
Measuring QED Radiative Bhabha to 10⁻⁴ with the LumiCal

侯書雲 Suen Hou Academia Sinica

广州 2025.11.08

p_1 p_2 p_1 p_2 p_1 p_2 p_2 p_2 p_2 p_2 p_2 p_3 p_4 p_4 p_4 p_5 p_7 p_2 p_2 p_3 p_4 p_5 p_7 p_8 p_8 p_8 p_8 p_8 p_8 p_9 p_9

Radiative Bhabha elastic scattering

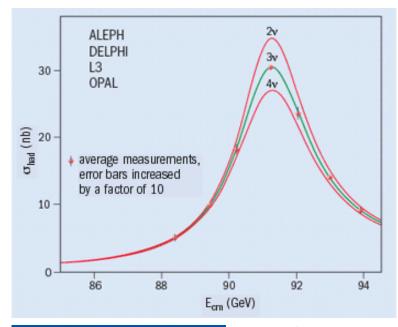
Luminosity precision to SM

SM $e^+e^- \rightarrow Z \rightarrow q\overline{q}$, R(s) ratio QED Luminosity by counting Bhabha $e^+e^- \rightarrow e^+e^-$

LEP: 17 Million Z (4 IP)

 $L = 4.3 \ 10^{31} / cm^2 s \ (E = 46 GeV)$

 $= 1x10^{32}/cm^2s$ (E=100 GeV)


 $N_v = 2.9840 \pm 0.0082$

 $M_7 = 91187.5 \pm 2.1 \text{ MeV} \quad 2.3 \times 10^{-5}$

 $G_7 = 2495.2 \pm 2.3 \text{ MeV} \quad 1\%$

 $N_v = 2.9840 \pm 0.0082$

Precision luminosity 3.4x10⁻⁴

 Z,γ

CERNCOURIER 2 November 2005

QED precision on Bhabha $e^+e^- \rightarrow e^+e^- (n\gamma)$

Methods used for multiple photon corrections

- 1. SF: analytical collinear QED Structure Functions
- 2. YFS exponentiation Small angle 0.054% BHLUMI (LEP)
- 3. PS: Parton Shower Large angle 0.1% BabaYaga@NLO (Flavor F.)

e⁺e⁻ collision luminosity by coybtubg Bhabha events

$$\int \mathcal{L} dt = N_{\text{obs}} / \sigma_{\text{th}}$$

$$\frac{\delta \mathcal{L}}{\mathcal{L}} = \frac{\delta \mathcal{L}_{\text{exp}}}{\mathcal{L}_{\text{oxp}}} \oplus \frac{\delta \sigma_{\text{th}}}{\sigma_{\text{th}}}$$

Luminosity errors:

Experiment Theory

collinear log : $L \equiv \log \frac{s}{m_s^2}$

G. Montagna Ustron, 2015

$$L = \log(s/m_e^2) \simeq 15$$
 Large angle @ Flavor
 $L = \log(|t|/m_e^2) \simeq 17$ Small angle @ LEP
 $L = \log(|t|/m_e^2) \simeq 20$ Small angle @ $t\overline{t}$ thresh.

Flavor Factories

collinear log : $L \equiv \log \frac{s}{m_e^2}$

C.M. Carloni Calame ECFA Higgs CERN 2021

	α^0	ECFA HIGGS CE	KN 2021
NLO	αL	α	
NNLO		$\frac{1}{2}\alpha^2L$	$\frac{1}{2}\alpha^2$
h.o.	$\sum_{n=3}^{\infty} \frac{\alpha^n}{n!} L^n$	$\sum_{n=3}^{\infty} \frac{\alpha^n}{n!} L^{n-1}$	

Red: matched PS, SF + NLO

Typically at flavour factories (on integrated Bhabha σ)

Bhabha event counting to 10⁻⁴

SM an order improvement to LEP

Luminosity \mathcal{L} is derived by

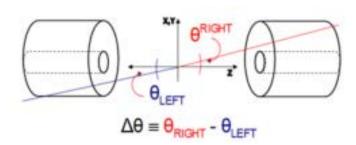
$$e^+e^- \rightarrow e^+e^-(n\gamma)$$

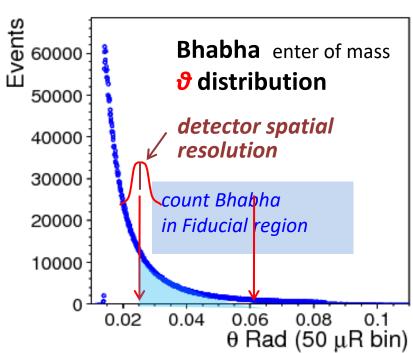
$$\mathcal{L} = rac{1}{arepsilon} rac{N_{
m acc}}{\sigma^{
m vis}} \quad \sigma = rac{16\pilpha^2}{s} \left(rac{1}{ heta_{min}^2} - rac{1}{ heta_{max}^2}
ight)$$

Bhabha detected for

- a pair of back-back electrons,
- precision ϑ of $e,e(\gamma)$ in fiducial region

$$\delta L/L \sim 2 \delta \vartheta/\vartheta_{min}$$

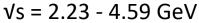

$$\delta L/L = 10^{-4}$$

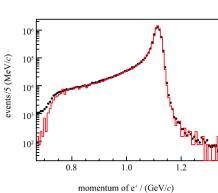

at $z = \pm 1000$ mm, $\vartheta_{min} = 20$ mRad

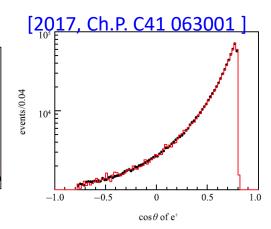
$$\rightarrow \delta \vartheta = 1 \mu Rad$$
, or $dr = 1 \mu m$

error due to offset on Z

 \rightarrow 50 μ m on Z eq. dr = $\delta z \times \vartheta = 1 \mu$ m

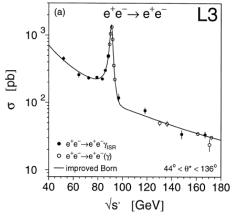


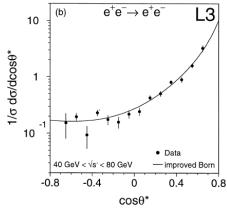

Luminosity systematics due to event counting in/out fiducial edge


 \rightarrow offset on the mean of θ_{min}

Bhabha experimental results $e^+e^- \rightarrow e^+e^-(\gamma)$

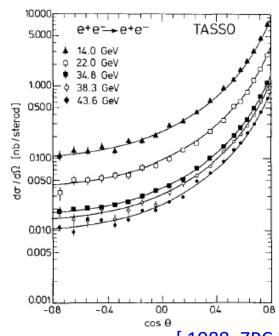
BESIII Luminosity $(\gamma)e^+e^-$, $(\gamma)\gamma\gamma$ Systematic error ~0.7%





L3 radiative Bhabha with ISR Systematic error at ~1% level

 $Vs = 50 \sim 170 \text{ GeV}, 232 \text{ pb}^{-1}, 2856 \text{ event}$


[1998, PLB 439, 183]

TASSO Bhabha Systematic error ~3%

 $\sqrt{s} = 12 - 47 \text{ GeV}$

Table 1. Data samples used for the analysis $e^+e^- \rightarrow e^+e^-$

$\langle \sqrt{s} \rangle$ (GeV)	$\int \mathcal{L} dt (\mathrm{pb}^{-1})$	N _{Bhabha}	
14.0	1.7	10730	
22.0	2.7	7106	
34.8	174.5	166348	
38.3	8.9	6035	
43.6	37.1	22951	

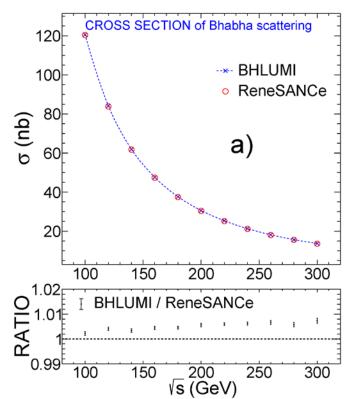
[1988, ZPC 37, 171]

Challenge: QED \alpha^2L^2 shall be measured

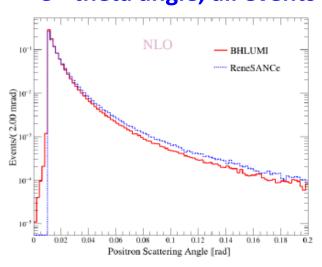
Compare $\sqrt{s} = 92.3 \text{ GeV}$

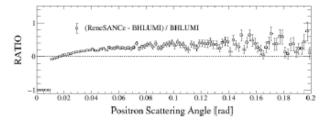
BHLUMI: YFS exponentiation $e^+e^- \rightarrow e^+e^-(n\gamma)$

ReneSANCe: NLO calculation $e^+e^- \rightarrow e^+e^-(v)$


BHLUMI 4.04

2020 systematic **0.037**% [PLB 803 (2020) 135319]


ReneSANCe

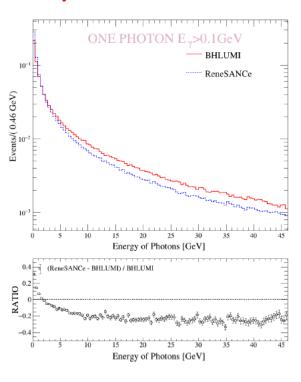

[CPC 256 (2020) 107455]

Bhabha **Cross section**

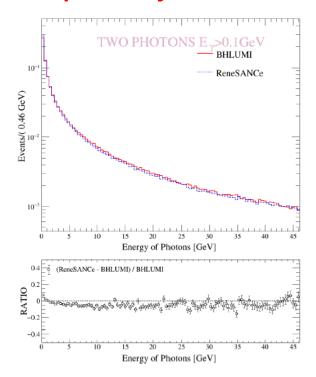
Bhabha Vs= 92.3 GeV e⁺ theta angle, all events

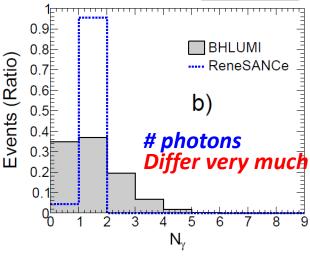
Discrepancy due to 0v events

> Poster Jilin U. J. Gong


Challenge: QED \alpha^2L^2 shall be measured

BHLUMI: $e^+e^- \rightarrow e^+e^-(n\gamma)$


ReneSANCe: $e^+e^- \rightarrow e^+e^-(\gamma)$


Poster
Jilin U.
J. Gong

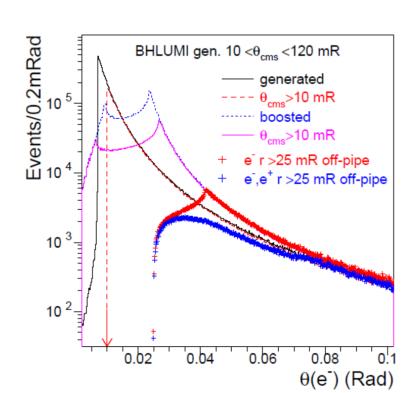
Photon events 1y events

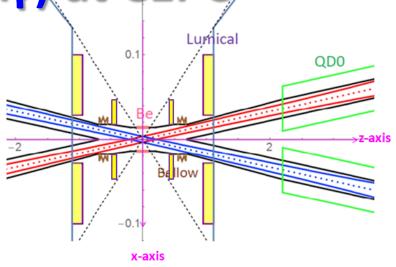
all photons filled

BHLUMI E(y)>5MeV

Event final states	BHLUMI generated
e+e-	36.4%
e+(e-γ) or (e+γ)e-	47.8%
(e⁺γ)(e⁻γ),	15.8%

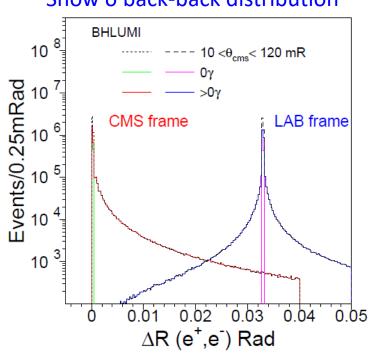
Bhabha $e^+e^- \rightarrow e^+e^-(n\gamma)$ at CEPC


LEP Luminosity template


BHLUMI demo.f cuts

- **ACC 0** CMS 10 mRad $< \theta(e^{\pm}) < 80$ mRad
- **ACC 1** .and. s'(P2,Q2)/s(P1,Q1) > 0.5

Beam crossing, 33 mRad


→ Boost in x direct e⁺, e⁻ offset by 33 mRad

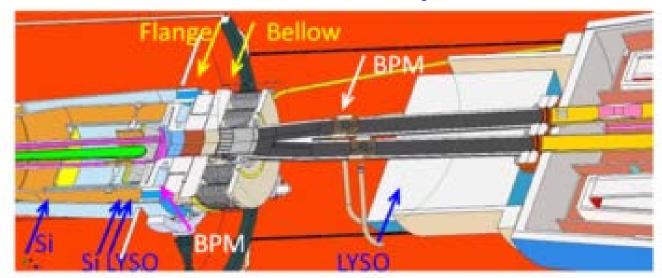
 $\cos\theta = 0.993$

events with 0 photos Show δ back-back distribution

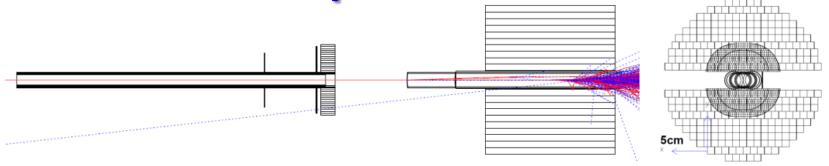
CEPC LumiCal design

- $> L = 2x10^{36} / \text{cm}^2 \text{s}^1$ @Z-pole,
- Ø 20 mm racetrack,
 beam-crossing 33 mRad
- o IP bunch:

 $\sigma_x \sigma_y \sigma_z = 6 \mu m$, 35 nm, 9 mm


O Bunch crossing: 23 ns

- **> before Flange** z = 560~700 mm
- O Low-mass beampipe window:

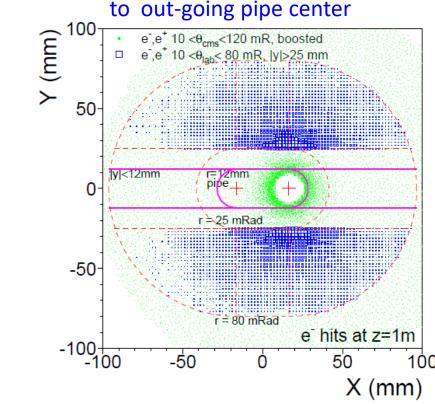

Be 1mm thick

traversing @22 mRad L= 45 mm, = $0.13 X_0$ (Be), $0.50 X_0$ (AI)

- \circ Two Si-wafers for e[±] impact θ
- \circ 2X₀ LYSO = 23 mm
- **> behind Bellow** z= 900~1100 mm
- Flange+Bellow:~60 mm, 4.3 X₀
- **13X₀ LYSO 150 mm**

CEPC LumiCal acceptance

BHLUMI event distribution detecting back-to-back e⁺, e⁻ pair


@|z|=1000mm

- 1) $\Theta > 25$ mRad outside pipe centers
- 2) |y|>25 mm
- 3) Events in shaded area counted for Xsec

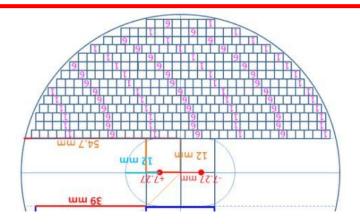
LumiCal acceptance at |z|=1000mm

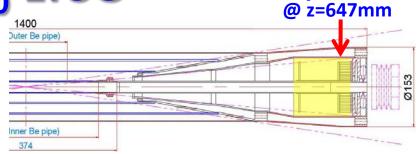
e+, e- back-to-back detected				
θ>25 mRad	θ>25mR & y >25mm			
85.4 nb	78.0 nb			

e⁺, e⁻ back-to-back symmetric to out-going pipe center

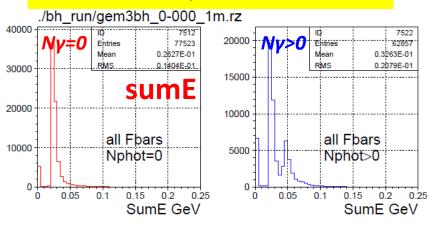
2X₀ LYSO

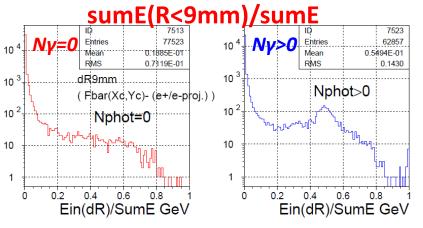
Bhabha hits on LYSO, |y|>12mm

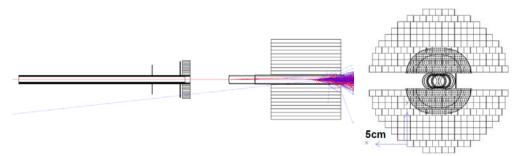

Incident particles are e[±],(γ)


- O GEANT sum dE/dx in each LYSO bars 3x3mm², 23 mm long, 2X₀
- Deviation to e[±] truth (impact hit >E_b/2) mostly < 0.2mm
- O Hit distributions in a Bar distributed due to Bhabha θ , w./w.o. photon

sum dE/dx all LYSO bars (a plane)


o e[±] one track: sumE min. 20 MeV

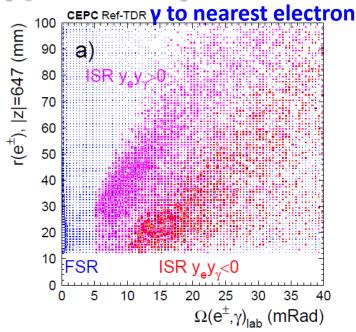

 \circ (e[±] + FSR γ): two MIPs, sumE x2

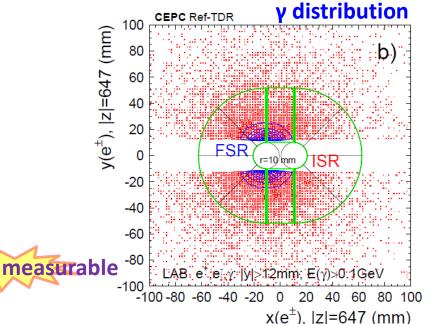

BHLUMI events, GEANT simulation

Photons in $e^+e^- \rightarrow e^+e^-(n\gamma)$

Bhabha events in LumiCal acceptance

 e^+,e^-,γ : |y|>12 mm at LYSO front face $\pm z=647$ mm

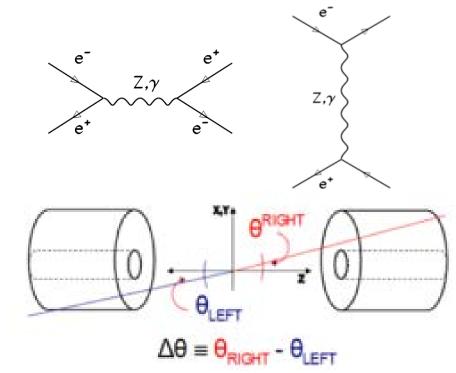

±z Hemispheres	BHLUMI generated	& P2,Q2 y >12mm	
e^\pm	60.3 %	3.87 %	
e [±] γ	39.7 %*	3.16 %	

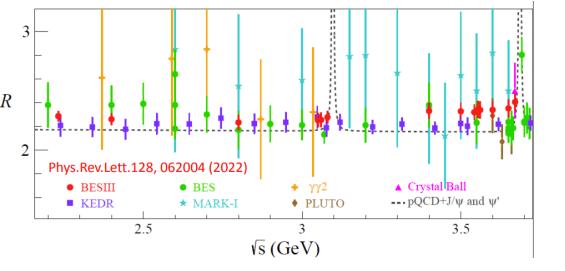

*ISR 20.3%, FSR 19.4%

Detectable Bhabha, e⁺,e⁻,y: |y|>12 mm

±z Hemispheres	P2,Q2 y >12mm	& E(γ)>0.1GeV γ(γ) >12mm
e^\pm	55.1 %	14.7 %
e [±] γ	44.9 %	ISR 0.89 % FSR 13.8 % FSR 2.96%*

*FSR $\Omega(e^{\pm}, \gamma) > 5$ mRad


Luminosity precision @ flavor machine


Bhabha $e^+e^- \rightarrow e^+e^- (n\gamma)$

R(s) ratio for SM predictions $a_{\mu} = (g_{\mu}-2)/2$ and $\Delta\alpha_{\rm had}(M_{\rm Z})$

$$a_{\mu} = \frac{\alpha^2}{3\pi^2} \int_{m_{\pi}^2}^{\infty} \mathrm{d}s \, K(s) \frac{R(s)}{s}$$

$$\Delta\alpha_{\rm had}^{(5)}(M_Z^2) = -\frac{\alpha M_Z^2}{3\pi} {\rm Re} \int_{m_\pi^2}^\infty \frac{R(s) {\rm d}s}{s(s-M_Z^2-i\epsilon)}$$

BESII in 2–5 GeV, precision 6% BESIII 2022 3%

CM frame BHWIDE cross-sections

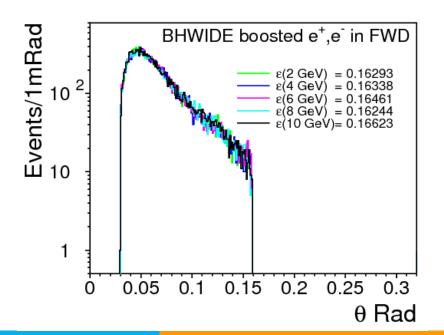
BHWIDE demo.f parameters

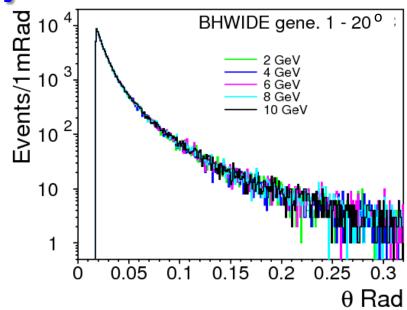
error

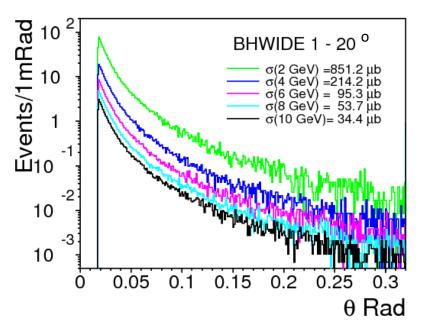
```
For the bosons we have (everything in GeV):
mass of the
             Z =
                      91.1880
                                 total width of the Z = 2.4972819
mass of the
                                 <=> sin**2(theta-w) = 0.2238667
mass of the Higgs = 125.2000
Some coupling strengths:
                  1/alfa =
                              137.036
the QED correction factor =
                                1.0017421
             alfa-strong =
                                0.119
the QCD correction factor =
                                1.0398948
```

90962.430061 [pb]

```
BBBBBBB
              BBB
                  BBB
                              BBB
                                  BBBBBBB
 BBB BBB
        BBB
                  BBB
                          BBB
                              BBB
                                   BBB
                                            BBB
                  BBB
 BBB BBB
         BBB
                          BBB
                              BBB
                                            BBB
                  BBB
                           BBB
                              BBB
                                            BBBBBB
                  BBB
                                            BBBBBB
                          BBB
                  BBB
                      BBB
                                            BBB
                                            BBB
                                            BBBBBBB
    MC Event Generator for Wide-Angle Bhabha Scattering
                BHWIDE version 1.06
**********************************
*********************** December 2024 *************
************
            Last modification: 04.12.2024
        S. Jadach
                           (Deceased)
        W. Placzek
                           (wieslaw.placzek@uj.edu.pl)
        B.F.L. Ward
                           (bfl_ward@baylor.edu)
 [1] S. Jadach, W. Placzek, B.F.L. Ward,
    Phys. Lett. B390 (1997) 298; hep-ph/9608412.
*********************************
```

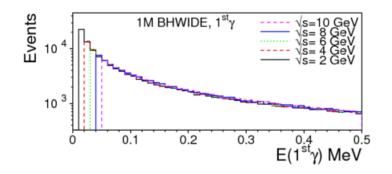

CM frame cross section σ ; scattered e± > 0.1 GeV; back-to-back 0 - π						
√s GeV	2	4	6	8	10	
1 – 20 deg	851000 nb	214200 nb	95300 nb	53700 nb	34400 nb	
20 – 160 deg	1800 nb	455 nb	204 nb	115 nb	73.9 nb	


Bhabha Vs dependency

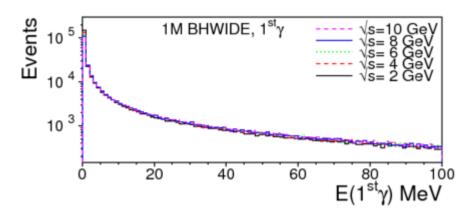

BHWIDE center-of-mass

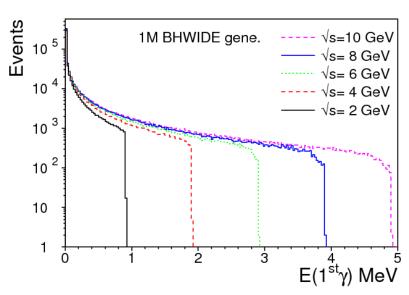
 $\sqrt{s} = 2 - 10 \text{ GeV}, \theta \text{ range } 1 - 20^{\circ}$

- θ distribution: same, well overlap
- Cross section higher at low
- 60 mRad beam-crossing boost
- Events both $e^+ e^-$ in FWD @|z|= 500mm off beampipe Ø = 30 mm; r < 80mm acceptance: ε ~ 16.3 %

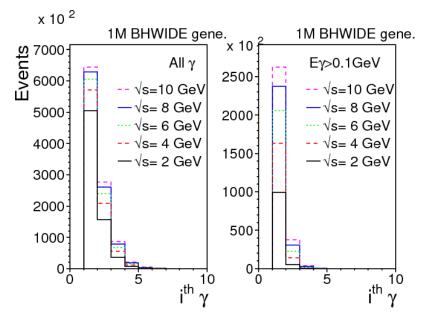


BHWIDE radiative Bhabha e⁺e⁻(nγ)

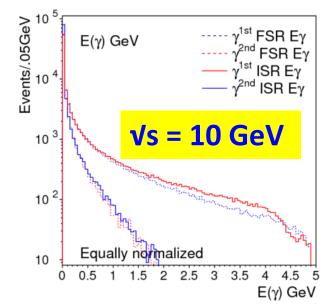

Compare $E(\gamma)$ in 1M events, $\sqrt{s} = 2 - 10$ GeV

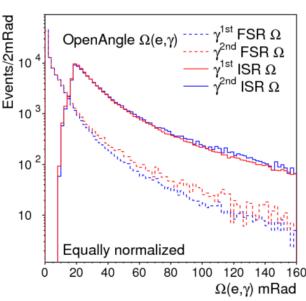

E (γ) cut = 1 x 10⁻⁵ x E_{beam}

1st γ distribution, (1M @ 2 – 10 GeV) low E, indep. of \sqrt{s} , extend to E_{beam}



BHWIDE radiative Bhabha e⁺e⁻(nγ)


Yennie-Frautschi-Suura (YFS) exponentiation method


- → ny in Poisson distribution
- → ny generated at vertex, no correlation with electrons

Photons ordered by Ey

ISR/FSR by OpenAngle $\Omega(e,\gamma)$ closer to inci/scat e^{\pm}

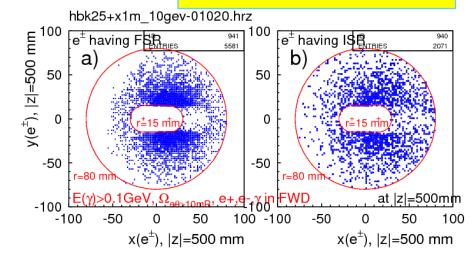
Rad-Bhabha distributions $e^+e^- \rightarrow e^+e^-(n\gamma)$

BHWIDE $\sqrt{s} = 10 \text{ GeV}$ $e^+e^- \rightarrow e^+e^- (n\gamma)$

- Detect rad-Bhabha, scattered e⁺,e⁻,γ^{1st}
- o FWD acceptance:

off-pipe ϕ 30mm, x_c = \pm 15mm external r<80mm

○ y¹st selection:


Eγ > 0.1 GeV, opening angle $\Omega(e^{\pm}, \gamma^{1st})$ >10 mRad

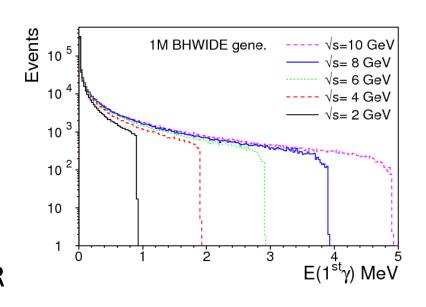
o event rate in Bhabha

to both e⁺,e⁻ detected in FWD each z-side, e[±] with γ^{1st} measured

BHWIDE scattered $e^{\pm} > 0.1$ GeV; $\Omega(e^{+}e^{-}): 0-\pi$ $\sigma(1-20^{\circ})=$ 34.4k nb, $e^{+}e^{-}$ in FWD rate= 16.5%				
Detected in each z-side both e ⁺ e ⁻ in FWD		each z-side, e^{\pm} , γ^{1s} in FWD $E_{\gamma} > 0.1$ GeV $\Omega(e^{\pm}, \gamma^{1st}) > 10$ mR		
e ±,0γ	56.1 %			
e ±,nγ	43.9 %	ISR 0.63 % FSR 1.7 % measu		

- e[±] with near γ^{1st} (FSR)
 near beam-pipe
- e[±] with far γ^{1st} (ISR)
 Loose scattered

Perspective for measuring Bhabha @ STCF


BHWIDE $\sqrt{s} = 2 - 10 \text{ GeV}$

scattered $e^{\pm} > 0.1$ GeV; $\Omega(e^{+}e^{-}) : 0-\pi$ CMS generted for $\sigma(1-20^{\circ})$

Acceptance e^+e^- in FWD = 16.5%

Both e⁺e⁻ fall in FWD event ratio with

- > 0/nγ generated
- ightharpoonup γ^{1st} Ey>0.1 GeV, $\Omega(e^{\pm}, \gamma^{1st})>10$ mR

Detected in each z-side	√ s =	10 GeV	8 GeV	6 GeV	4 GeV	2 GeV
both e⁺e⁻ in FWD	e ±,0γ	56.1 %	57.1 %	59.1 %	61.6 %	66.0 %
	<mark>e</mark> ±,ηγ	43.9 %	42.9 %	40.9 %	38.4 %	34.0 %
e^{\pm} , γ^{1s} in FWD E_{γ} > 0.1GeV, $\Omega(e^{\pm}$, γ^{1st})>10mR	e [±] ,γ ^{1s}	ISR 0.63 % FSR 1.69 %	ISR 0.64 % FSR 1.62 %	ISR 0.58 % FSR 1.47 %	ISR 0.50 % FSR 1.26 %	ISR 0.40 % FSR 0.94 %

Discussion

- ➤ Measuring Radiative Bhabha, evaluated with BHLUMI for CEPC @ vs 92 GeV evaluated with BHWIDE for flavor @ vs ~ 5 GeV
- ➤ Forward LumiCal can measure Bhabha with FSR test QED on NLO final state to ~ 0.1 % aims for 0.01 %
- e/γ discrimination realized by Calo Crystal technology
 LYSO crystal strip 2x2 mm² cells with SiPM