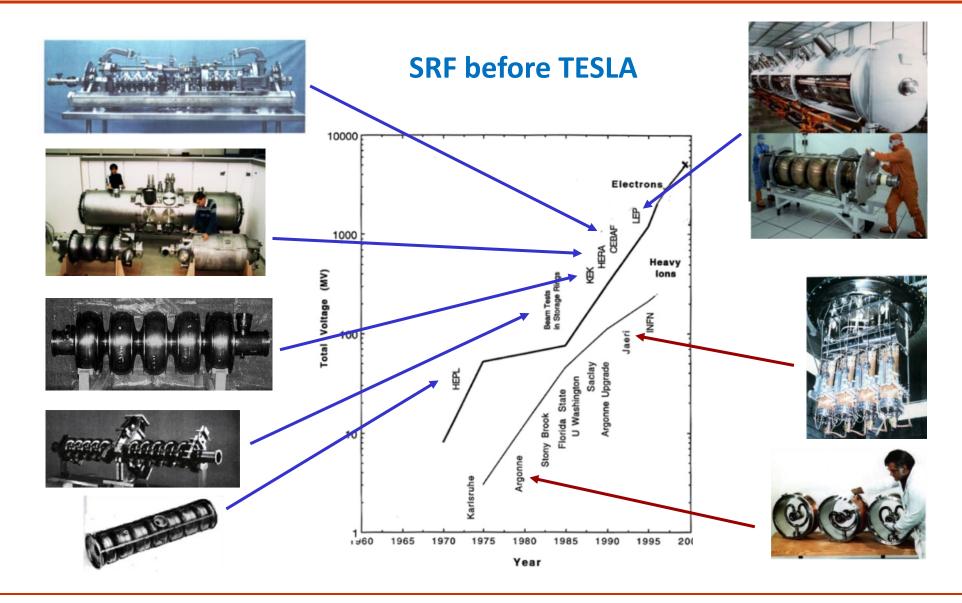
		LIST OF PARTICIPANTS
1.	G. Arnolds	GHS Wuppertal
2.	B. Aune	CEN Saclay
	W. Bauer	KfK Karlsruhe
4.	F. Baumann	Uni Karlsruhe
5.	M. Baye	IEF Orsay
6.	R. Blaschke	GHS Wuppertal
7.	A. Brandelik	KfK Karlsruhe
8.	P. Breitfeld	KfK Karlsruhe
9.	W. Buckel	Uni Karlsruhe
10.	R. Calder	CERN ISR
11.	G. Cavallari	CERN EF
12.	J. Chelius	Kawecki Lakewood
13.	E. Chiaveri	CERN EF
14.	A. Citron	KfK Karlsruhe
15.	M. Dwersteg	DESY Hamburg
16.	D. Farkas	SLAC Stanford
17.	O. Fischer	Uni Genf
18.	J. Fouan	CEN Saclay
19.	H. Gerke	DESY Hamburg
20.	G. Geschonke	CERN
21.	W. Giebeler	Interatom Bergisch Gladbach
22.	H.D. Graef	GSI Pfungstadt
23.	J. Griffin	Fermi-Lab. Batavia
24.	Th. Grundey	GHS Wuppertal
25.	E. Haebel	CERN EF
26.	H. Hahn	BNL Brookhaven
27.	J. Halbritter	KfK Karlsruhe
28.	J. Hasse	Uni Karlsruhe
29.	H. Heinrichs	CERN/Wuppertal
30.	W. Herz	KfK Karlsruhe
31.	B Hillenbrand	FL Siemens, Erlangen
32.	N. Hilleret	CERN ISR
33.	H. Hogg	SLAC Stanford
34.	H. Hübner	KfK Karlsruhe
35.	S. Isagawa	CERN
36.	U. Klein	GHS Wuppertal

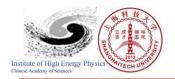
37.	P. Kneisel	KfK	Karlsruhe
38.	Y. Kojima	KEK	Japan
39.	W. Krause	FL Siem	ens Erlangen
40.	M. Kuntze	KfK	Karlsruhe
41.	R.M. Laszewski	Univ.	Illinois
42.	R. Lehm	KfK	Karlsruhe
43.	W. Lehmann	KfK	Karlsruhe
44.	H. Lengeler	CERN EF	
45.	G. Loew	SLAC	Stanford
46.	Cl. Lyneis	HEPL	Stanford
47.	A. Mathewson	CERN IS	R
48.	R. Meyer	GHS	Wuppertal
49.	G. Müller	GHS	Wuppertal
50.	R. Delesclefs	Uni	Genf
51.	V. Nguyen Tuong	IEF	Orsay
52.	Sh. Nogushi	Uni INS	Tokyo
53.	H. Padamsee	Univ.	Cornell
54.	C. Pagani	Univ.	Milano
55.	A. Palussek	Interat	om Bergisch Gladbach
56.	R. Parodi	INFN	Genoa
57.	C. Passow	KfK	Karlsruhe
58.	J. Peters	DESY	Hamburg
59.	M. Pham Tu	IEF	Orsay
60.	A. Philipp	KfK	Karlsruhe
61.	H. Piel	GHS	Wuppertal
62.	J. Sayag	IEF	Orsay
63.	F. Schürrer	KfK	Karlsruhe
64.	A. Septier	IEK	Orsay
65.	R. Sundelin	Univ.	Cornel1
66.	L. Szecsi	KfK	Karlsruhe
67.	M. Tigner	Univ.	Cornel1
68.	J. Vetter	KfK	Karlsruhe
69.	R. Vincon	KfK	Karlsruhe
70.	L. Wartskj	IEF	Orsay
71.	W. Weingarten	GHS	Wuppertal



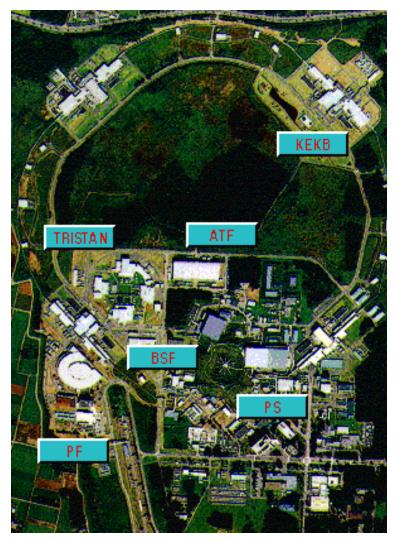
22ND INTERNATIONAL CONFERENCE ON RF SUPERCONDUCTIVITY

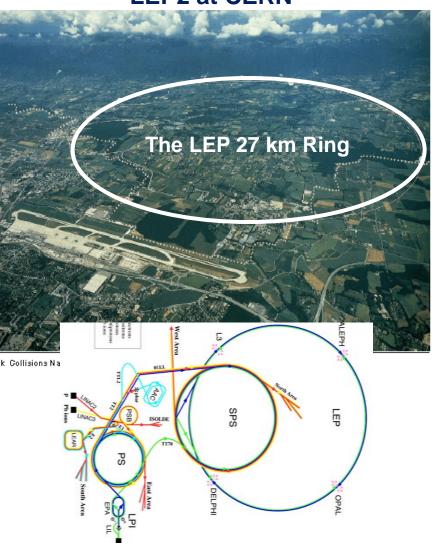
September 21-26, 2025


SRF2025 - 22nd International Conference on RF Superconductivity

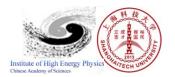


SRF Evolution in Particle Accelerators

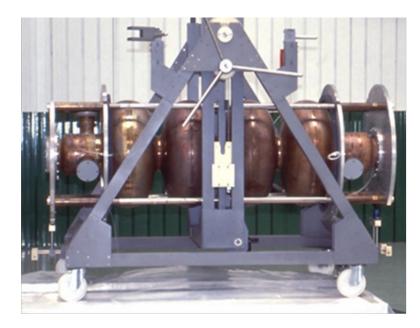



Since 1980s Large HEP Projects bet on SRF

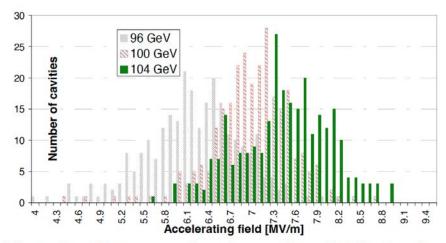
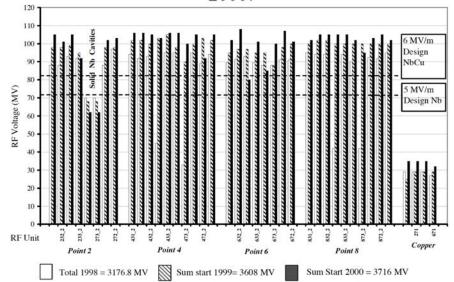
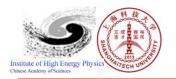
TRISTAN at KEK

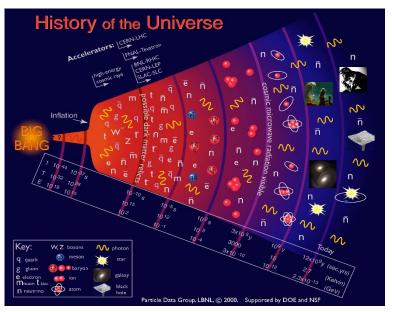


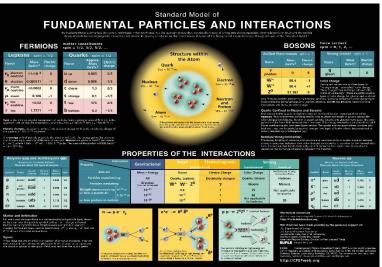
LEP2 at CERN

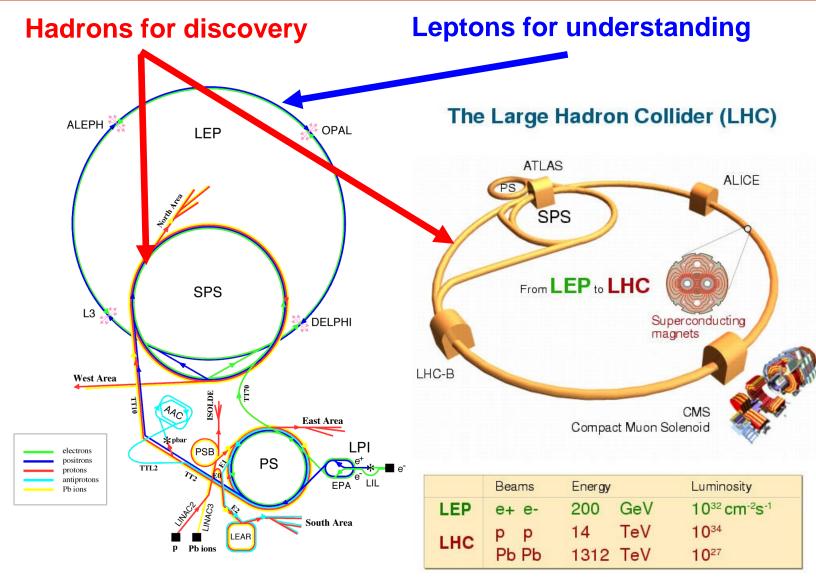

CEBAF at TJNAF

LEP-II: Production and Performances

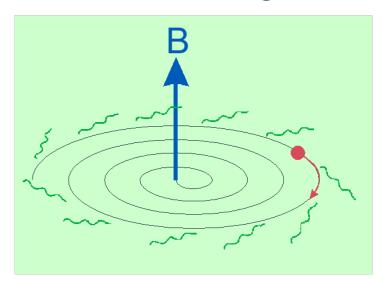





Figure 3.: Histogram of cavity gradient distribution for three different maximum beam energies in 1999 and 2000.





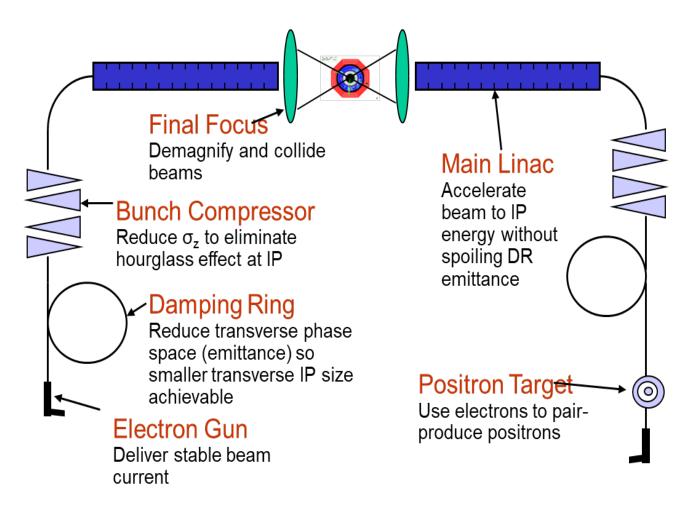
A complete picture was in progress

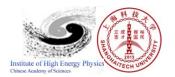


Next Lepton Collider should be Linear, LC

Synchrotron Radiation

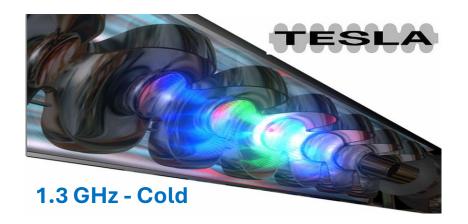
From an electron in a magnetic field:

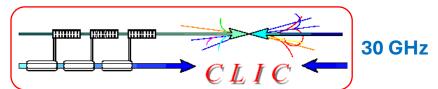



Energy loss must be replaced by RF system

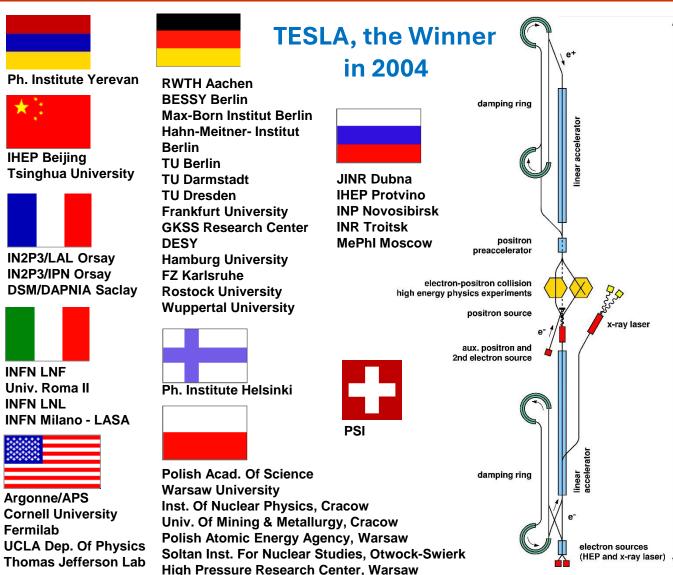
$$U_{SR} \left[\text{GeV} \right] = 6 \cdot 10^{-21} \cdot \gamma^4 \cdot \frac{1}{r} \left[km \right]$$

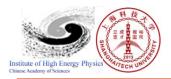
$$\$ \propto E_{cm}^2$$


Linear Collider Schematics



LC competition and the TESLA Collaboration





TESLA Collaboration: Intellectual Property

Article 11 - Intellectual Property

All technical know-how (including inventions) gained and procedures developed in the course of the project by any of the partners, whether protected or not, will be available to all partners free of cost, who can use them for their own research projects and for the purpose of the project.

If possible industrial contracts should reflect these guidelines.

Luminosity is Proportional to Beam Power

C. Pagani - ISLC08 - Lecture 1 Oak Brook, October 20, 2008

$$L \propto \frac{N_e^2}{\sigma_x \sigma_y} \longrightarrow \int_{\sigma_y}^{\infty} L \propto n_b \times f_{rep}$$

L = Luminosity

 $N_{\rm e}$ = # of electron per bunch

 $\sigma_{x,v}$ = beam sizes at IP

IP = interaction point

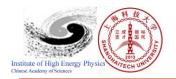
$$L \propto \frac{P_b}{E_{c.m.}} \times \frac{N_e}{\sigma_x \sigma_y}$$

$$n_b = \#$$
 of bunches per pulse

$$f_{rep}$$
 = pulse repetition rate

$$P_b$$
 = beam power

 $E_{c.m.}$ = center of mass energy


Parameters to play with

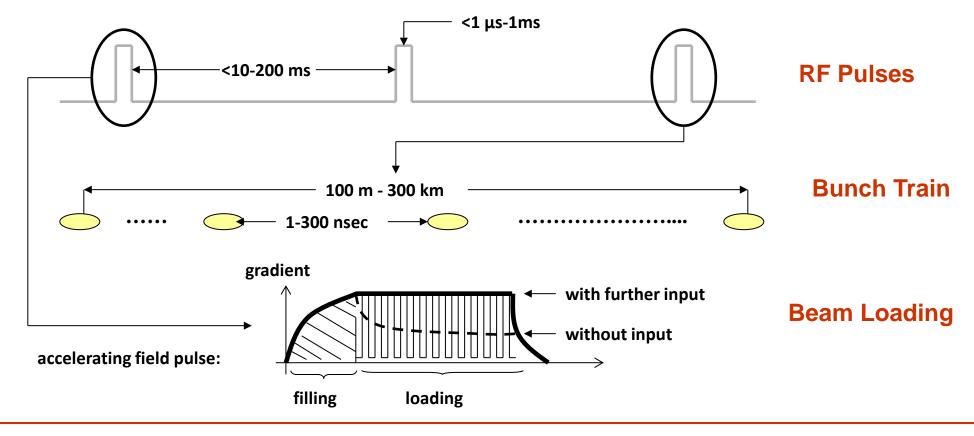
Reduce beam emittance $(\varepsilon_x \cdot \varepsilon_y)$ for smaller beam size $(\sigma_x \cdot \sigma_y)$

Increase bunch population (N_e)

Increase beam power $(P_b \propto N_e \times n_b \times f_{rep})$

Increase beam to-plug power efficiency for cost

LC are Pulsed for Conversion Efficiency

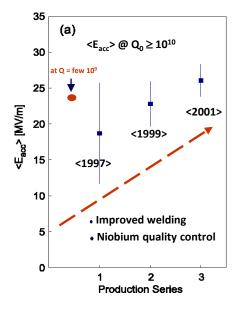


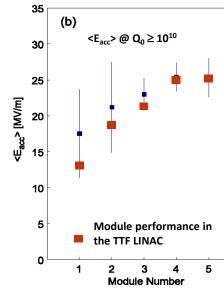
All the LCs must be pulsed machines to improve Plug Power to Beam Power conversion efficiency. As a result:

duty factors are small

C. Pagani - ISLC08 - Lecture 1 Oak Brook, October 20, 2008

pulse peak powers can be very large


The path to a new SRF standard for TESLA

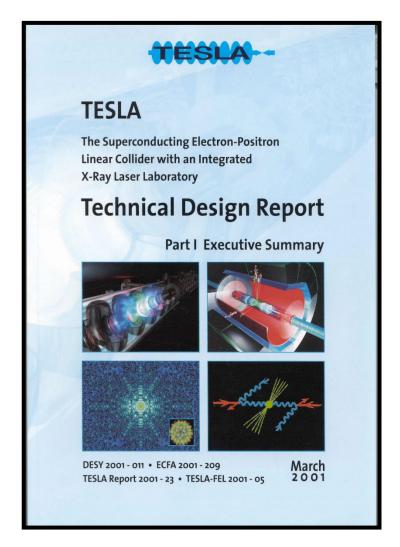


3 cavity productions from 4 European industries: Accel, Cerca, Dornier, Zanon

TESLA TDR: Presentation and Reactions

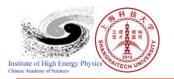


TESLA TDR kick-off meeting March 2001


1000 participants, 40% from abroad

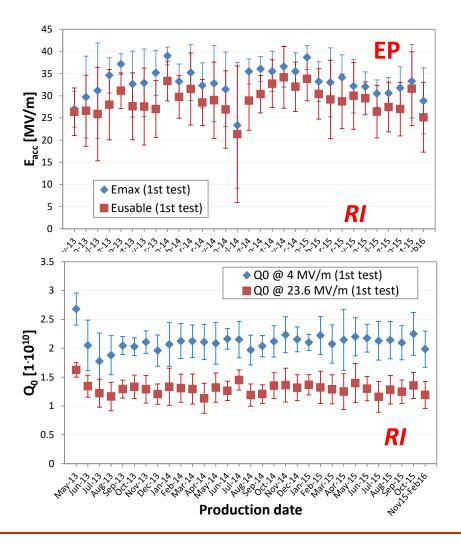
- Cold reaction from German Government to the proposal to host the TESLA inear collider
- Insufficient momentum from the HEP international community, inspired by CERN
- Understanding of the potentiality opened by the TESLA driven SRF technology
- Endorsement of the science prospectives coming from the realization of an X-Ray Free-Electron Laser
- Interest for a stand alone X-Ray FEL

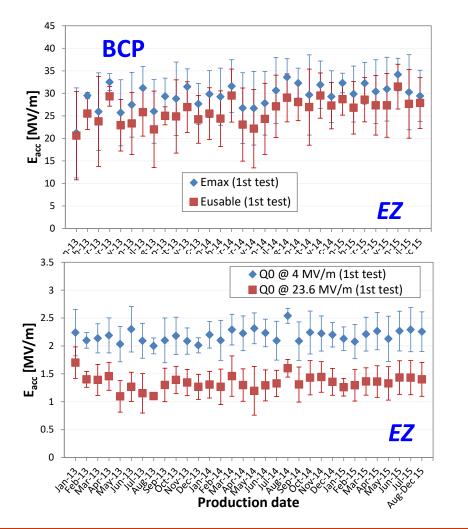
From TESLA TDR to an independent XFEL

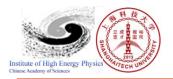


Feb 2003 - Decision by German Government:

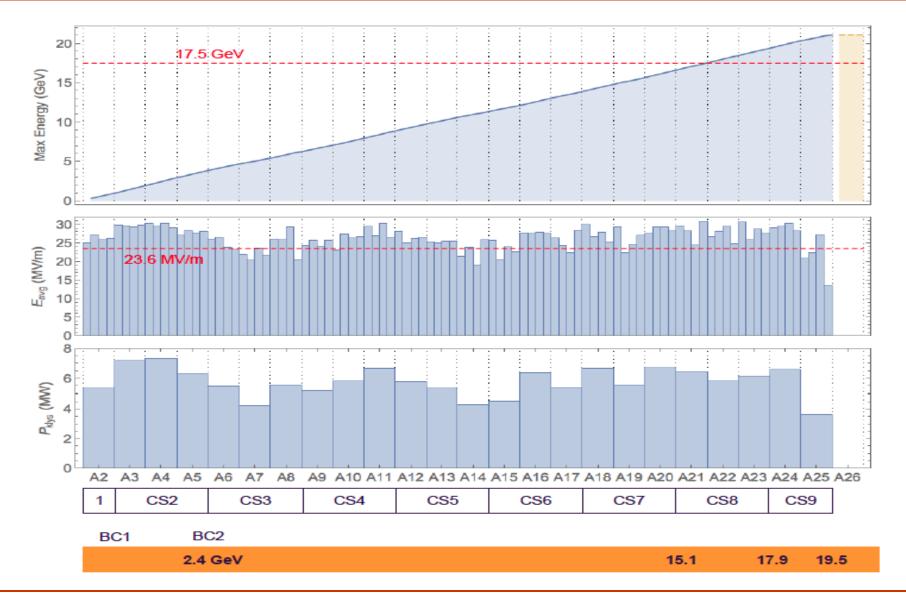
Germany will cover half of the cost of the freeelectron laser facility proposed by DESY, which has to be realized in a European collaboration.

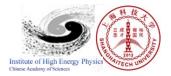

On request of German Science Council




E-XFEL: 800 cavities at the State of the Art

1.3 GHz Eu-XFEL cavities «as received»



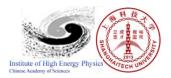


E-XFEL: Usable Installed Voltage

From TESLA to TESLA Technology Coll.-TTC

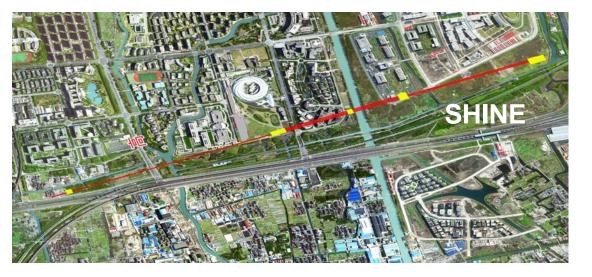
TESLA Technology Collaboration

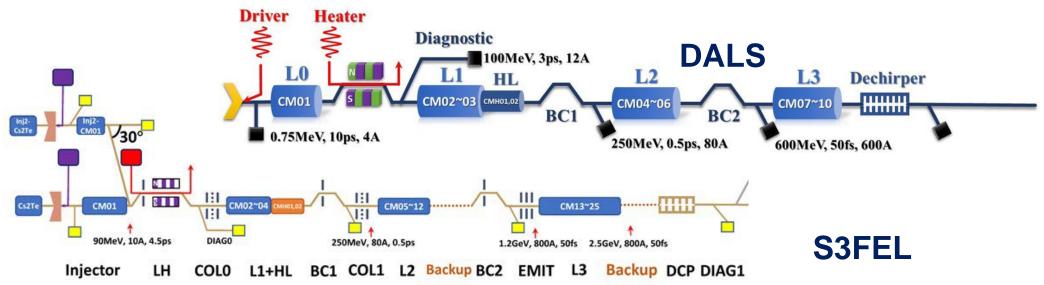
Mission Statement

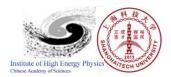

The mission of the TESLA Technology Collaboration (TTC) is to advance superconducting RF accelerator R & D and related accelerator studies across the broad diversity of scientific applications, and to keep open and provide a bridge for communication and sharing of ideas, developments, and testing across associated projects.

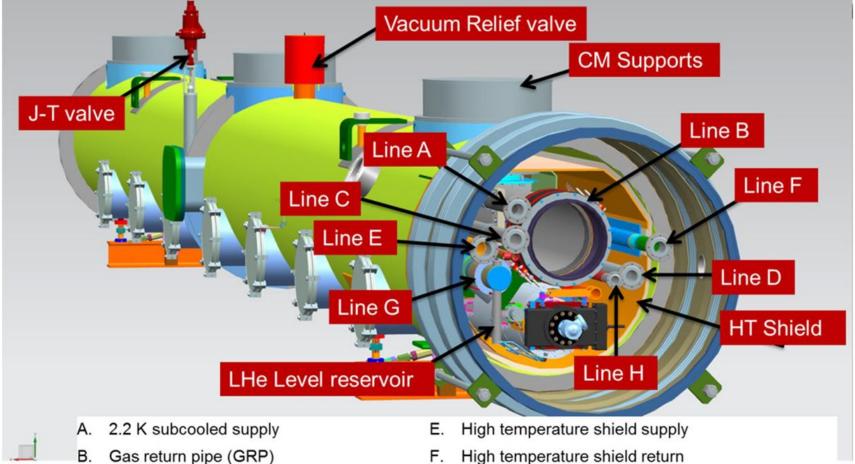
To this end the Collaboration supports and encourages free and open exchange of scientific and technical knowledge, expertise, engineering designs, and equipment.

	CANDLE, Yereyan Yereyan Physics Institute, YerPhl	CANDLE Coordinator website under construction		INFN, Laboratori Nazionali di Frascati INFN, Laboratori Nazionali di Legnaro INFN, Laboratori Acceleratori e Superconduttività Applicata. Milano	COLD Lab Superconductivity LASA
*	TRIUMF, Canada's particle accelerator centre	ARIEL		INFN Roma Tor Vegata Elettra Sincrotrone Trieste	Rome II & ATLAS Sincrotrone Trieste
*>	Institute for High Energy, Physics, IHEP Isinghua University Peking University Institute of Modern Physics, IMP, Lanzhou Shanghai Institute of Apoliced Physics, SARI Institute of Advanced Science Facilities — Shenzhen, IASE	Accelerator Technology and Science Department of Engineering Physics link will be added soon LINAC Center CAS	•	Ko-Enerugi Kasoluki Kenkyu Kiko. KEK Rikapaku Kenkyoja, RIKEN Institute for Quantum and Radiological Science and Technology, QST Japan Atomic Energy Agency JAEA	Accelerator Laboratory RNC Rolkasho Fusion Institute
11	Commissaria à L'Energie Atomioue, CEA/DSM, Saclay Centre national de la recherche acientifique, CNBS, Paris LAL became nart of LECLab, Orsay Hattlut de Physique Nucleare, IPN. Ornay Synchrotron SOLEB.	IBFU DACM Ink will be added soon Accelerator, Department SUPPATECH Ink will be added soon	_	Naturial Centre Inf Nuclear Research, Nulls, Swerk Institute of High Pressure Physics, Warsaw Universytet Warszawski	F.I.P.AN Department of Solid State Physics Accelerator obyacs NSB Faculty of Physics Institute of Physics The Faculty of Electronics and Information Technology & The Earliery of Electronics and Information Technology & The Earliery of Physics
-	Helmholtz-Zentrum Berlin, IVZB Technische Linverstätt Damstadt Unterstätt Zentrum Seine Helm 1 Unterstätt Zentrum Seine Helm 1 Deutsche Elektroner-Synchrotron, DESY Unterstätt Lamburg Helmholtz-Zentrum Dersden-Rossenderf, HZDB Unterstätt Rostock Bergische Universitätt Wusportal Jednange Suchenberg Universitätt Manz	Suzerala & TEME SCHALINAC & TEME Accelerator Physics Institute of Maries and Research FLASH & WEEL & MES. & MES. Accelerator Physics Electromagnetic Field Theory Field Emission MESA Accelerator Science Superfield LK CSOS		Moscow Engineering Physics Institute, MEPhl Budker Institute for Nuclear Physics, BINP Institute of High Ferrary Physics, HIPF-Protvino Institute for Nuclear Research, INR	Institute of Nuclear Physics and Engineering Russian Academy. of Sciences (BINP SB RAS) Department of High Energy, Physics FFPF MIPI link will be added soon
			" o"	• Institute for Basic Science, IBS	Rare Isotope Science Project
	Science and Technology Facilities Council, STFC Royal Holloway, University of London			Uppsala University	FREIA
	Noyal requirements of London University, College London The John Adams Institute for Accelerator Science The John Adams Institute for Accelerator Science		Argonne National Laboratory, ANL Fermi National Accelerator Laboratory, FNAL Cornell University, Ithaca NY	Accelerator Development EAST CLASSE	
•	Raja Ramanna Centre of Advanced Technology, RRCAT. Bhabha Atomic Research Centre, BARC inter-University Accelerator Centre, IUAC & Delhi University, DU Variable Energy Cyclotron Centre, VECC	Superconducting Cavities Development Division Physical Science Superconducting Linear Accelerator Superconducting Cyclotron Beam Development Section		Stanford Linear Accelerator Facility Stanford Linear Accelerator Center, SLAC Stanford Linear Accelerator Center, SLAC Lawrence Berneley National Laboratory, LBNL Michigan State University, MSU Oak Ridge Antional Laboratory, SNS Brookhaven National Laboratory, SNS	Jafferson Lab LCLS-II Jafferson Lab LCLS-II Jafferson Lab Accelerator Technology and Applied Physics Division Accelerator Science and Engineering Research Accelerator Division RBBC
	European Organisations				


European Organisations		
FLICOPEAN SPALLETION SOLICE SOLICE STATE S	ation Source, ESS	ESS Accelerator Division & LINAC
International Organisations		
- European Cour	icil for Nuclear Research, CERN	CERN's accelerator complex
Joint Institute	for Nuclear Research, JINR, Dubna	Research Facilities




New CW XFEL from TESLA Technology

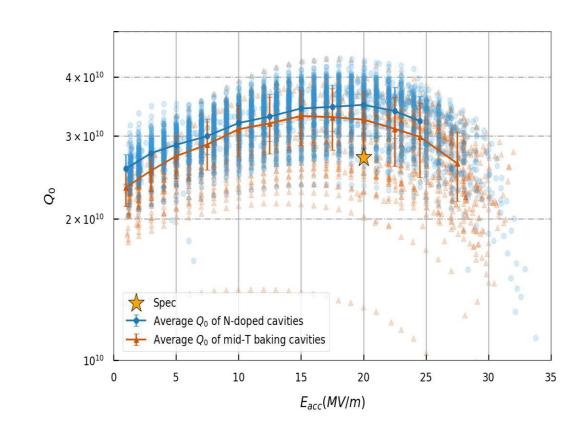


TTC: US modifications for CW and High Q

- Gas return pipe (GRP)
- Low temperature intercept supply
- Low temperature intercept return
- LCLS-II Director's Review, August 19-21, 2014

- 2-phase pipe
- Warm-up/cool-down line

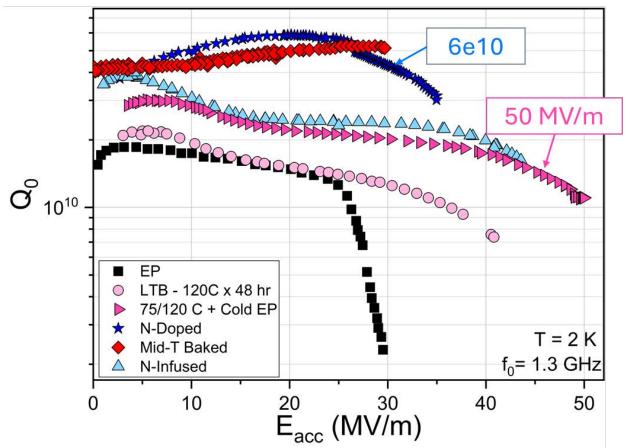
J.N. Galayda @ Linac2014



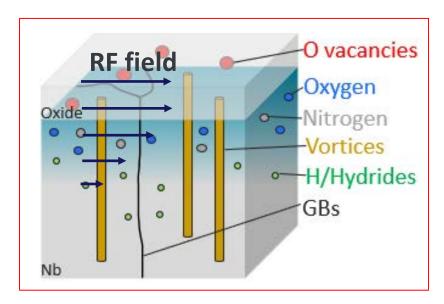
Impressive results at SHINE

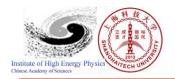
- 252 dressed cavities are tested including:
 - 126 mid-T baked cavities
 - 126 N-doped cavities
- 192 cavities qualified (76%)
 - 152 qualified as received
 - 30 with FE, qualified after HPR
 - 10 with Q-switch or low Q, qualified after retest
- 36 concessionally accepted for CM assembly (14%)
 - Eacc≥ 19 MV/m, or Q0≥2.5E+10@20MV/m
- 24 cavities still unqualified (10%)
 - 4 with FE, awaiting further HPR
 - 20 with too low Eacc or Q0, need repair (on going)

Hongtao HOU @ SRF 2025


Recipes	Ave. max Eacc (MV/m)	Ave. Q_0
Mid-T	27.5	3.2E+10
N-doping	24.5	3.5E+10

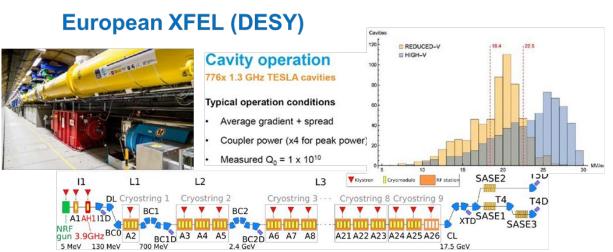
Great Progress on SRF Understanding

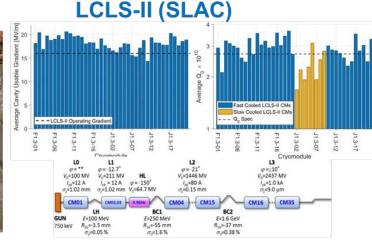

State-of-the-Art FNAL Cavities Post Various Treatments



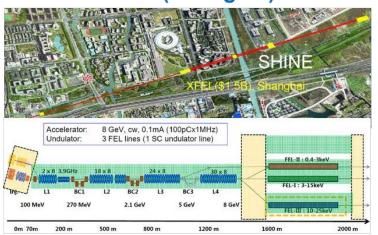
Daniel Bafia @ LCWS 2025

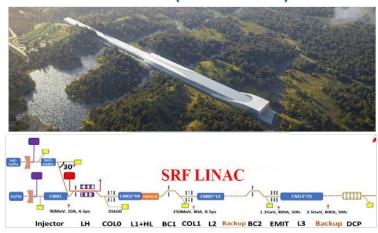
Conclusions

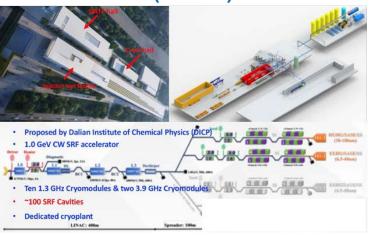

- Coupled RF and materials science studies advance microscopic understanding of SRF materials, revealing how impurities and defects govern performance.
- Impurity (N or O) tailoring tunes SRF properties
 - N is ~10× more effective than O at lowering R_{BCS}.
- Optimized EP is critical to realize impurity-tailoring benefits
 - Minimizes H uptake, smooths surface and removes lossy inclusions.
- H and lattice defects identified as key loss sources in Nb films
 - Annealing mitigates these losses and improves film performance.



SRF Accelerators for Free-Electron Lasers

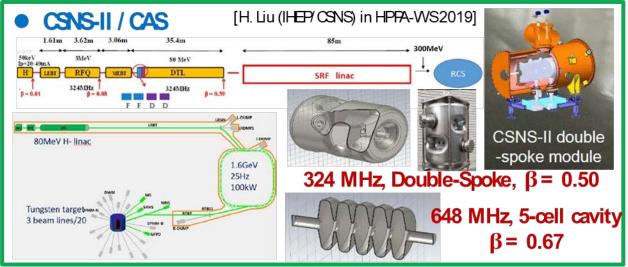


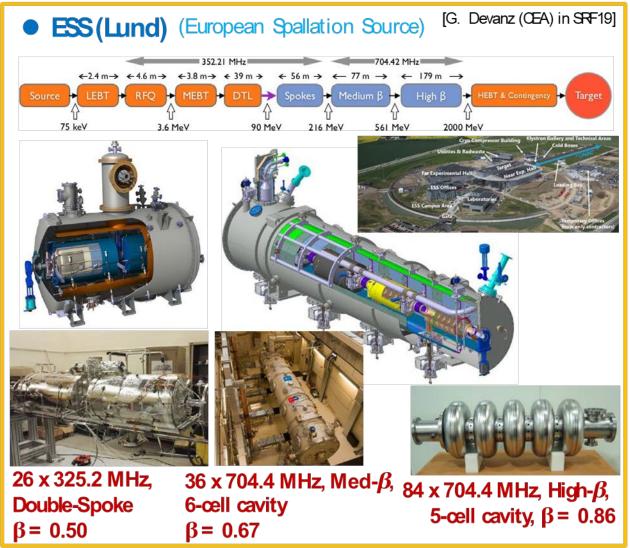



SHINE (Shanghai)

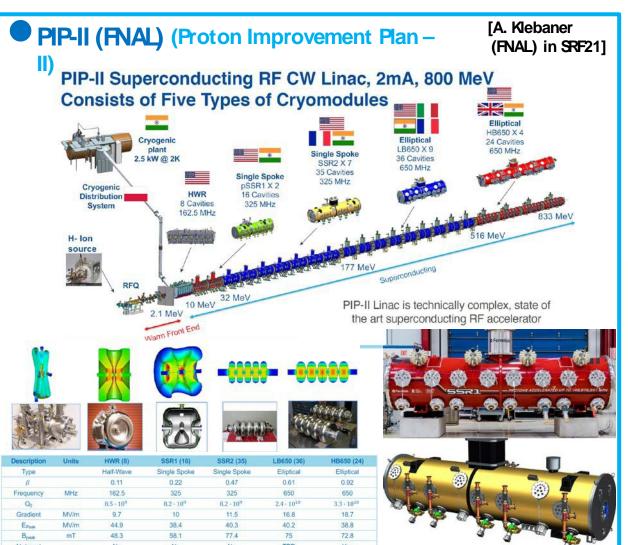
S3FEL (Shenzhen)

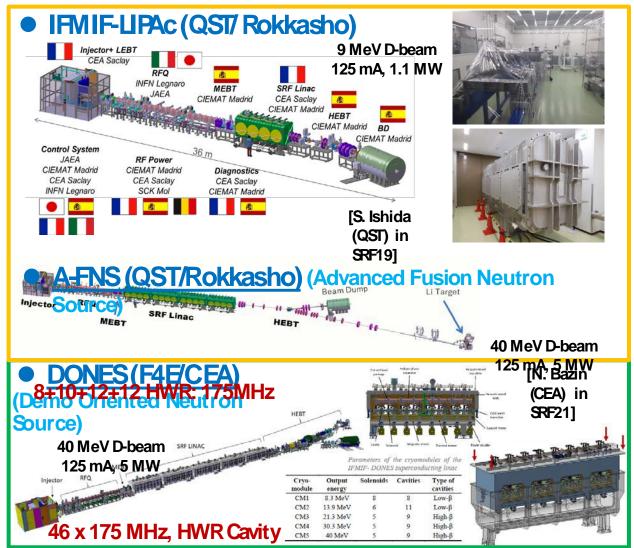
DALS (Dalian)



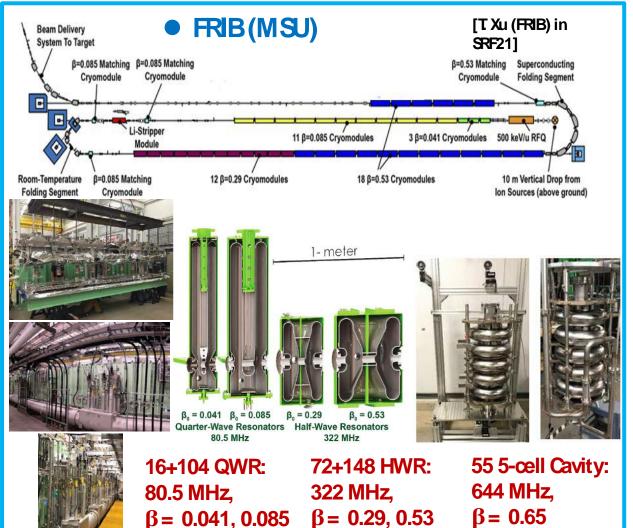



SRF Based Spallation Neutron Sources



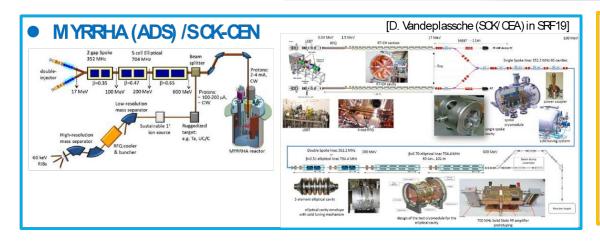


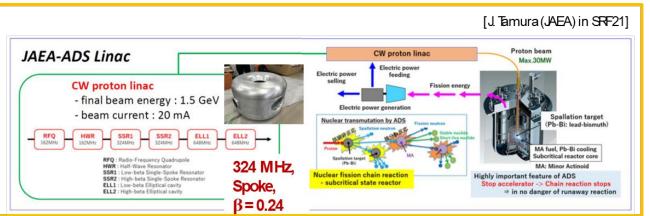
Proton and Deuteron SRF Accelerators

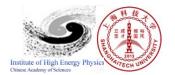


Large Heavy Ion SRF Accelerators

SRF for ADS (Accelerator Driven System)






- Approved in Dec. 2015, Ground broke in August 2018, Officially started in July 2021
- Leading institute: IMP
- Budget: ~4 B CNY (Gov. 1.8B + CNNC 1.0 B + Local Gov. 1.2 B)
- Location: Huizhou, Guangdong Prov.
- · Partners: CIAE, CGN, IHEP, etc.

CiADS linac: progress and first beam of normal frontend, Zhijun Wang

0

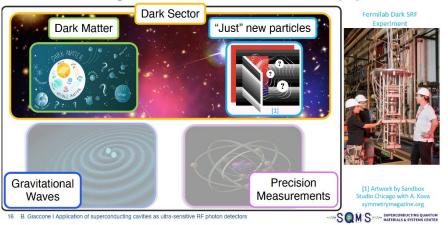
SRF for Dark Matter Search

Application of superconducting cavities as ultra-sensitive RF photon detectors

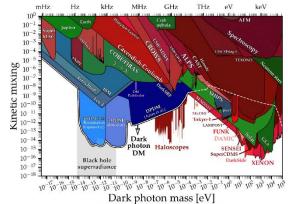
FRXD3, Friday May 24th, 2024

Bianca Giaccone

Superconducting Quantum Materials and Systems Center (SQMS), Fermilab


30 Partner Institutions >500 Collaborators

A DOE National Quantum Information Science Research Center



A rich ecosystem, multi-institutional and multidisciplinary collaboration leveraging investments at DOE national labs, academia, industry and several other federal and international entities

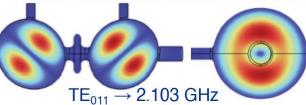
Quantum Sensing: new windows into fundamental physics

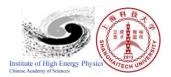
No dark photons (or axions) were found (yet).

Credit: O'Hare, https://cajohare.github.io/AxionLimits/docs/dp.htm

- "Mowing the lawn."

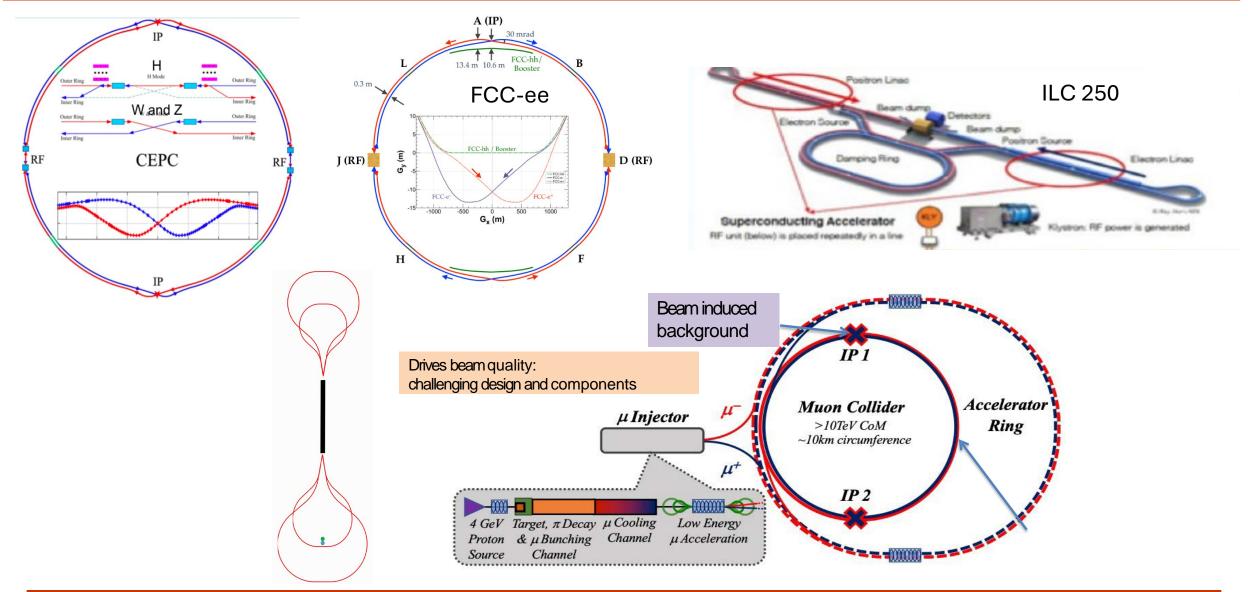
· No discovery, but still

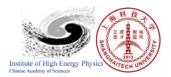

the excluded parameter space. But a lot more


to explore...

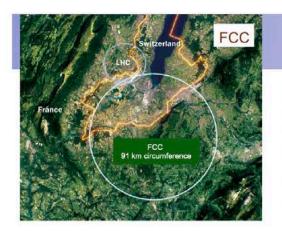
progress because of

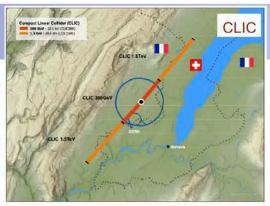
parameter space left

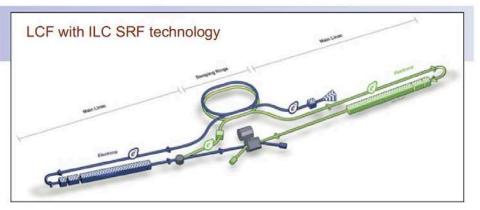




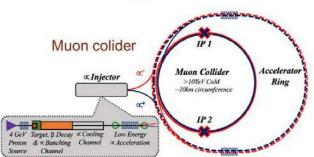
Top Level SRF for Future Lepton Colliders

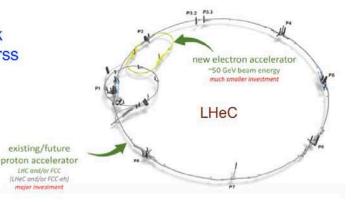


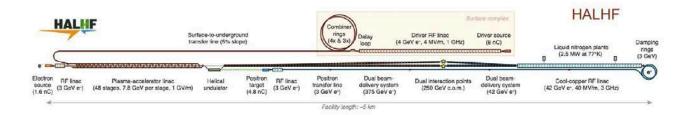


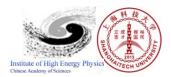


The CERN View (Venice, June 2025)









Huge amount of R&D and design work on a variety of proposed future colliderss (varying levels of maturity, time scale, cost, physics reach/performance)

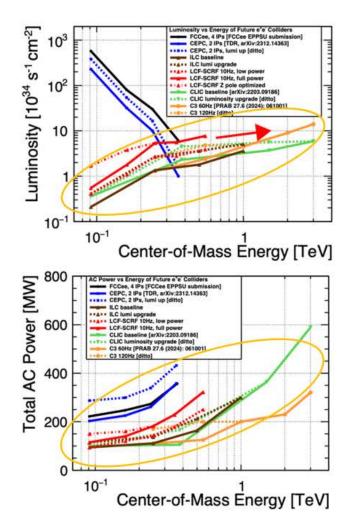
Fabiola Gianotti
Venice 2025

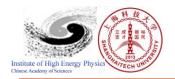
ILC @ CERN

Start with mature technology, can expand in length and/or technology

Energy reach and flexibility:

- Physics opportunities from Z-pole to TeV(s)
- Flexible (E,L,cost, power) to adapt to development in physics and technology

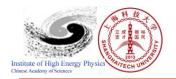

Footprint, cost, power – next slides:


- Lower cost to get to Higgs and top than a circular machine (initial machine)
- Power similar to LHC, or lower, for initial configuration
- Footprint (length/location) similar to LHC

Provide many opportunities and increased flexibility for the future:

- Does not determine footprint of future energy frontier machines (hadrons or muons), and it has its own upgrade opportunities
- Encourage accelerator and detector R&D for all these options

Steinar Stapnes @ LCWS 2025


Concluding Remarcs

The great demand for knowledge fueled by nuclear and particle physics has favored the technological development of magnetic and radiofrequency superconductivity, through the construction of large accelerators with the involvement of industry.

The fallout on medical devices (MRI, NMR), green energy (ADS) and advanced light sources (SR, XFEL) is currently underway, making conceivable also new huge infrastructures for fundamental physics (CEPC), which could trigger other future applications.

The pursuit of pure knowledge, typical of fundamental physics, has generated large-scale open and global collaborations, also producing technologies, such as the World Wide Web, accessible to all. With the TESLA collaboration, SRF has shared this mission, which today is a precious treasure that we must preserve.

Great Future for SRF in China

SRF Accelerator Facility and Technology Workshop (2023)

