

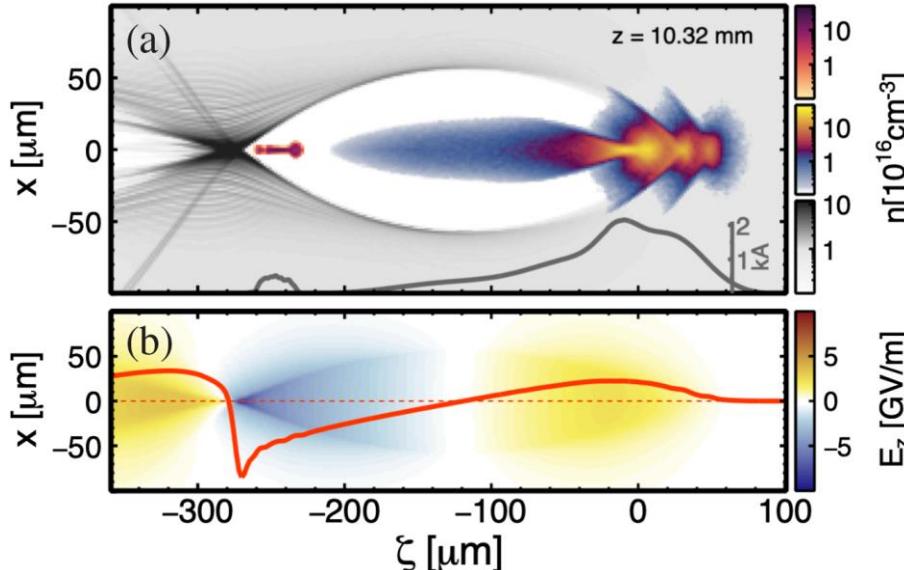
中國科學院高能物理研究所

Theoretical studies on high-energy plasma wakefield acceleration

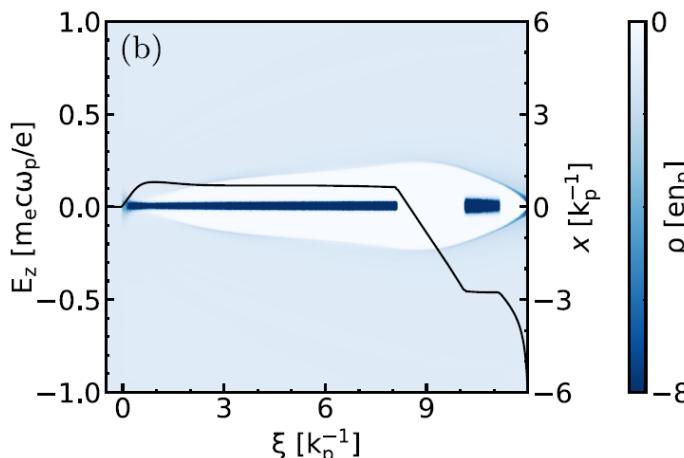
Ming Zeng, Yulong Liu and Dazhang Li

Institute of High Energy Physics, Chinese Academy of Sciences

Background



A. KNETSCH et al. PHYS. REV. ACCEL. BEAMS 24, 101302 (2021)



Xiaoning Wang et al., International Journal of Modern Physics A 37, 2246003 (2022)

- Beam-driven plasma wakefield accelerator (PWFA) has $\sim 10 \text{ GeV/m}$ gradient
- Driver loses energy and trailer gains energy
- Transformer ratio = $\frac{\text{trailer gain}}{\text{driver lose}} \sim 1$ for regular PWFAs
- Need transformer ratio > 1 for high energy PWFAs
- Long driver + current profile design to flatten deceleration field is important for high transformer ratio

Contents

1. Study of balancing blowout radius in PWFAs
2. Modeling of long-term 3D betatron oscillation and radiation reaction in PWFAs

Contents

1. Study of balancing blowout radius in PWFAs
2. Modeling of long-term 3D betatron oscillation and radiation reaction in PWFAs

Background

- Prediction of blowout radius is important in PWFA
- The pseudo-potential on axis $\psi_a \sim r_c^2/4$, longitudinal field $E_z = \frac{d\psi_a}{d\xi}$

- Prediction of E_z is critical for high transformer ratio PWFA
- Beam current is proportional to

$$\Lambda(\xi) = \int_0^\infty n_b(\xi, r') r' dr'$$

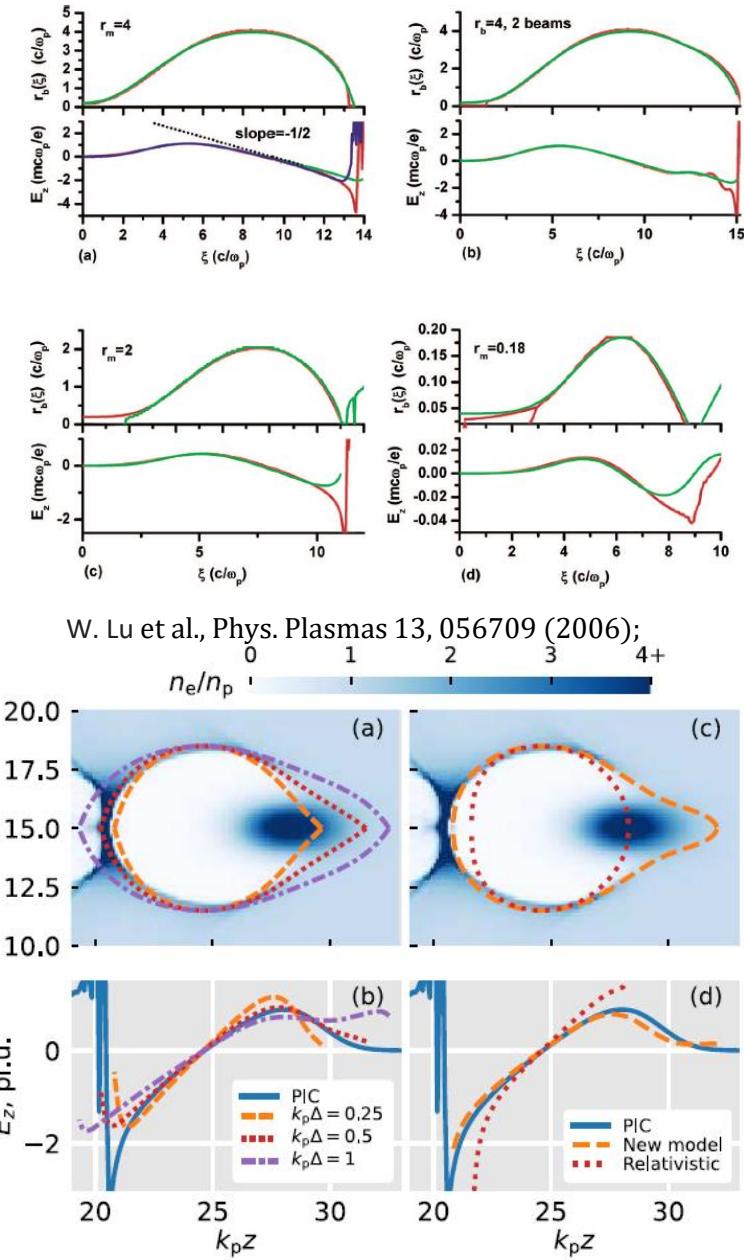
- For a long time, balance blowout radius has been believed to be

$$r_n = \sqrt{2\Lambda}$$

- In 2023, A. Golovanov et al. established a new model based on energy conserving and δ -sheath. The balancing blowout radius according to this model is

$$r_{\delta 0} = 2\sqrt{\Lambda}$$

- Simulations show, the actual balancing radius is between them



A. Golovanov et al., PhysRevLett.130.105001 (2023)

Adiabatic sheath model

- Consider a plasma channel with slow-varying current of the drive beam
- Blowout radius r_c varies slowly, force balancing is achieved everywhere
- Sheath electrons has v_z , but transverse velocity is negligible
- Constant of motion $\gamma - v_z \gamma = 1 + \psi$
- The equations

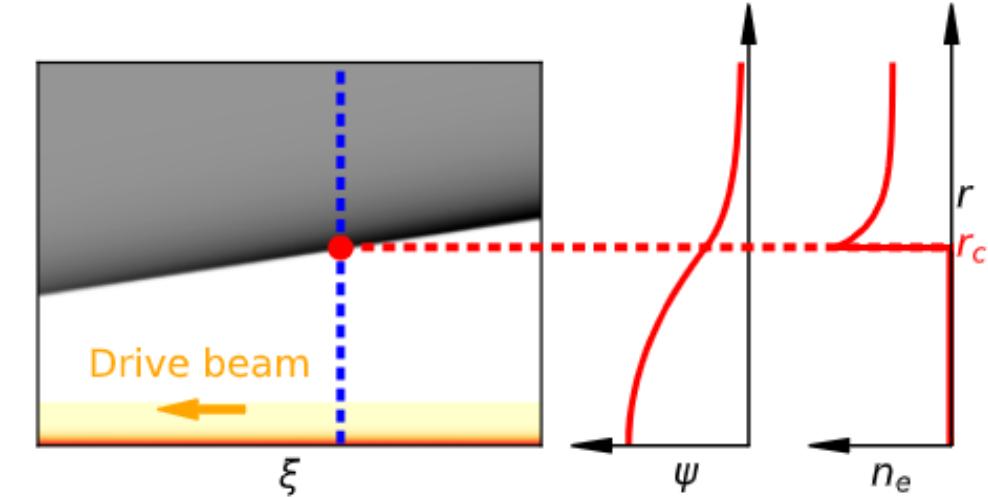
$$F_r|_{r>r_c} = \frac{1}{r} \left[-\frac{r^2}{2} + (1 - v_z) \Lambda + \int_0^r n_e(r') r' dr' - v_z \int_0^r n_e(r') v_z(r') r' dr' \right] = 0$$

$$v_z = \frac{2}{1 + (1 + \psi)^2} - 1$$

- Boundary conditions

$$\frac{\partial}{\partial r} \psi|_{r=r_c(\xi)} = -\frac{r_c}{2},$$

$$\lim_{r \rightarrow \infty} \psi = 0$$



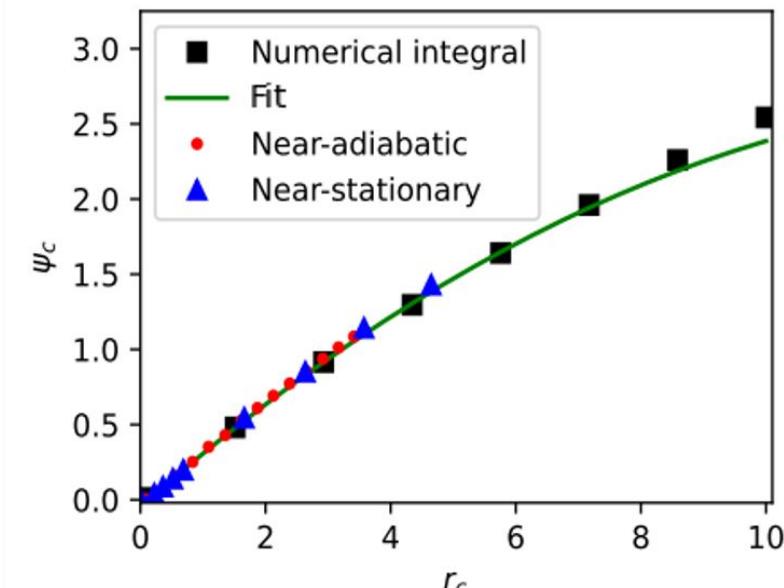
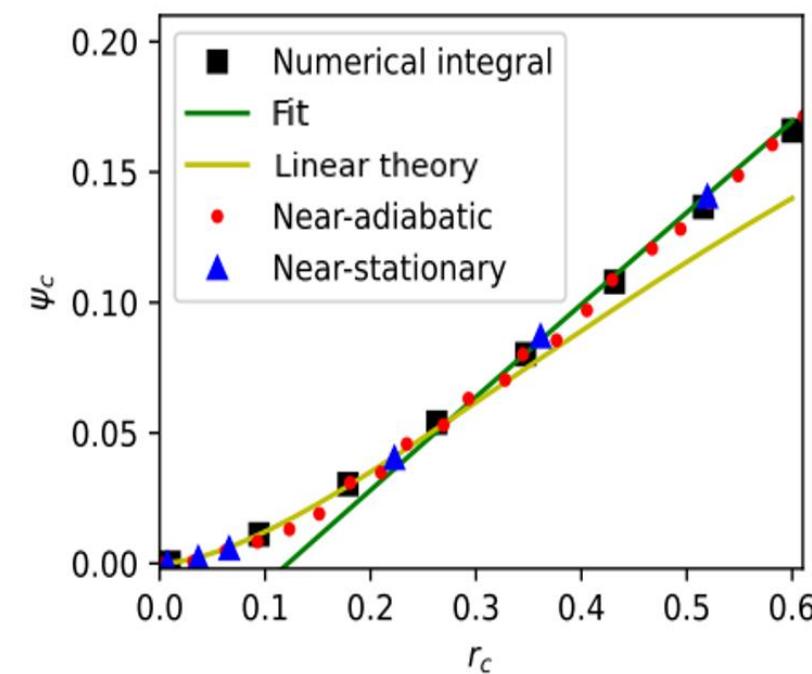
Solve the equations using shooting method

- The equations can be solved numerically using shooting method
- Meanwhile, under small blowout limit, analytical solution can be obtained

$$\psi_c = \begin{cases} \frac{r_c^2}{2} K_0(r_c), & r_c \lesssim 0.3 \\ -0.012r_c^2 + 0.363r_c - 0.044, & 0.3 \lesssim r_c \lesssim 8 \end{cases}$$

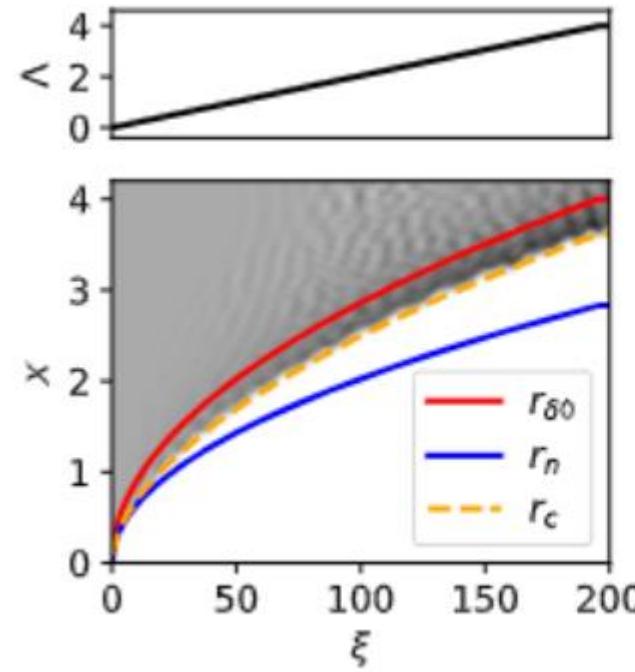
- The blowout radius can be determined as

$$r_c = \sqrt{2[1 - v_z(r = r_c)]\Lambda} = 2 \sqrt{\frac{\Lambda}{1 + \frac{1}{(1 + \psi_c)^2}}}$$

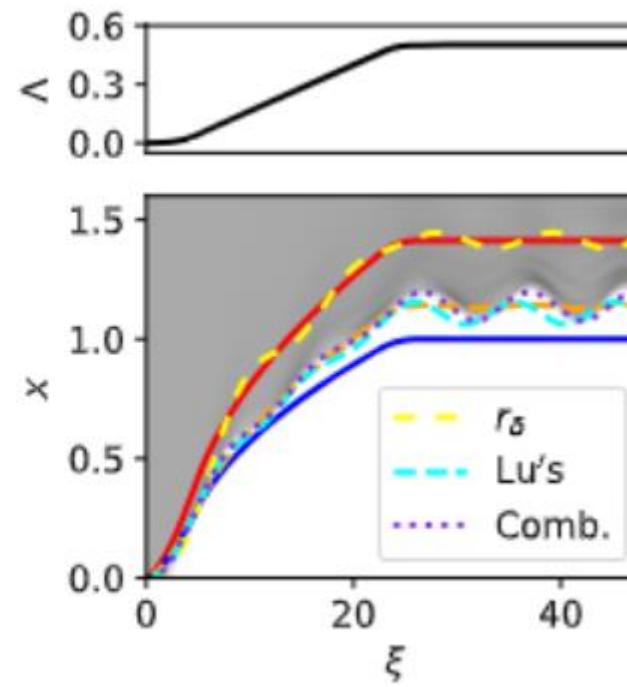


Comparison with simulations

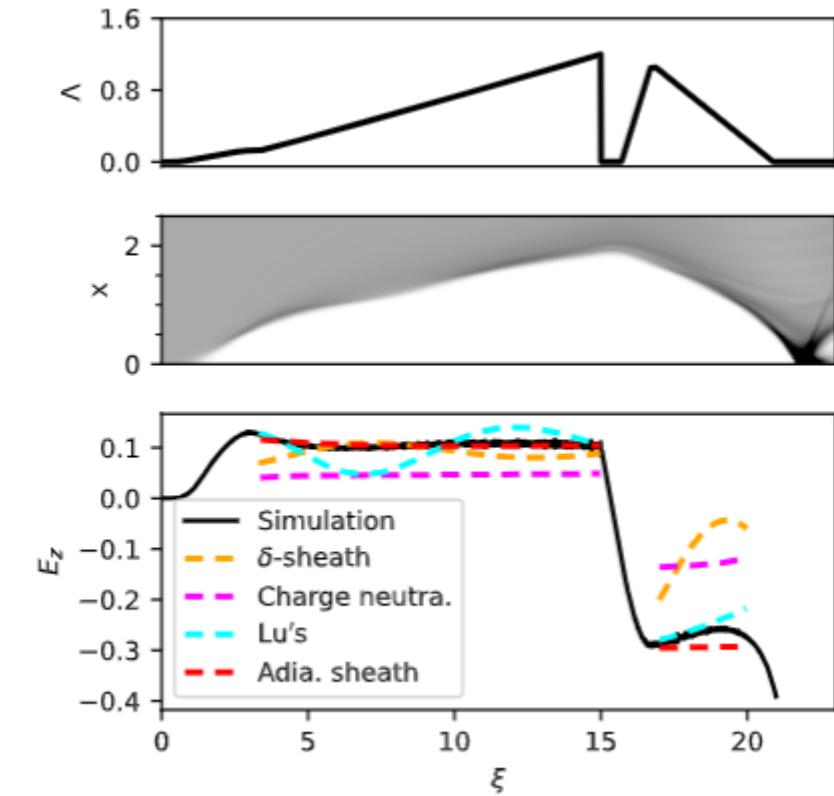
- Our model can better predict the simulations
- This model can be used for high transformer ratio PWFA design



Near-adiabatic blowout



Near-stationary blowout

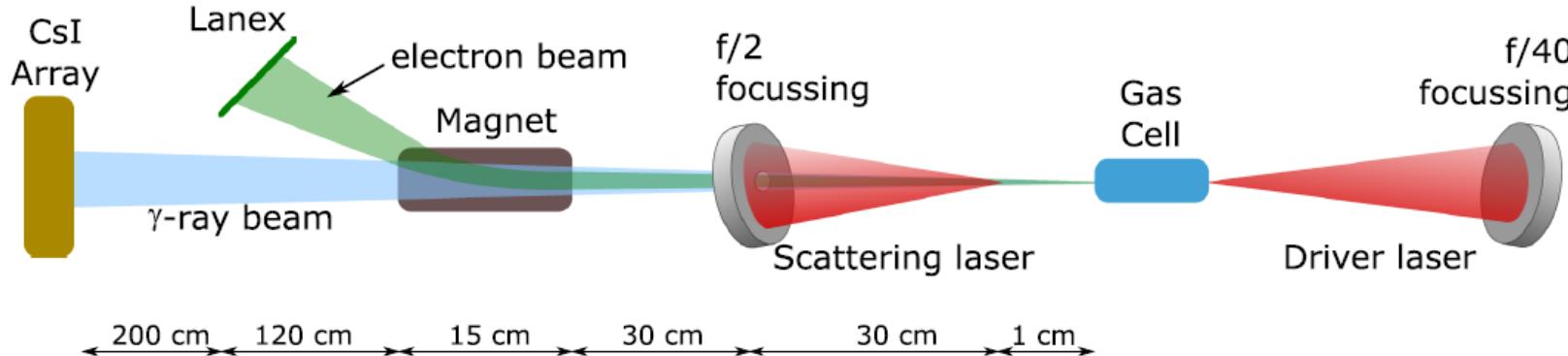


Contents

1. Study of balancing blowout radius in PWFAs
2. Modeling of long-term 3D betatron oscillation and radiation reaction in PWFAs

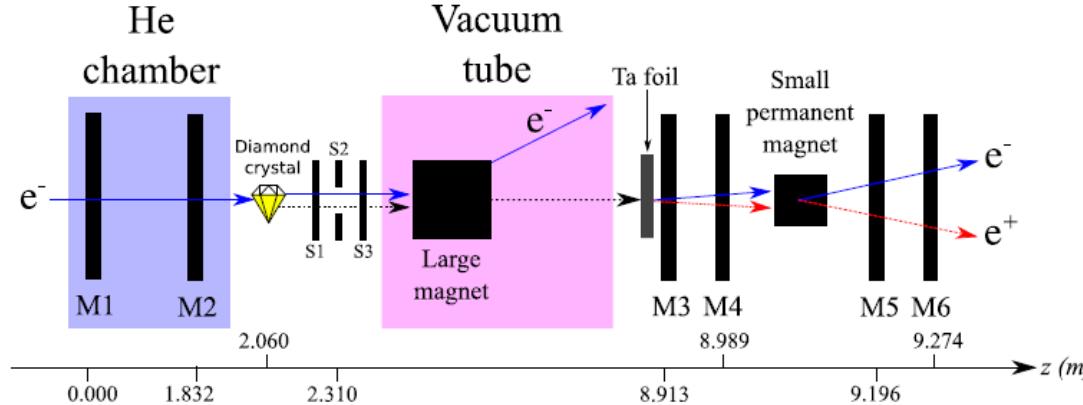
Background

- Radiation reaction when laser electron beam collide



J. M. Cole et al., Phys. Rev. X 8, 011020 (2018)
K. Poder et al., Phys. Rev. X 8, 031004 (2018)

- Also observed in long-term interaction of e beam with crystal



C. F. Nielsen et al., New J. Phys. 23, 085001 (2021)

- RR Should be considered in future high energy and long distance wakefield accelerators!

3D betatron oscillation model

- One longitudinal and two transverse dimensions
- E and B fields

$$E_z = E_{z0} + \lambda \zeta_1,$$

$$\vec{E}_\perp = \kappa^2 (1 - \lambda) \vec{r},$$

$$B_\theta = -\kappa^2 \lambda r,$$

- Forces

$$f_z = -E_{z0} - \lambda \zeta_1 + \kappa^2 \lambda (x \beta_x + y \beta_y) + f_z^{\text{rad}},$$

$$f_x = -\kappa^2 (1 - \lambda + \lambda \beta_z) x + f_x^{\text{rad}},$$

$$f_y = -\kappa^2 (1 - \lambda + \lambda \beta_z) y + f_y^{\text{rad}},$$

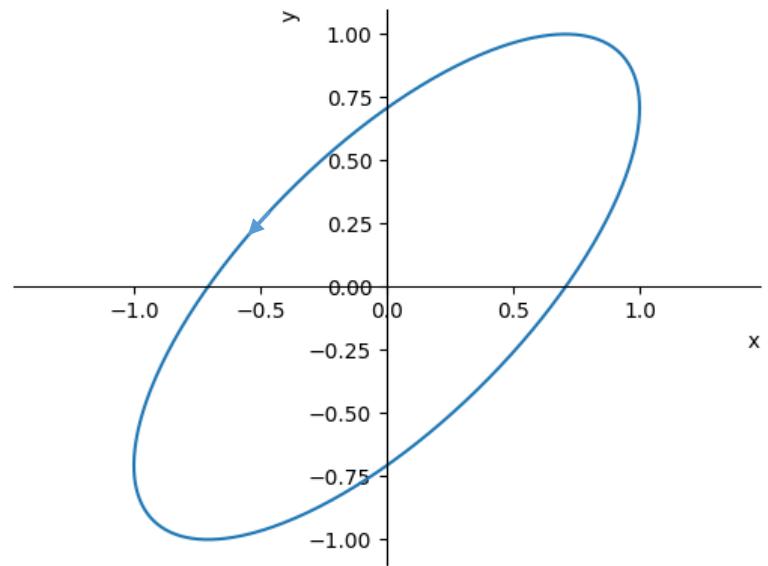
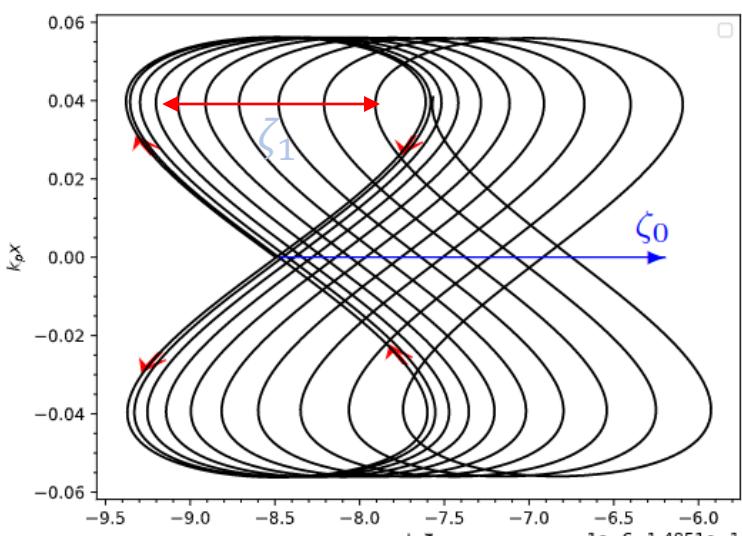
- Equations of motion

$$\dot{\gamma} = -E_{z0} \beta_{z0} + \left(\frac{\lambda \beta_{z0}}{4} + \kappa^2 \lambda - \kappa^2 \right) (x \beta_x + y \beta_y) - \frac{2}{3} k_p r_e \gamma^2 \kappa^4 (x^2 + y^2),$$

$$\dot{p}_z = -E_{z0} + \lambda \left(\frac{1}{4} + \kappa^2 \right) (x \beta_x + y \beta_y) - \frac{2}{3} k_p r_e \gamma^2 \kappa^4 (x^2 + y^2),$$

$$\dot{p}_x = -\kappa^2 x + \frac{\kappa^2 \lambda}{2} \left(\langle \gamma \rangle^{-2} + \beta_x^2 + \beta_y^2 \right) x - \frac{2}{3} k_p r_e \gamma^2 \kappa^4 (x^2 + y^2) \beta_x,$$

$$\dot{p}_y = -\kappa^2 y + \frac{\kappa^2 \lambda}{2} \left(\langle \gamma \rangle^{-2} + \beta_x^2 + \beta_y^2 \right) y - \frac{2}{3} k_p r_e \gamma^2 \kappa^4 (x^2 + y^2) \beta_y,$$



Long-term equations

- Equations are written using the averaging method

$$\langle \dot{\gamma} \rangle = -E_{z0}\beta_{z0} - \frac{1}{3}k_p r_e \kappa^3 \langle \gamma \rangle^{\frac{3}{2}} (S_x + S_y), \quad \text{Energy}$$

$$\langle \dot{\zeta} \rangle = \frac{1}{2}\gamma_w^{-2} - \frac{1}{2}\langle \gamma \rangle^{-2} - \frac{1}{4}\kappa \langle \gamma \rangle^{-\frac{3}{2}} (S_x + S_y), \quad \text{Longitudinal phase}$$

$$\dot{S}_x = -\frac{1}{4}k_p r_e \kappa^3 \langle \gamma \rangle^{\frac{1}{2}} \left(S_x^2 + \frac{4 - \cos 2\Delta\Phi}{3} S_x S_y \right) - \frac{1}{8} \left[\frac{1}{4}\lambda\beta_{z0} - \kappa^2 (1 - 2\lambda) \right] \langle \gamma \rangle^{-2} S_x S_y \sin 2\Delta\Phi, \quad \text{Phase space area}$$

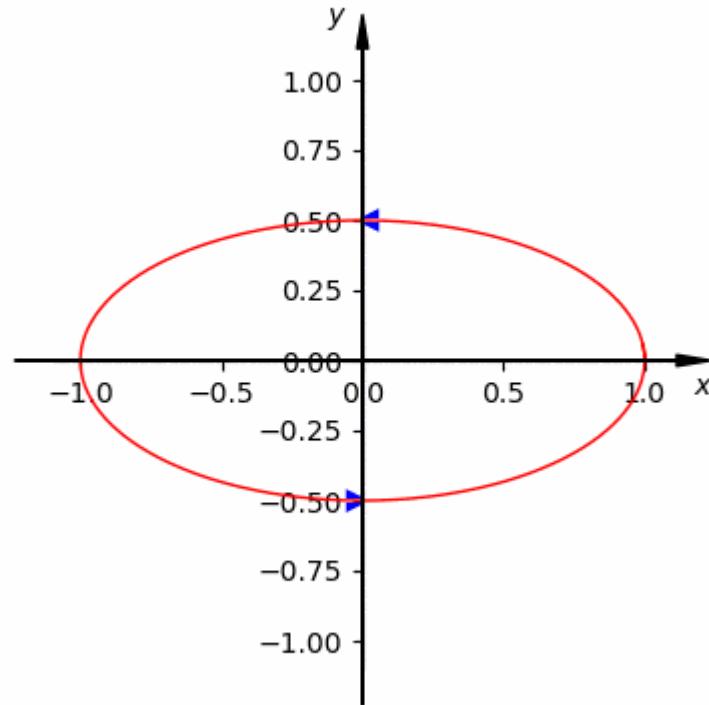
$$\begin{aligned} \dot{\Phi}_x = & \frac{1}{24}k_p r_e \kappa^3 \langle \gamma \rangle^{\frac{1}{2}} S_y \sin 2\Delta\Phi + \frac{1}{64}\lambda\beta_{z0} \langle \gamma \rangle^{-2} (S_x + S_y \cos 2\Delta\Phi) \\ & - \frac{1}{16}\kappa^2 \langle \gamma \rangle^{-2} [S_x + 2\lambda S_y + (1 - 2\lambda) S_y \cos 2\Delta\Phi] - \frac{1}{4}\kappa\lambda \langle \gamma \rangle^{-\frac{5}{2}}, \end{aligned} \quad \text{Betatron phase}$$

$$\frac{d\Delta\Phi}{dt} = -\frac{1}{24}k_p r_e \kappa^3 \langle \gamma \rangle^{\frac{1}{2}} (S_y + S_x) \sin 2\Delta\Phi + \frac{1}{8} \left[\frac{1}{4}\lambda\beta_{z0} - \kappa^2 (1 - 2\lambda) \right] \langle \gamma \rangle^{-2} (S_y - S_x) \sin^2 \Delta\Phi. \quad \text{Relative betatron phase}$$

Predict new phenomenon

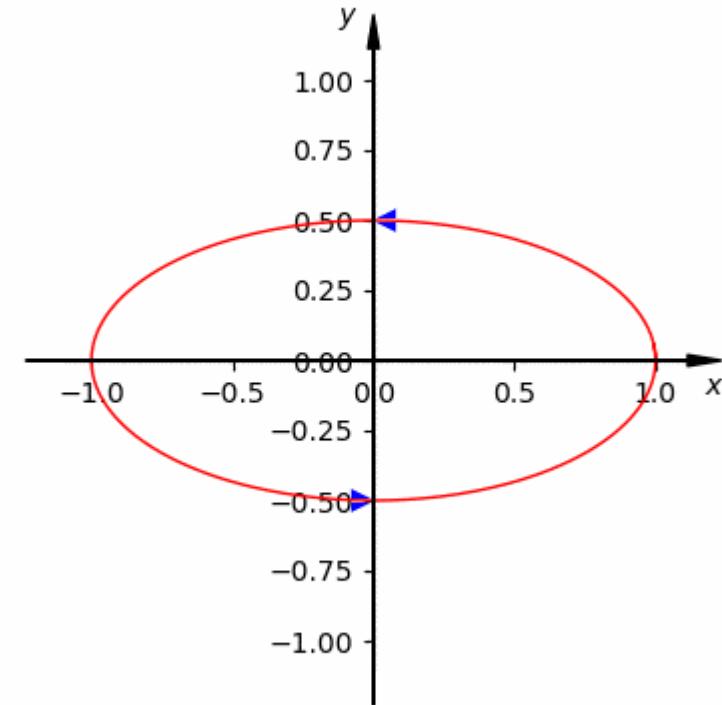
- Betatron orbit precession
(low energy regime)

$$\Omega = -\frac{1}{8} \left[\frac{\lambda \beta_{z0}}{4} - \kappa^2 (1 - 2\lambda) \right] \langle \gamma \rangle^{-2} \langle L_z \rangle$$



- Betatron orbit tapering
(high energy regime)

$$\dot{R} = -\frac{1}{6} k_p r_e \kappa^3 \langle \gamma \rangle^{\frac{1}{2}} R (S_x - S_y) < 0$$



Summary

- PWFA to high energies is our goal
- Adiabatic sheath model for better prediction of blowout radius, which can be used for high transformer ratio PWFAs
- Long-term betatron oscillation and radiation reaction have been modeled

