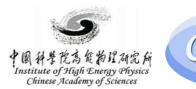

ASIC LATRIC


A Low-Power Timing Chip Prototype for Strip LGAD Readout

Chuanye Wang^{1,3}, Xiongbo Yan^{1,2}, Xiaoting Li^{1,2}

Jingbo Ye^{1,2}, Lei Zhang³

¹Institute of High Energy Physics Chinese Academy of Sciences, ²School of Physical Sciences, University of Chinese Academy of Sciences, ³NanJing University

Electronics

Outline

- **□** Introduction
- ☐ Circuit design
- **□** Test results
- **□** Conclusion

Introduction

♦ OTK

- ➤ The outermost detector of the tracking system in the reference detector of the CEPC;
- ➤ Uses AC-LGAD microstrip sensors;
- \triangleright Provides both high spatial resolution (10 µm) and high time resolution (50 ps).

♦ LATRIC

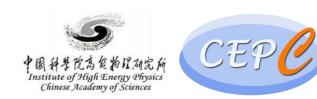

- ➤ A 128-channel timing chip for LGAD readout;
- > Requirement:
 - High time resolution (30ps) & self-calibration;
 - 100-µm channel height to match the pitch of strip LGAD;
 - Low power consumption for thermal management (strip capacitance leading to power consumption issues).

Fig 1. Layout of the Silicon tracker

OTK Barrel

- LATRICO (single-channel, April, 2025)
- LATRIC1 (8-channel, October, 2025)

◆Architecture

- > Front-End (FE)
 - An amplification and a discrimination.
- > TDC core
 - Timing controller;
 - Event-Driven RO & Quantization logic;
 - Encoder.
- > Output logic
 - Output the Measured CAL, TOT, TOA codes;
 - 128-bit Serializer for 111-bit raw data;
 - 40-bit Serializer for 36-bit encoded data;

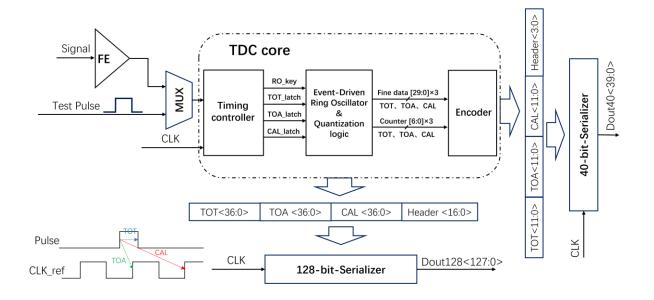
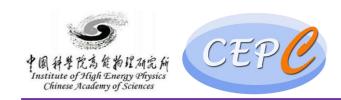



Fig 2. The overall block diagram

■ Self-calibration

- \triangleright An additional period of CLK_ref is measured for calibration: LSB _{Cal} = T _{CLK_ref} / (CAL _{code} TOA _{code});
- ightharpoonup TOA _{time} = LSB _{Cal} * TOA _{code};
- \rightarrow TOT _{time} = LSB _{Cal} * TOT _{code}.

- > RO & Quantization logic
 - The RO employs 15 NAND-based delay cells, each providing an average delay of about 30 ps;
 - The 15 S2D converters transform both the rising and falling edges into **differential** signals for the three groups of SR latches;
 - The **symmetric** structure of SR latch ensures a consistent response to both rising and falling edges from the delay cells.

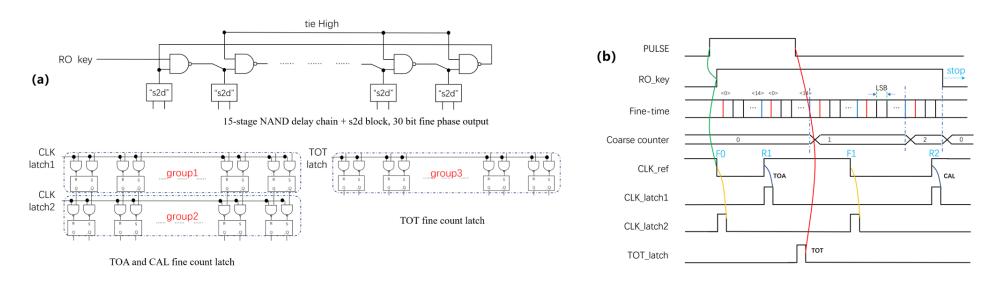
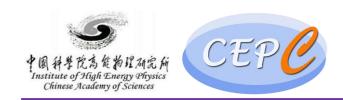



Fig 3. (a) Event-Driven RO & Quantization logic; (b) Quantization timing

- > Controller
 - PULSE signal reception;
 - Reference clock, RO control; latch signal generation.
- Quantization timing
 - 1. When the leading edge of the PULSE signal arrives, the RO is activated, the CLK_ref is enabled, coarse count starts;
 - 2. The first rising edge (R1) of CLK_ref generates the CLK_latch1, which captures the TOA information in the latch group1;

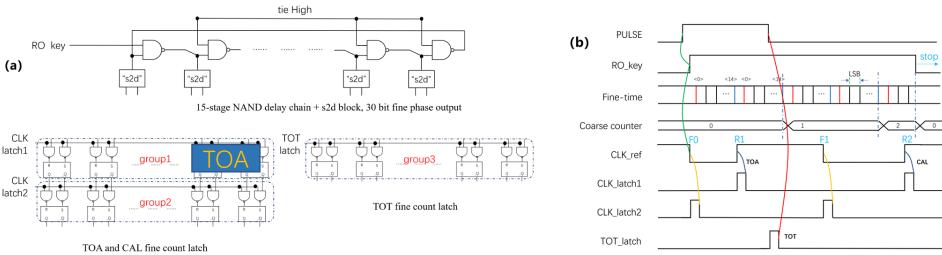



Fig 3. (a) Event-Driven RO & Quantization logic; (b) Quantization timing

- Quantization timing
 - 3. The falling edge (F1) generates CLK_latch2, transferring the TOA codes to the latch group2;
 - 4. The rising edge (R2) of CLK_ref generates the second CLK_latch1 pulse, which latches the CAL information into the latch group1, overwriting the previous TOA codes;
 - 5. The trailing edge of the PULSE signal generates the TOT_latch signal to capture the TOT information in the latch group3;

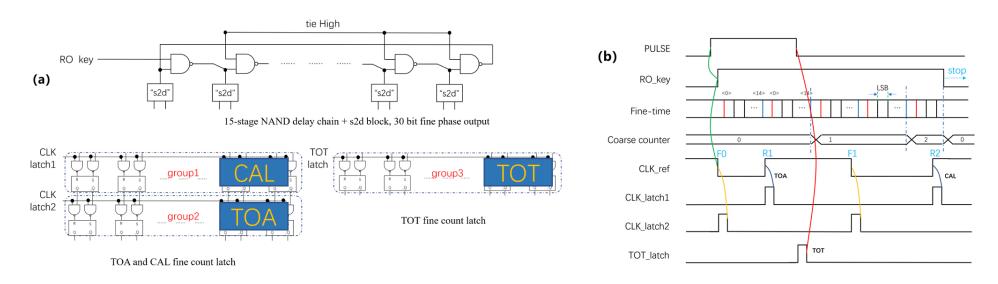
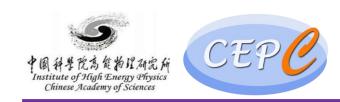



Fig 3. (a) Event-Driven RO & Quantization logic; (b) Quantization timing

- Quantization timing
 - 6. After all the three measurements, RO_key is pulled low, stopping and resetting the RO, clearing the coarse counter, and returning the CLK_ref to high state.
 - 7. The TOA, TOT, CAL value will be held in the three groups of latches, until the next event occurs. (In the LATRIC1, these value will be latched into *Event builder* when RO_key is pulled down.)

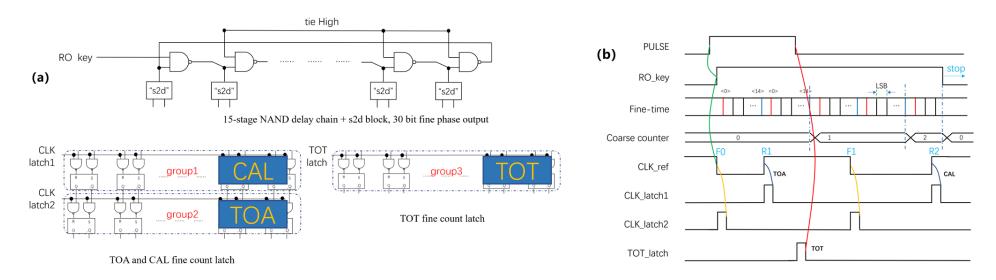
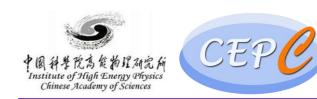
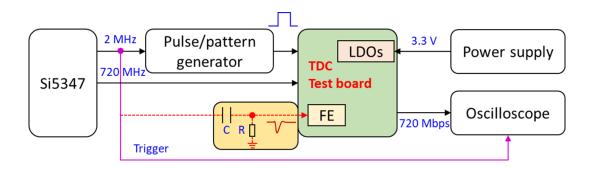



Fig 3. (a) Event-Driven RO & Quantization logic; (b) Quantization timing


■ Test Setup

> Test-pulse mode

- A 720-MHz clock (Si5347) for both serializer and TDC. Inside the TDC, the 720-MHz clock is divided down to 18 MHz and used as the reference clock for TOA measurement.
- A 2-MHz clock (Si5347) to trigger a pulse/pattern generator (81130A). Both the pulse width and relative delay of pulse signal are independently adjustable. This function enables scanning of TOT and TOA transfer curves;
- The measured standard deviation is 15.8 ps for the pulse width and 14.2 ps for the relative delay.
- The averaged and rounded TDC output code from repeated measurements are used to plot the transfer curve.

> FE-mode

• For functional verification of the FE-TDC integration, a passive RC differential circuit is used to generate an analog signal as input of FE.

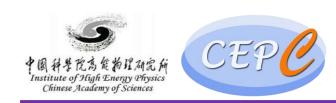



Fig 3. Test setup

■ Timing performance (test-pulse mode)

- \triangleright The TOA DNL and INL without FE are measured less than \pm 1 LSB;
- \triangleright LSB _{toa} \approx 31.1 ps;
- \triangleright The TOT DNL and INL without FE are measured less than \pm 1 LSB;
- \triangleright LSB _{tot} $\approx 31.0 \text{ ps}$;
- \triangleright LSB _{cal} \approx 31.1ps;
- These three LSB are very close, indicating the effectiveness of the self-calibration.

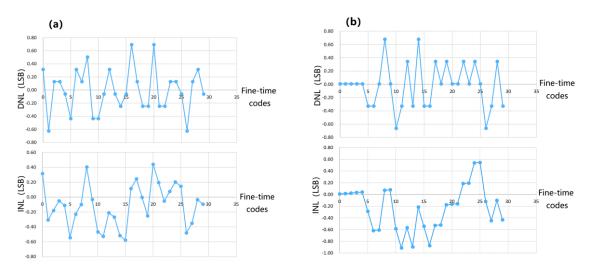
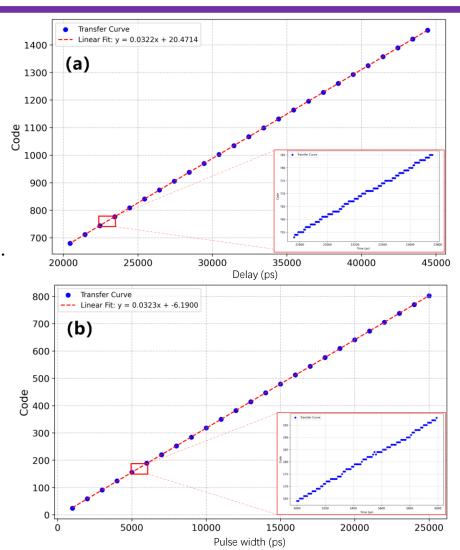
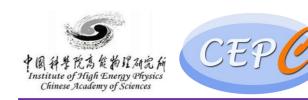
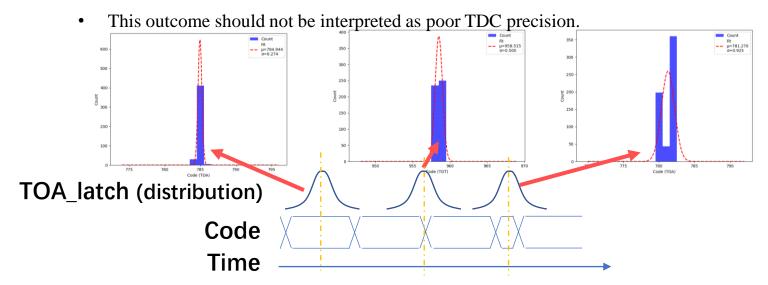


Fig 4. DNL & INL of: (a) TOA; (b) TOT


Fig 5. Measured transfer curves of: (a) TOA; (b) TOT

Timing performance (test-pulse mode)

- Figure 6 shows the distribution of the standard deviation of TOA from multiple measurements, obtained without removing the influence of the signal source ($\sigma = \frac{8}{5}$ 770 14.2 ps, The relative magnitude between σ and the code width significantly dictates the statistical results).
- ➤ The standard deviation for the most of delay values is better than 0.5 LSB;
- ➤ The standard deviation of a few points is significantly greater than 0.5 LSB:
 - These points correspond to the regions with smaller code width in the transfer curve.
 - The jitter of the signal introduces a larger influence when the code width is smaller.

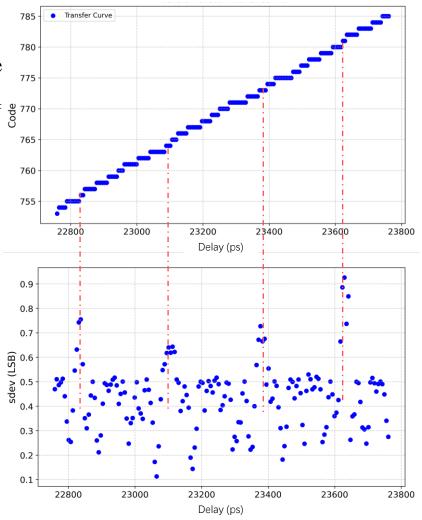
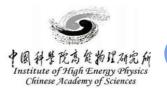
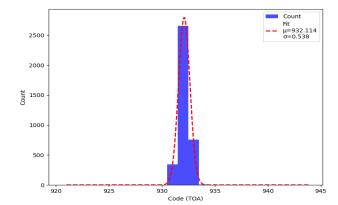



Fig.6 The standard deviation of repeated measurement corresponding to the transfer curve 1.

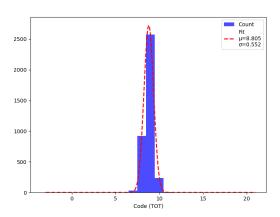
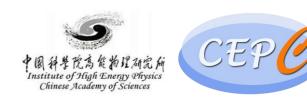

■ Timing performance (FE-mode)

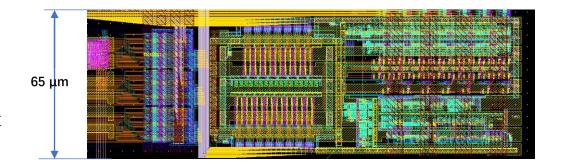
- > To perform functional verification of the FE-TDC integration (Futher test with LGAD is ongoing).
- Figure 7 shows the FE-TOA and FE-TOT distributions for a 13.0 mV input signal.
- ➤ Preliminary results indicate standard deviations of less than 0.9 LSB and 1.1 LSB, respectively.

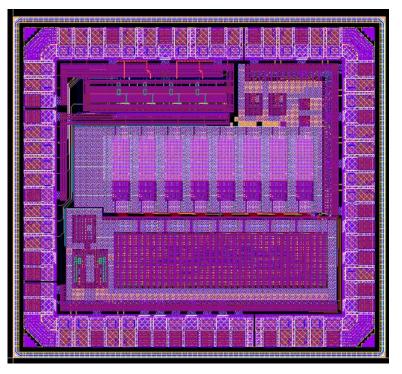
Power consumption

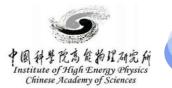
- \triangleright The FE consumes 4.9 mA (1.2V).
- ➤ The power consumption of the TDC core varies with event rate.
- ➤ The total power consumption is measured to be 6.24 mW at an event rate of 1 MHz.

Blocks	Event rate	Operating current
TDC part	2 MHz	~ 0.5 mA
	1 MHz	~ 0.3 mA
	500 kHz	~ 0.1 mA
Pre-amplifier		~4.9 mA

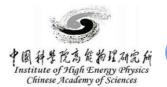

Fig.7 The statistical standard deviation corresponding to the transfer curve


Conclusion



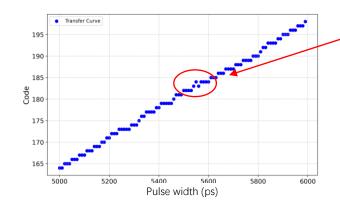
- Successful integration of FE and TDC in LATRIC0
- High timing precision with low power consumption
- Effective self-calibration with consistent LSB values
- Meets CEPC requirements for OTK readout, including the height constrain of layout.

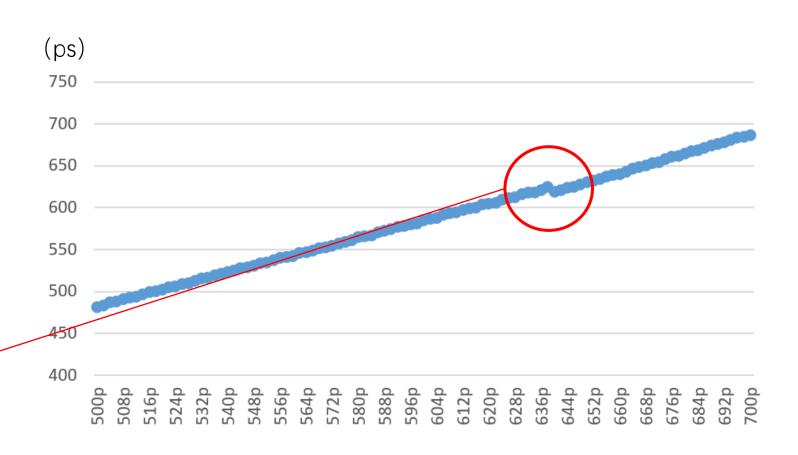
- Submitted for tape-out in October
 - ➤ 8 channels TDC; 4 channels with front end;
 - ➤ Increase the gain of preamplifier;
 - Improve the encoder logic;
 - ➤ Add event builder and timestamp;
 - > 100 μm channel pitch match the LGAD.



Thank you!

2025/11/8





Conclusion

- The figure shows the transfer curve between the set pulse width and the measured pulse width of signal generator.
- The nonlinearity at the marked region may cause a jump in the TOT transfer curve.

2025/11/8