Chasing 2HDM via electroweak corrections at e^+e^- colliders

Hantian Zhang

Theoretical Physics Department CFRN

CEPC 2025 — Guangzhou, China Remote from Les Houches

Precision BSM Phenomenology

"Chasing the two-Higgs-doublet model via electroweak corrections at e^+e^- colliders"

Pia Bredt, Tatsuya Banno, Marius Höfer, Syuhei Iguro, Wolfgang Kilian, Yang Ma, Jürgen Reuter, Hantian Zhang arXiv: 2509.05421

Q: can precision discover new physics?

What kind of new physics?

First of all: additional Higgs, e.g. in two-Higgs-doublet model (2HDM)

Actively searched model
Scalar sector is less constrained

Provide strong first-order phase transition for baryogenesis and gravitational wave

Low-energy scalar sector of SUSY models

Resolve vacuum metastability issue

Simple, yet phenomenologically rich

Hints from flavour anomalies in R_D and $R_{D^{(st)}}$

[**Iguro**, Phys.Rev.D 105 (2022) 9, 095011] [Blanke, **Iguro**, **Zhang**, JHEP 06 (2022) 043]

Hints from electroweak-scale excesses at the LHC

[Iguro, Kitahara, Omura, Zhang, Phys.Rev.D 107 (2023) 7, 075017]

See also talks by Andres Crivellin and Jingya Zhu

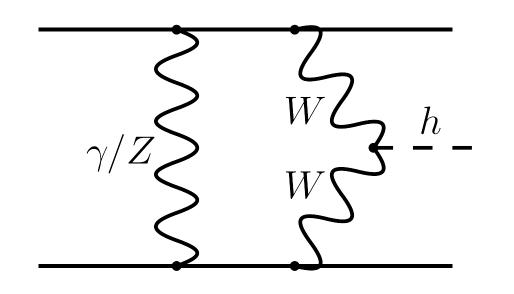
Where to search for 2HDM?

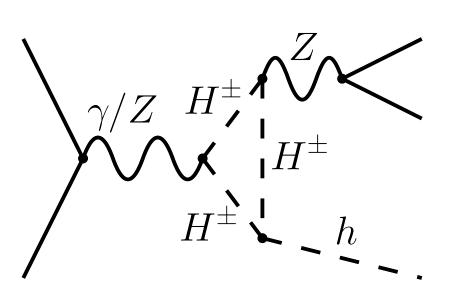
• Indirect search in Higgs production at e^+e^- colliders, as direct search at the LHC is difficult

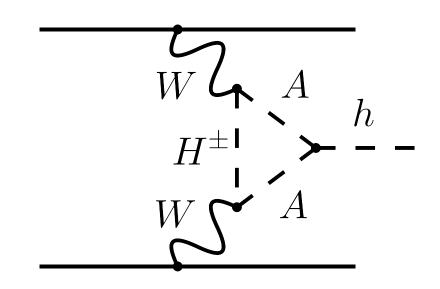
Electroweak (EW) corrections can enhance new physics signals

Different 2HDM models can yield similar signals at NLO EW in Higgs production

 \mathbb{Z}_2 -symmetric 2HDM with CP-conserving Higgs potential contains SM Higgs h, charged H^\pm , neutral CP-


even H and CP-odd A, with additional parameters $\{c_{\beta\alpha}\ t_{\beta},\ \lambda_5,\ m_H,\ m_A,\ m_{H^\pm}\}$


$$c_{\beta\alpha} \equiv \cos(\beta - \alpha)$$
: control h - H mixing


 $t_{\beta} \equiv \tan(\beta)$: ratio between two vevs λ_5 : scalar self-coupling

Higgs plus neutrino-pair production $e^+e^- \to h \nu \bar{\nu}$

- $e^+e^- \to Zh$ is well-studied at full NLO EW in 2HDM and SUSY [Aiko, Kanemura, Mawatari, 21'; Anisha, Arco, Di Noi, Englert, Mühlleitner, 25'; Heinemeyer, Paßehr, Schappacher, 25']
- $e^+e^- \to h\, \nu \bar{\nu}$ is major Higgs production at $\sqrt{s} > 500$ GeV, and $\sim 50\,\%$ of Zh cross section at $\sqrt{s} = 365$ GeV, but much larger than Zh-mediated $e^+e^- \to h\,\ell\bar{\ell}$
- No full NLO EW BSM study for $e^+e^- \to h \nu \bar{\nu}$ before [arXiv: 2509.05421]

Computational framework

Widely-used one-loop amplitude provider in NNLO community

Buccioni, Lang, Lindert, Maierhöfer, Pozzorini, **Zhang**, Zoller Eur.Phys.J.C 79 (2019) 10, 866

OpenLoops algorithm + On-the-fly reduction + analytic expansion (+ rational terms)

General-purpose Monte Carlo generator

Kilian, Ohl, Reuter Eur.Phys.J.C 71 (2011) 1742 One-loop amplitude provider with BSM models



Denner, Lang, Uccirati Comput.Phys.Commun. 224 (2018) 346-361

Computational framework

Widely-used one-loop amplitude provider in NNLO community

General-purpose Monte Carlo generator

Kilian, Ohl, Reuter Eur.Phys.J.C 71 (2011) 1742 One-loop amplitude provider with BSM models

Denner, Lang, Uccirati Comput.Phys.Commun. 224 (2018) 346-361

OpenLoops algorithm + On-the-fly reduction + analytic expansion (+ rational terms)

Buccioni, Lang, Lindert, Maierhöfer, Pozzorini, Zhang, Zoller

Eur. Phys. J. C 79 (2019) 10, 866

For this study $e^+e^- \to h\,\nu\bar{\nu}$:

FKS subtraction

Massive electron beam set up

ISR effect is included in NLO real corrections

ISR beyond NLO is $\sim 0.2\,\%$ for $\sqrt{s} \geq 365$ GeV

Cross checks to [Denner, Dittmaier, Roth, Weber, 03'] for $e^+e^- \to h\,\nu\bar{\nu}$ in SM to HAWK [Denner, Dittmaier, Kallwait, Mück, 14'] for $pp \to h\,\mu^+\nu_\mu$ in 2HDM

Computational framework

Widely-used one-loop amplitude provider in NNLO community

General-purpose Monte Carlo generator

Whizard

Kilian, Ohl, Reuter

Eur.Phys.J.C 71 (2011) 1742

with BSM models

Recola2

One-loop amplitude provider

Buccioni, Lang, Lindert, Maierhöfer, Pozzorini, **Zhang**, Zoller Eur.Phys.J.C 79 (2019) 10, 866

OpenLoops algorithm + On-the-fly reduction + analytic expansion (+ rational terms)

Highly efficient and precise one-loop provider in QCD and EW @ (N)NLO

BSM support: 2HDM and HiggsPO at LHC

Rational terms at two loops

Pozzorini, **Zhang**, Zoller, <u>JHEP 05 (2020) 077</u>

Denner, Lang, Uccirati Comput.Phys.Commun. 224 (2018) 346-361

Support SM and BSM models at NLO e.g. 2HDM, HEFT,
Higgs singlet and triplet extension

Greljo, Isidori, Lindert, Marzocca, **Zhang** Eur.Phys.J.C 77 (2017) 12, 838

Extensively used in, e.g.

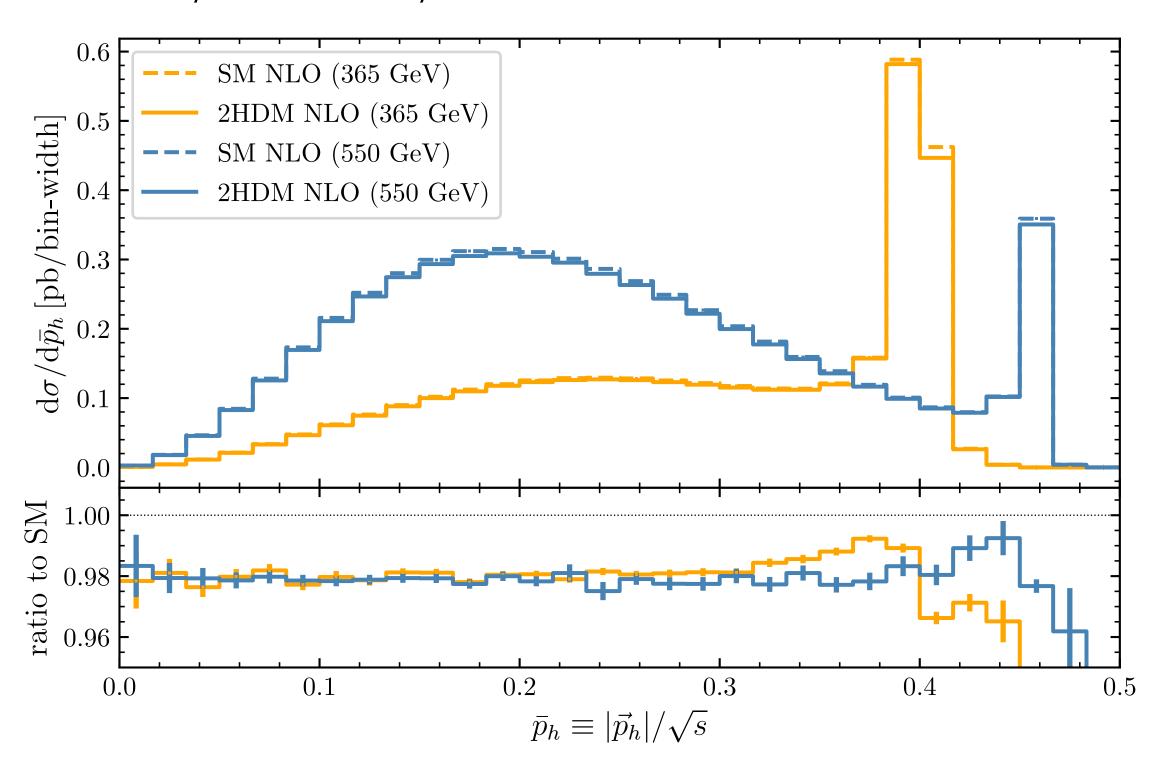
MATRIX

NNLOJET collaboration arXiv: 2503.22804

See talk by Xuan Chen

Total and differential cross sections (benchmark)

[Bredt, Banno, Höfer, Iguro, Kilian, Ma, Reuter, Zhang, arXiv: 2509.05421]


Type I 2HDM

Benchmark point: $m_H = m_{H^\pm} = 400$ GeV, $m_A = 435$ GeV, $c_{\beta\alpha} = 0.037$, $t_{\beta} = 1.88$, $\lambda_5 = -2.54$

	$\sqrt{s} = 365 \mathrm{GeV}$		$\sqrt{s} = 550 \mathrm{GeV}$	
	LO [fb]	NLO EW [fb]	LO [fb]	NLO EW [fb]
\overline{SM}	55.79	52.44(1)	97.82(1)	88.45(2)
2HDM	55.71	51.45(1)	97.67(1)	86.59(2)
Rel.Diff.	-0.1%	-1.9%	-0.2%	-2.1%
2HDM (aligned)	55.79	51.58(1)	97.81(1)	86.83(2)
Rel.Diff.	0.0%	-1.7%	0.0%	-1.8%

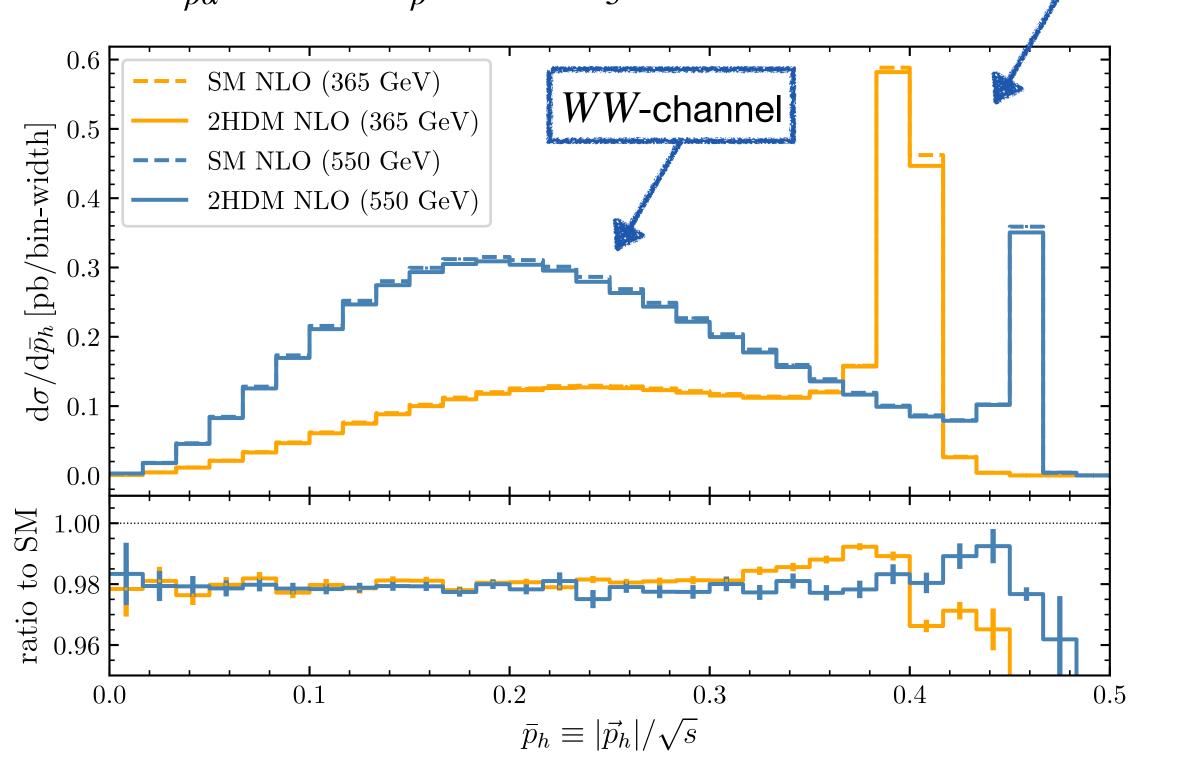
Total cross sections for $e^+e^-\to h\,\nu\bar\nu$ in SM and 2DHM benchmark without cuts. Alignment limit is $\cos(\beta-\alpha)=0$

Sizable NLO effects even in alignment limit

Differential cross sections at NLO as a function of normalised Higgs three-momentum

Total and differential cross sections (benchmark)

[Bredt, Banno, Höfer, Iguro, Kilian, Ma, Reuter, Zhang, arXiv: 2509.05421]


Type I 2HDM

Benchmark point: $m_H = m_{H^\pm} = 400$ GeV, $m_A = 435$ GeV, $c_{\beta\alpha} = 0.037$, $t_\beta = 1.88$, $\lambda_5 = -2.54$

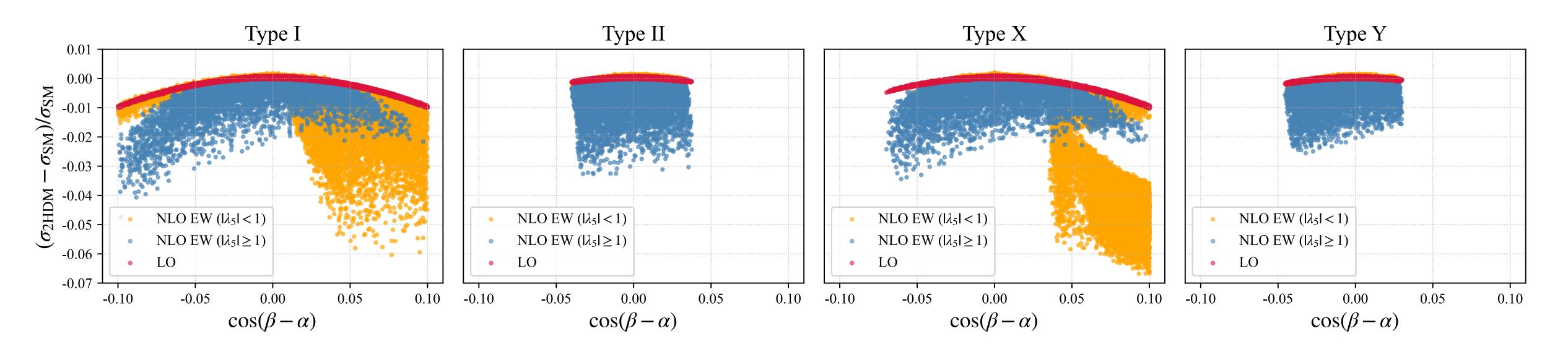
	$\sqrt{s} = 365 \mathrm{GeV}$		$\sqrt{s} = 550 \mathrm{GeV}$	
	LO [fb]	NLO EW [fb]	LO [fb]	NLO EW [fb]
SM	55.79	52.44(1)	97.82(1)	88.45(2)
2HDM	55.71	51.45(1)	97.67(1)	86.59(2)
Rel.Diff.	-0.1%	-1.9%	-0.2%	-2.1%
2HDM (aligned)	55.79	51.58(1)	97.81(1)	86.83(2)
Rel.Diff.	0.0%	-1.7%	0.0%	-1.8%

Total cross sections for $e^+e^-\to h\,\nu\bar\nu$ in SM and 2DHM benchmark without cuts. Alignment limit is $\cos(\beta-\alpha)=0$

Sizable NLO effects even in alignment limit

Differential cross sections at NLO as a function of normalised Higgs three-momentum

Disentangle Zh and WW channels, allow simultaneous probes

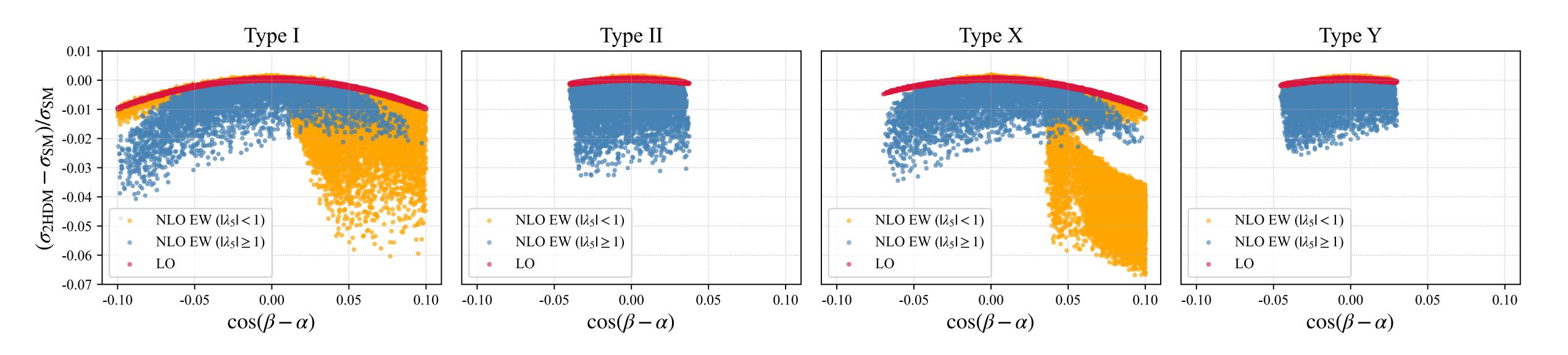

Zh-channel

Comprehensive sensitivity analysis at $\sqrt{s} = 365$ GeV

[Bredt, Banno, Höfer, Iguro, Kilian, Ma, Reuter, Zhang, arXiv: 2509.05421]

160 000 allowed parameter points from ScannerS and HiggsTools (assuming $m_{\phi} \equiv m_H = m_{H^\pm} = m_A$) for type I, II, X, Y 2HDMs

Theory uncertainty in $(\sigma_{\rm 2HDM}-\sigma_{\rm SM})$ is estimated to 0.7~% Reference scheme: G_μ for SM, on-shell for 2HDM mixing angles, $\overline{\rm MS}$ for λ_5


Relative differences between 2HDM and SM predictions in $c_{\beta\alpha}$ -plane at $\sqrt{s}=365$ GeV at LO (red) and NLO (orange for $|\lambda_5|<1$, blue for $|\lambda_5|>1$) A combined (th+exp) uncertainty is estimated to be $0.92\,\%$

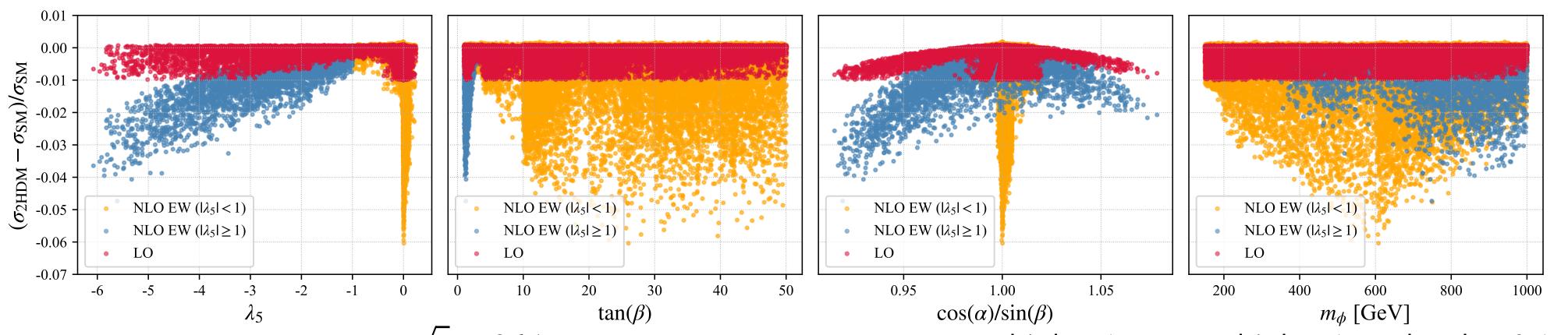
Comprehensive sensitivity analysis at $\sqrt{s} = 365$ GeV

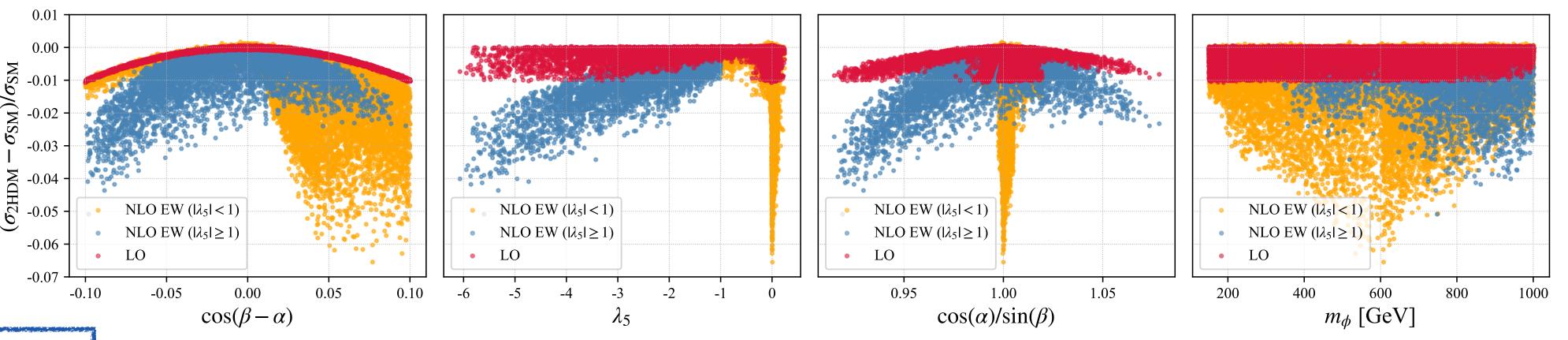
[Bredt, Banno, Höfer, Iguro, Kilian, Ma, Reuter, Zhang, arXiv: 2509.05421]

160 000 allowed parameter points from ScannerS and HiggsTools (assuming $m_\phi \equiv m_H = m_{H^\pm} = m_A$) for type I, II, X, Y 2HDMs

Theory uncertainty in $(\sigma_{\rm 2HDM}-\sigma_{\rm SM})$ is estimated to $0.7\,\%$ Reference scheme: G_{μ} for SM, on-shell for 2HDM mixing angles, $\overline{\rm MS}$ for λ_5

Relative differences between 2HDM and SM predictions in $c_{\beta\alpha}$ -plane at $\sqrt{s}=365$ GeV at LO (red) and NLO (orange for $|\lambda_5|<1$, blue for $|\lambda_5|>1$) A combined (th+exp) uncertainty is estimated to be $0.92\,\%$


QCD corrections beyond NLO EW in G_μ scheme are small [Wang, Yang, Zhou, 21; Sun, Feng Jia, Sang, 17'] ISR effect beyond NLO is small [Denner, Dittmaier, Roth, Weber, 03'] Missing SM higher-order corrections do not contribute to theory uncertainty in $(\sigma_{
m 2HDM}-\sigma_{
m SM})$



Comprehensive sensitivity analysis at $\sqrt{s} = 365$ and 550 GeV

[Bredt, Banno, Höfer, Iguro, Kilian, Ma, Reuter, Zhang, arXiv: 2509.05421]

Type I 2HDM predictions at $\sqrt{s}=365$ GeV at LO (red) and NLO (orange for $|\lambda_5|<1$, blue for $|\lambda_5|>1$) for $|c_{\beta\alpha}|<0.1$ A combined (th+exp) uncertainty is estimated to be $0.92\,\%$

 $\sqrt{s} = 550$ GeV case is slightly pronounced in sensitivity but cross sections are larger

Type I 2HDM predictions at $\sqrt{s}=550$ GeV. A combined (th+exp) uncertainty is estimated to be $0.85\,\%$

Summary

Precision can discover new physics!

- Precision BSM phenomenology at e^+e^- colliders [arXiv: 2509.05421]
 - EW corrections are powerful probe to explore extended Higgs sector (in $e^+e^- \to h \nu \bar{\nu}$)
 - Observe several-percent NLO-enhanced difference (up to $6 \sim 7 \% > 5\sigma$) between 2HDM and SM cross sections, even in alignment limit (up to $2 \sim 3 \% > 2\sigma$)
 - Highlight discovery potential of precision studies at e^+e^- colliders for new physics searches