

CEPC polarized electron source R&D

Xiaoping Li, Zhe Duan, Valery Tyukin, Cai Meng, Zhongtian Liu

- CEPC Electron Source
- Generation of polarized electron beams
- Polarized electron source related R&D
 - Polarized electron source R&D plan for CEPC at IHEP
 - Domestic R&D on the superlattice GaAs photocathode
 - Preliminary test on the superlattice GaAs photocathode
 - A Polarized electron gun design for CEPC
- Summary

- CEPC Electron Source
- Generation of polarized electron beams
- Polarized electron source related R&D
 - Polarized electron source R&D plan for CEPC at IHEP
 - Domestic R&D on the superlattice GaAs photocathode
 - Preliminary test on the superlattice GaAs photocathode
 - A Polarized electron gun design for CEPC
- Summary

CEPC Linac

Baseline design of the CEPC Linac

- A 30GeV room temperature Linac
- A combination of S-Band (2860MHz) and C-Band (5720MHz)
- The Linac tunnel length is 1.8km

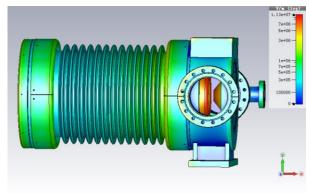
Parameter	Symbol	Unit	Baseline
Energy	E_{e-}/E_{e+}	GeV	30
Repetition rate	f_rep	Hz	100
Bunch number per pulse			1 or 2
Bunch charge		nC	1.5
Energy spread	σ_{E}		1.5×10^{-3}
Emittance	ε _r	nm	6.5


CEPC Electron Source

Introduction to CEPC Electron Source

The electron source is used for generating an electron beam with a specific longitudinal distribution that can be accelerated for injection and positron production.

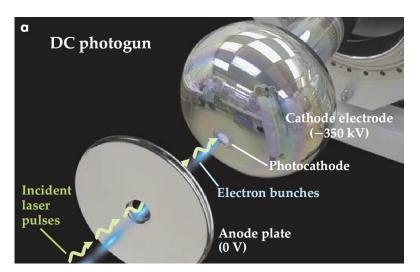
- Electron Gun (Baseline design)
 - A traditional thermionic triode gun with two operation modes
 - 1.5nC for electron injection
 - 10nC for positron generation
- Has been verified at BEPCII and HEPS Linac

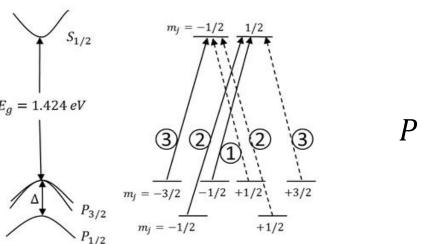

Parameter	Unit	Value
Туре	-	Thermionic Triode Gun
Cathode	-	Dispenser cathode
Beam current	Α	> 10
High voltage of anode	kV	150
Bunch charge 1	nC	1.5 (e ⁻ injection)
Bunch charge 2	nC	10 (e ⁺ production)
Repetition	Hz	100

150kV High Voltage Platform

220V AC

Isolation Transformer

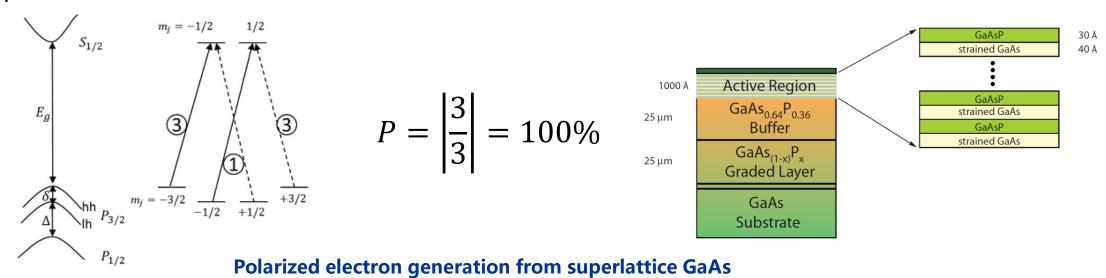

CEPC electron source parameters and its design


- CEPC Electron Source
- Generation of polarized electron beams
- Polarized electron source related R&D
 - Polarized electron source R&D plan for CEPC at IHEP
 - Domestic R&D on the superlattice GaAs photocathode
 - Preliminary test on the superlattice GaAs photocathode
 - A Polarized electron gun design for CEPC
- Summary

Generation of polarized electron beams

Polarized electron generation

- One effective method for generating polarized electrons is using GaAs photocathode in a photocathode HV electron gun (Extremely high vacuum)
- The unique band structure of GaAs determines that electron beams with a certain polarization can be generated under the driving of circularly polarized laser at a specific wavelength
- For a common bulk GaAs, a maximum polarization in theory is 50%, considering depolarization effect it usually is about 30-35% at 780nm laser wavelength

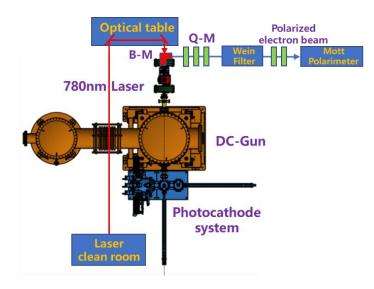

$$P = \left| \frac{1-3}{1+3} \right| = 50\%$$

Polarized electron generation from a common bulk GaAs

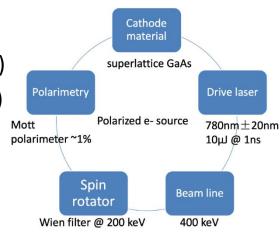
Generation of polarized electron beams

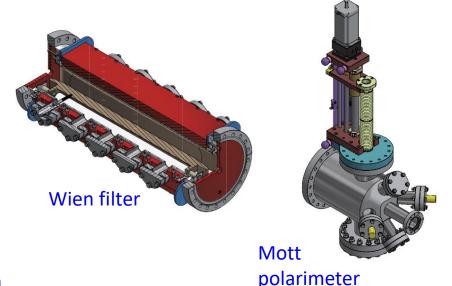
Polarized electron generation

- Strained GaAs and its energy band structure
- For a strained GaAs, a maximum polarization in theory is 100%, considering depolarization effect it usually is about 85% at 780nm
- Constructing superlattice structure is an effective way to obtain strained GaAs
- This type of photocathode is not easy to obtain and needs to be grown on a substrate using MBE equipment


- CEPC Electron Source
- Generation of polarized electron beams
- Polarized electron source related R&D
 - Polarized electron source R&D plan for CEPC at IHEP
 - Domestic R&D on the superlattice GaAs photocathode
 - Preliminary test on the superlattice GaAs photocathode
 - A Polarized electron gun design for CEPC
- Summary

Polarized electron source R&D plan for CEPC at IHEP


- Goals: Generation of electron beams with a bunch charge (≥2nC) and high polarization (≥85%)
- Based on a photocathode DC gun developed by IHEP with an extremely high vacuum (10-10Pa)
- Beam line setup and beam dynamics study has been carried out
- Key components such as Wien filter and Mott polarimeter has been designed
- We expect a beam commissioning scheduled in 2027



A photocathode DC gun @IHEP

Scheme of PES R&D based on DC gun

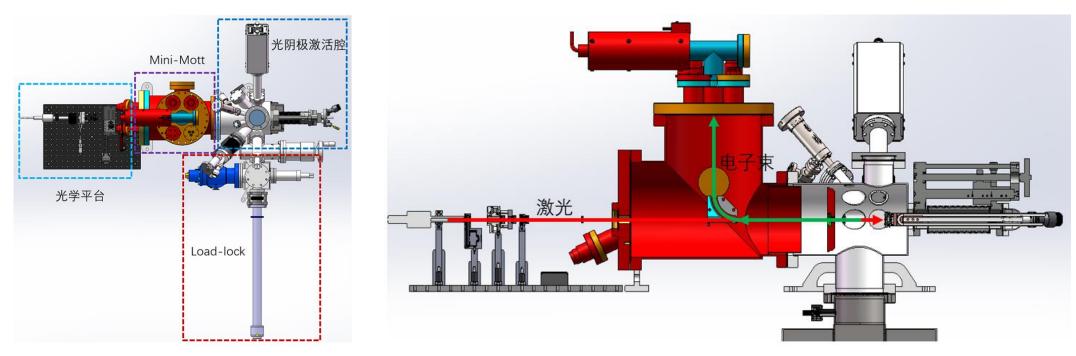
Domestic R&D on the superlattice GaAs photocathode

- One of the most important part for PES is Superlattice GaAs Photocathode
- Since the beginning of 2025, we have been starting the R&D of Superlattice GaAs
- In collaboration with a domestic company Acken Optoelectronics Ltd. @ Suzhou
- Superlattice GaAs photocathode produced by MBE system, main requirements are Polarization > 85% and QE > 1%
- The first the batch of photocathodes have been produced

GaAs	5 nm	p=5×10 ¹⁹ cm ⁻³
GaAs/GaAsP SL	(4/3 nm) ×14	p=5 \times 10 ¹⁷ cm ⁻³
GaAsP _{0.35}	2750 nm	p=5 \times 10 ¹⁸ cm ⁻³
Graded GaAsP _x (x = 0~0.35)	5000 nm	p=5 \times 10 ¹⁸ cm ⁻³
GaAs buffer	200 nm	$p=2\times10^{18} \text{ cm}^{-3}$

p-GaAs substrate (p>10¹⁸ cm⁻³)

Structure of Superlattice layers


MBE system in Acken

Samples of superlattice GaAs/GaAsP

Domestic R&D on the superlattice GaAs photocathode

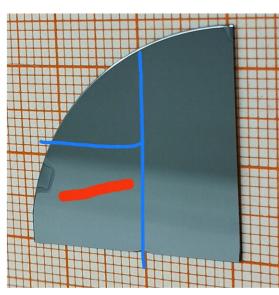
- Build a platform for photocathode performance test (both pol & QE), this platform has been designed and is currently under development, expected to start experimental study on superlattice GaAs next year
- Including a photocathode load-lock chamber, an activation chamber, a Mini-Mott and a testing laser system

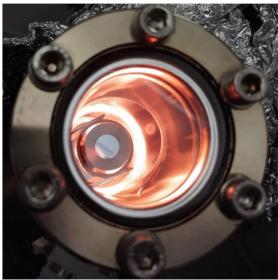
Platform for photocathode performance test

Preliminary test on the superlattice GaAs photocathode

- From 2024, Valery Tyukin from Inst. of Nuclear Physics, JGU Mainz participated in research on PES (PIFI 2024/2025)
- A superlattice GaAs wafer has been cut, and a quarter had been delivered to the Inst. of Nuclear Physics, JGU Mainz
- Activation experiment of the SL GaAs has been carried out in JGU Mainz
- To test the performance of SL GaAs (both QE and polarization)
- As a very important experimental data for our Mott polarimeter calibration in future

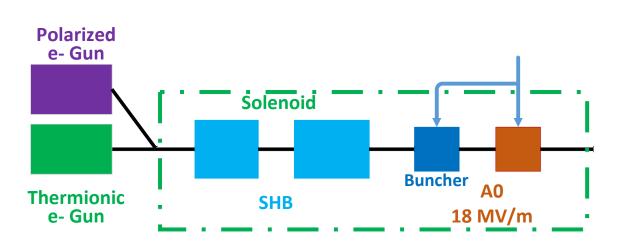
Valery Tyukin

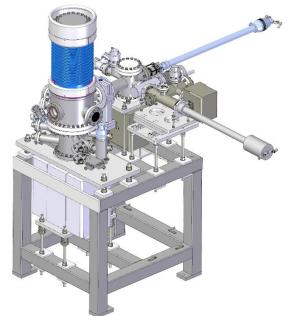


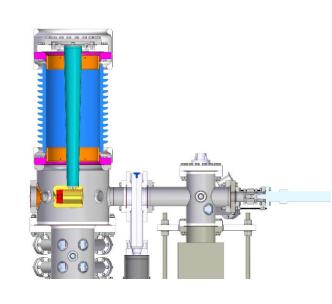

Superlattice GaAs wafer cut in Acken


Preliminary test on the superlattice GaAs photocathode

- The QE is two to three times lower than that of bulk material structures
- The lifetime of the SL GaAs in sample preparation chamber is a few hundred hours, which is a good indicator
- Polarization measurements will be carried out in the near future (after repair work on the beamline)




- > The SL structure is cut along blue lines
- Piece on the right is for main accelerator
- > Piece on the left bottom is tested


- SL in loadlock chamber
- Preheating in loadlock chamber
- ➤ Yo-Yo method, Cs + NF3
- ➤ Maximal QE=1.5% @650nm

A Polarized electron gun design for CEPC

- A 150kV HV photocathode electron gun has been designed (Beam parameters are consistent with the thermionic gun)
- Two electron guns scheme and do not change the layout of the injector, share the bunching system
- As an alternative solution for CEPC electron source
- It can also be adopted in BEPCII as a polarized electron source

Two electron guns scheme for CEPC

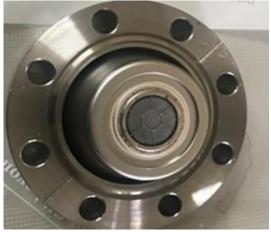
A 150kV HV photocathode electron gun

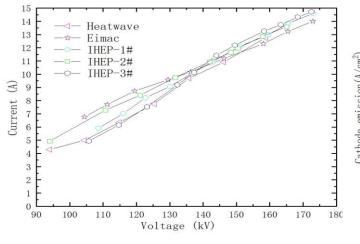
- CEPC Electron Source
- Generation of polarized electron beams
- Polarized electron source related R&D
 - Polarized electron source R&D plan for CEPC at IHEP
 - Domestic R&D on the superlattice GaAs photocathode
 - Preliminary test on the superlattice GaAs photocathode
 - A Polarized electron gun design for CEPC
- Summary

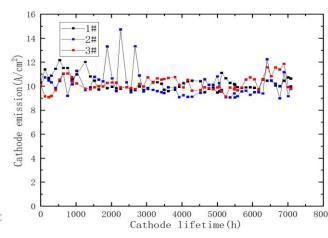
Summary

- Introduction of electron source for CEPC.
- The method of generating polarized electrons.
- Introduced progress of polarized electron source related R&D, including R&D plan, domestic R&D on the superlattice GaAs photocathode, preliminary test results about the superlattice GaAs photocathode in Mainz and a polarized electron gun design for CEPC.

Thank you for your attention!




CEPC Electron Source


CEPC Electron Source R&D

- A prototype of electron gun and its test platform had been built up
 - Used for domestic cathode-grid assembly R&D
 - The cathode emission capacity had been tested up to 12A@150kV
 - The emission capacity does not decrease within 7000 hours operation

