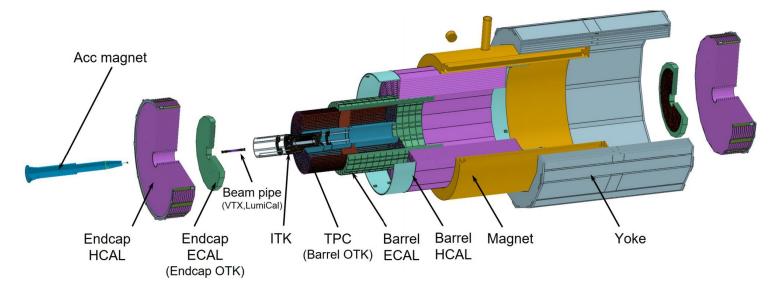


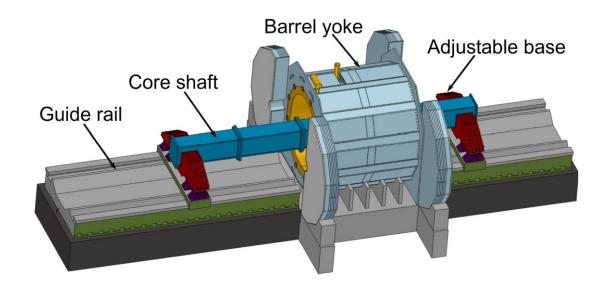
Challenge of CEPC detector installation and integration

Xiaoyan Ma, Quan Ji, Xiaohui Qian On behalf of the mechanical design group CEPC workshop at Guangzhou, Nov. 8th, 2025


Outline

- ☐ Installation scheme of CEPC detector
- ☐ Installation fixture for sub-detector
- ☐ Movable platform for huge detector
- ☐ Difficulties in survey
- ☐ Service
- Cable routing
- Cooling system

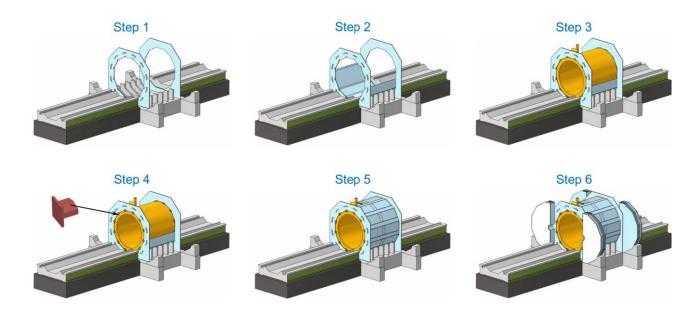
Installation scheme of CEPC detector


Installation sequence

- Start from the yokes (muon detector)
- Sequence: barrel sub-detectors → endcap sub-detectors
- Barrel: proceeds from the outside to inside, Magnet→ HCAL → ECAL → TPC (OTK) → ITK
 → Beam piple assembly (VTX, LumiCal)
- Endcap: proceeds from the inside to outside, ECAL (OTK) → HCAL → closing yoke

Installation scheme of CEPC detector

- Different installation methods were proposed to the various sub-detectors
 - Alternating installation method: Yokes and magnet
 - Core shaft installation method: for heavy-duty sub-detector
 - Cantilever installation method: for light-duty sub-detector

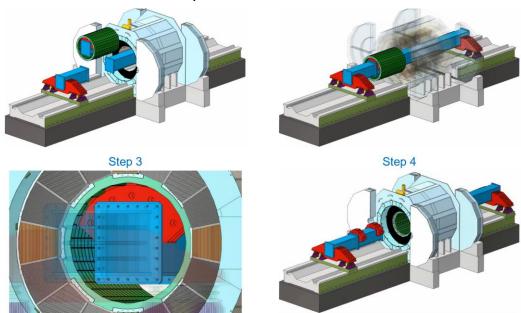

Detector installation in the underground experimental hall

Alternating installation method

Yokes (muon detector) and magnet

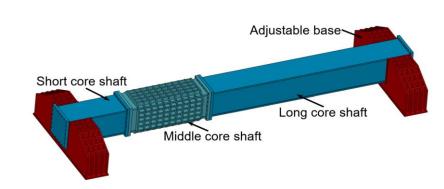
Barrel yoke design ideas:

- Inter-supporting connection structure by mutual support → enables tool-free installation
- Adding end flanges to improve the structural rigidity → deformation is reduced significantly



Alternating installation for yokes and magnet

Core shaft installation method


For heavy-duty sub-detectors

Barrel HCAL, barrel ECAL

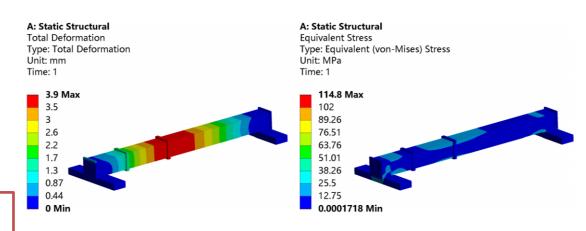
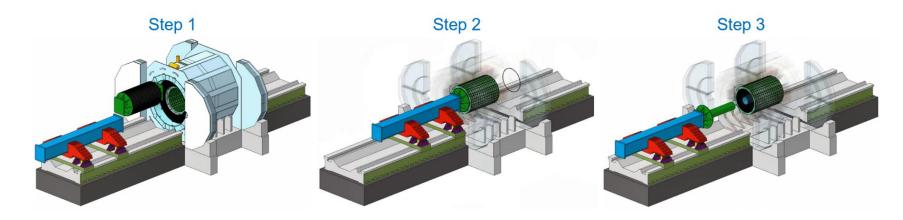


Figure 14.41: Installation process for the barrel ECAL. The barrel ECAL will be assembled with the middle-section shaft and then lifted to connect with other shaft sections.

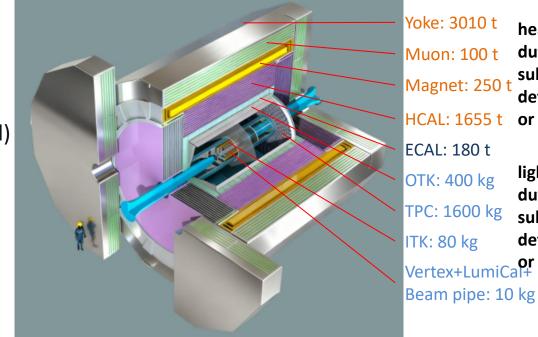
- Pushed into the barrel yoke along the guide rails
- The segmented design of the core shaft make the installation and removal with the sub-detector easier


Three-section modular structure of the core shaft.

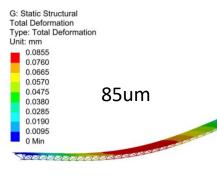
FEA of the worst case: during installing HCAL, 1000 tons load

Cantilever installation method

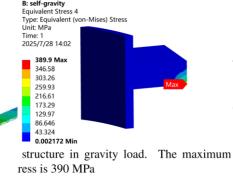
- For light-duty sub-detectors
 - TPC (barrel OTK), ITK, endcap ECAL (endcap OTK), endcap HCAL, and beam pipe assembly



Installation process for the TPC


- One end of the sub-detector fixed to the shaft while the other end kept free
- Considering the deflection at the free end, only suitable to the light-duty sub-detectors

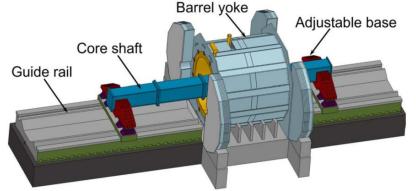
Installation fixture for sub-detector with extreme weight


- 9 sub-detector:
- Large range of sub-detector weight: 10kg ~3110 tons
- Challenge:
- > Sub-detector:
- Self-structure: Minimize mass & high positioning accuracy (um level)
- Connect structure → strength & deformation
- Installation fixture
- Strong enough → Deformation (sub-detector space 10mm)
- Adjustable → adjusting accuracy < 0.1 mm
- **Optimize the structure of sub-detectors**
- Need detail design of installation fixture: control system

Sub-detector weight

ITK gravitational sag analysis

Connection parts of HCAL:


389.9MPa

Detector Installation clearance (mm) Coaxiality (mm) tolerance (mm) Outer Inner Yoke Magnet 0 to -5 0 to +510 ± 1 **HCAL** 10 0 to -5 0 to +5 ± 0.5 ECAL 0 to -50 to +5 ± 0.5 10 TPC 0 to -2 0 to +2 ± 0.1 0 to -2 10 0 to +2 ± 0.1 +0.1Beam pipe assembly

Table 14.1: Boundary tolerance, installation clearance and coaxiality of sub-detectors

Installation accuracy

Boundary dimensional

Installation fixture

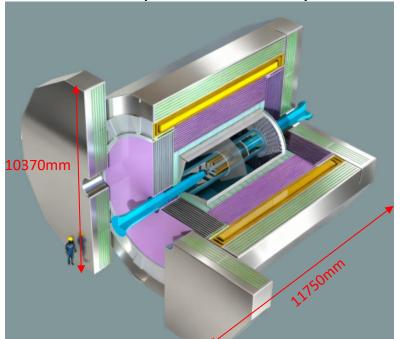
heavy-

duty

sub-

detect

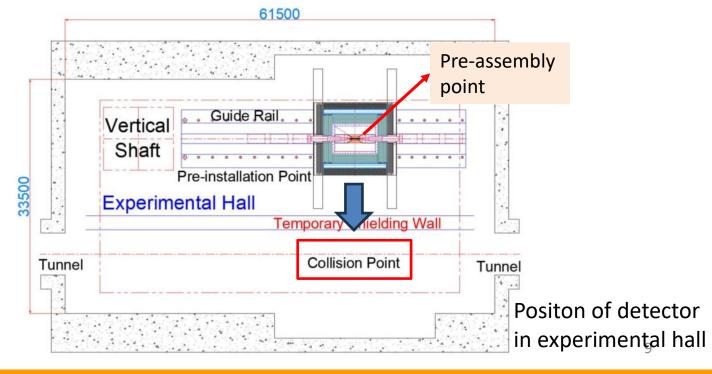
light-


duty

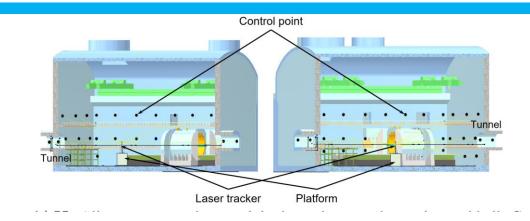
sub-

detect

Movable platform for huge detector


- Weight of collider detector:
- > **BESIII**: length: 11m, width: 6.5m, ~800 tons,
- > CEPC: length: 11.75m, width: 10.37m, ~5205 tons
- ➤ **KEKB Belle II**: length: 7.5m, width 7 m, ~1400 tons
- > ALICE: length: 26m, width: 16m, ~10000 tons, no need to move detector
- ☐ Challenge: move the detector as a whole from pre-assembly point to collision point—Detector installation and ACC beam commissioning in parallel
- > Design a movable platform
- Detector position accuracy is less than 1~2 mm

ALICE: 10000 tons



Survey of detector

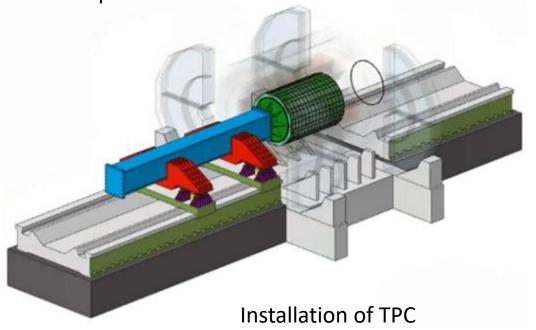
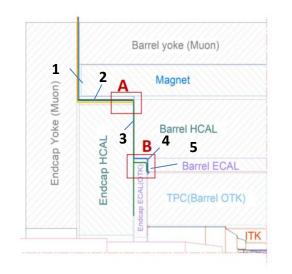

- Set control points on the walls and floor in experimental hall
- Accuracy of high-precision laser tracker: 15 μm + 6
 μm/m—design the control points reasonably to reduce the measurement error (Size of EH: ~62X34X50m)
- sub-detector positions is critical for VTX and Silicon Tracker to achieve micron-level position resolution
- the measurement line of sight would be blocked by installation fixture

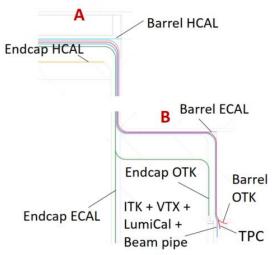
Table: Installation accuracy

Detector	Boundary dimensional tolerance (mm)		Installation clearance (mm)	Coaxiality (mm)	
	Outer	Inner			
Yoke		±2		±0.5	
Magnet	0 to -5	0 to +5	10	±1	
HCAL	0 to -5	0 to +5	10	±0.5	
ECAL	0 to -5	0 to +5	10	±0.5	
TPC	0 to -2	0 to +2	10	±0.1	
ITK	0 to -2	0 to +2	10	±0.1	
Beam pipe assembly	0 to -0.3	0 to +0.3	2	±0.1	

Alignment control network in the underground experimental hall

Service — Cable routing

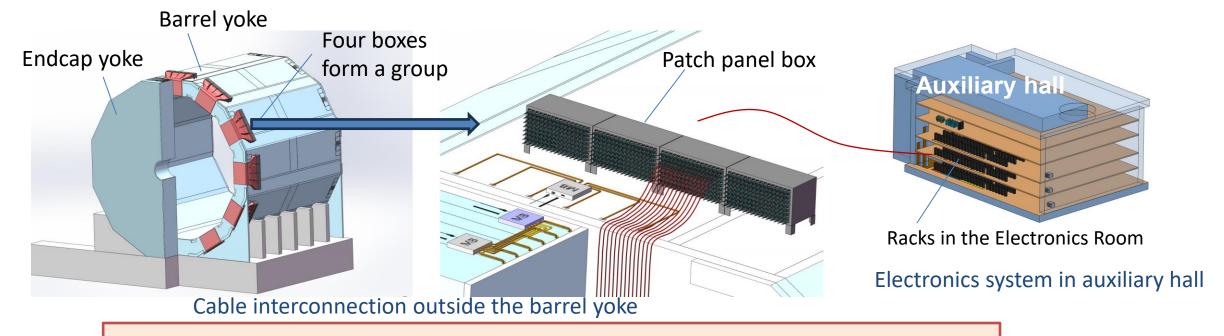

- Num. of cable and cooling pipe for one side: >6000
- Preliminary design the routing in 2D drawing
- Main challenge:
- ➤ Logically sort out the lines of each detector——Especially important for maintenance.
- Cable fixing frame


Table 14.4: Inventory of cables and pipes. The quantity in the table represents only one end.

	Cooling	g pipe	Cable		
	Size (mm)	Number	Size (mm)	Number	
Barrel muon detector	/	1	φ5	12	
Barrel HCAL	ϕ 12	96	ϕ 5	2784	
Barrel ECAL	$\phi 10$	80	ϕ 5	240	
Barrel OTK	$\phi 5.5$	220	ϕ 5	440	
TPC	$\phi 6$	12	ϕ 5	248	
ITK	ϕ 5	69	ϕ 5	101	
VTX	ϕ 12	16	$\phi 5$	48	
LumiCal	/	1	30×6	4	
Detector beam pipe	$\phi 8$	8	/	/	
Endcap OTK	$\phi 6$	32	$\phi 5$	144	
Endcap ECAL	$\phi 10$	16	ϕ 5	112	
Endcap HCAL	ϕ 12	32	ϕ 5	1536	
Endcap muon detector	/	/	ϕ 5	8	
Total	/	581	/	5677	

Table: Routing gap, cables and pipes, cross section

Channel	Gap (mm)	In channel		Cross section (mm ²)		
		Cables	Pipes	Channel	Cables and Pipes	
1	60	5677	581	1.3×10^6	$1.4 \times 10^5 \ (11\%)$	
2	14–80	5677	581		$1.4 \times 10^5 \ (27\%)$	
3	30	1336	453	4.0×10^{5}	$4.4 \times 10^4 (11\%)$	
4	30 (Min)	1080	405	3.6×10^{5}	$3.7 \times 10^4 (10\%)$	
5	30	984	357	3.4×10^{5}	$2.9 \times 10^4 (8.5\%)$	

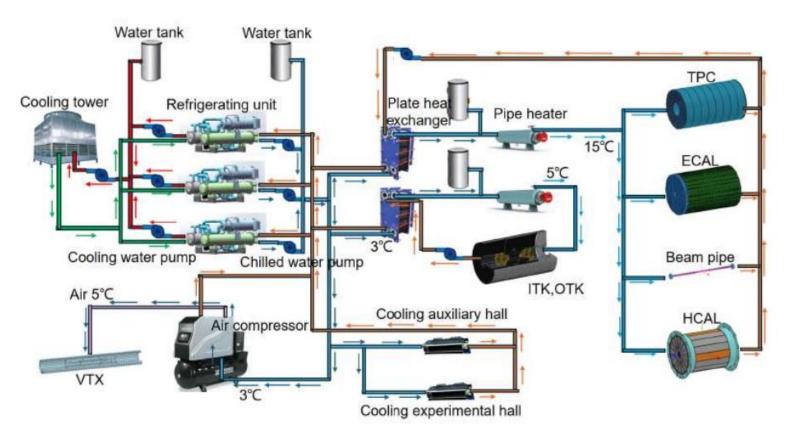

Routing path of sub-detector

Service — Cable routing outside yoke

How to handle the cables exit from the yoke

Avoid cable being too long and inconvenient to install.

- Grouped and interconnected before go to the electronics room
- Patch panel boxes are placed on the barrel yoke: allow for future endcap yoke access
- 11*4=44 boxes: bottom barrel yoke is inconvenient for cable routing
- Cable count is the same on both sides of the box



Cables will undergo interconnection before reaching the electronics room

Service — Cooling system

- □ Diff. temperature requirement and diff. cooling media: -30~30°C, air/water/CO2
- ☐ Cooling pipe connection in limited space
- ☐ Low mass requirement for cooling plate
- ☐ Condensed water problem

Flow chart of air conditioning system and cooling system

Summary

- Need to design a high-precision adjustable and high-load installation fixture
- Need a movable platform that can bear more than 5000 t weight to move the detector as a whole from pre-assembly point to collision point
- ☐ Experienced survey experts are very important to ensure the installation accuracy of detectors
- ☐ Cabling routing needs a patient person who can logically sort out the lots of cables
- ☐ The cooling of the detector needs systematic design to get best status of subdetectors