

Measurement of the Forward-Backward Asymmetry in $e^+e^- \rightarrow \mu^+\mu^-$ at CEPC Z Pole with the TDR Reference Detector

Shou Han ¹, <u>Jiawei Wan</u> ², Lei Zhang ²

1- IHEP
2- Nanjing University

Introduction

- The ee $\rightarrow \mu\mu$ channel at Z pole is the simplest channel at CEPC, and can be utilized to verify the basic performance of CEPC software.
- $\triangleright \theta_w$ (electroweak mixing angle) determines the value of A_{FB} (forward-backward asymmetry).
- \triangleright The measurement A_{FB} of ee \rightarrow Z/ $\gamma^*\rightarrow\mu\mu$ provides a precise verification of the θ_w .
- The A_{FB} is defined by the angle θ_{CM} between the final-state μ^- and the initial-state e⁻ in the dilepton center-of-mass frame.

$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta} = \frac{3}{8} (1 + \cos^2\theta) + A_{FB} \cos\theta$$

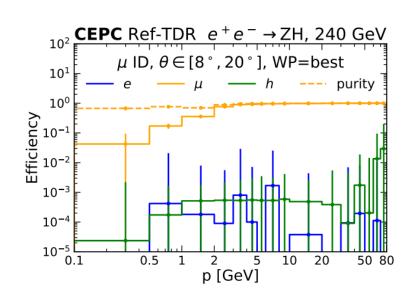
Other experimental results

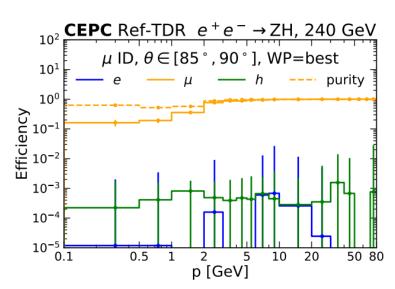
➤ LEP Result

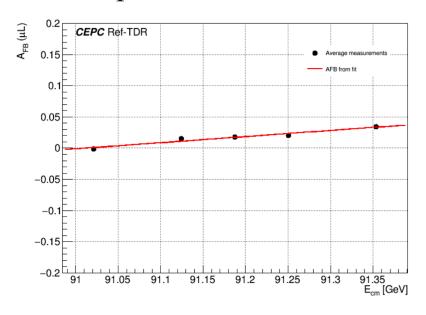
The combination of LEP measurements yields a value of $A_{FB} = 0.0169 \pm 0.0013$ in the $\mu^+ \mu^-$ channel.

(arXiv:0509008v3 figure2.13)

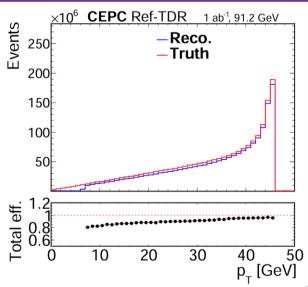
- > FCC-ee Prediction
 - Statistical uncertainty : 3×10^{-6} (Base on 10^{11} muon pairs)
 - Energy spread uncertainty : 9.2×10^{-6} (Assume $\Delta E_{cm} = 0.1 \text{MeV}$)
 - Total uncertainty : 1×10^{-5}

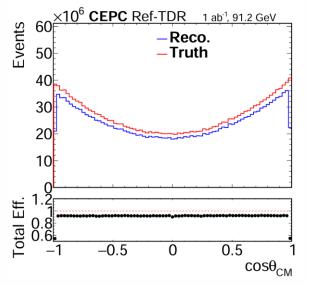

(arXiv:2106.13885v2 table3)




Sample production

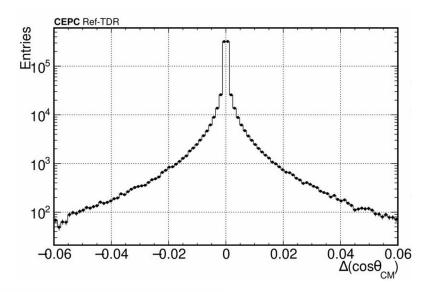
- \triangleright ee \rightarrow µµ events are simulated with Whizard + Phythia at LO and Z pole energy.
- The simulation includes the Z/γ^* interference along with ISR and FSR effects, and incorporates the beam energy spread of 0.13% at the Z pole.
- > Process the sample into with the detector ref-TDR version of the CEPC software.
- A XGBoost classifier was developed for muon ID, with excellent performance.




The event selection and cutflow

- $ightharpoonup P_T > 1 \text{GeV and } |\cos\theta| < 0.99$
- Reco-level selection for a pair of opposite charge muons from Z with muon ID.
- \triangleright Selection in a ± 10 GeV Z mass window.
- $A |\cos\theta| > 0.05$ cut to reduce muon misidentification.

	$e^+e^- \rightarrow \mu^+\mu^-$	$e^+e^- \rightarrow \tau^+\tau^-$	$e^+e^- o b\bar{b}$	$e^+e^- \rightarrow e^+e^-$
Cross section	1.5 nb	1.5 nb	6.7 nb	6.6 nb
Simulated events	982476	185855	44550	32397
A pair of muons	967262	5135	1035	0
Z mass window	903640	5	0	0
$Muon \cos(\theta) > 0.05$	869450 (88.5%)	5 (0.003%)	0 (<0.002%)	0 (<0.003%)



The Calculation of $A_{FB}(\mu)$ counting Method

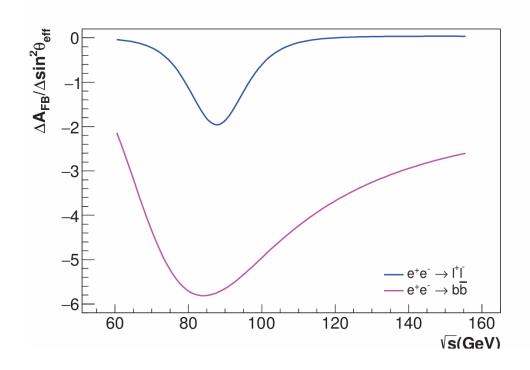
- Forward and backward events are classified by the angle θ_{CM} of the μ^- , which is reconstructed in the CM frame.
- $\triangleright \Delta \theta_{CM}$ is a function of both the energy and angular resolution of the PFO.
- The observed $A_{FB}(\mu)$ measured using PFO is corrected back to the full phase space.

	No selection	After selections	Using PFO
Forward $(\cos(\theta_{CM}) > 0)$	499136	442727	442723
Backward ($\cos(\theta_{CM}) < 0$)	483340	426723	426727
A^{μ}_{FR} or A^{obs}_{FR}	0.016078	0.018407	0.018398
A_{FB}^{μ} or A_{FB}^{obs} A_{FB}^{μ} after a phase space correction	N/A	0.016078	0.016070

Discussion of uncertainties

- Statistical uncertainties One-month run: 1.34 billion muon pairs $(4 \times 10^{10} \text{ Z bosons})$, 3.1×10^{-5} statistical uncertainty.
- > Systematic uncertainties
 - Muon mis-identification: Impact of selecting incorrect PFO pairs is negligible.
 - Background: Uncertainty measured as 1×10^{-6} from background contamination.
 - Detector acceptance & resolution: Uncertainty estimated to be 9×10^{-6} for $|cos\theta_{\mu^-}|$ and $p_T^{\mu^-}$.
 - Beam energy spread: Uncertainty of 1×10^{-6} from 0.13%-0.14% Gaussian spread.
 - Beam energy calibration: Dominant uncertainty of 2.7×10⁻⁵ from 300 keV calibration uncertainty.

Summary



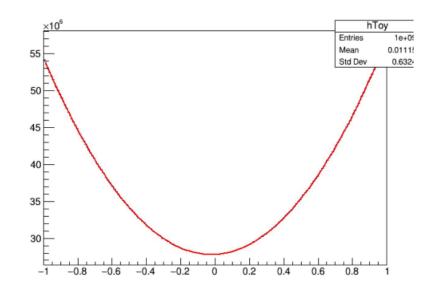
- $\triangleright \Delta A_{FB}(\mu)$: ± 0.000031 (stat.) ± 0.000028 (syst.) @ 1 ab⁻¹
- \triangleright Orders of magnitude improvement with respect to LEP (± 0.0014)
- \triangleright Comparable with FCC-ee (total uncertainty ± 0.00001 @ 60 ab⁻¹)
- A 300 keV assumption for the beam energy calibration, compared with 100 keV at FCC-ee.
- This is the first time that $A_{FB}(\mu)$ measurements have been conducted based on the TDR software and detailed systematic error analysis.
- ➤ We will conduct more measurements on the properties of Z boson and the final states of Z decays.

Backup

arXiv:2204.09921v2

FIG. 3: The sensitivity of $S = \partial A_{FB}/\partial \sin^2 \theta_{\text{eff}}^{\ell}$ as a function of \sqrt{s} for $e^+e^- \to Z/\gamma^* \to \ell^+\ell^-$ and $e^+e^- \to Z/\gamma^* \to b\bar{b}$ productions.

Backup



Fitting the costheta distribution

$$\sigma_F = \int_0^1 \frac{d\sigma}{d\cos\theta} d\cos\theta \quad \sigma_B = \int_{-1}^0 \frac{d\sigma}{d\cos\theta} d\cos\theta \quad (9)$$

and $cos\theta$ is the angle of the outgoing fermion measured relative to the incident electron direction. The experiments determine A_{FB} from fits to the angular distribution which can be written as

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta} = \frac{3}{8} \left(1 + \cos^2\theta \right) + A_{FB} \cos\theta \tag{10}$$

- Set costheta function = [0]*(1 + [1]*x + x*x), where [1] = 8/3 * A_FB
- Tested with a toy with 10⁹ events, based on the 1M MC sample in analysis
 - Input AFB = 0.016736
 - Fitted AFB = 0.016732±0.0000296
 - Counting AFB = 0.016736 ± 0.0000316
- The results are consistent, however, the statistic error didn't' significantly reduced and it's hard to estimate systematics with fitting method, so it's only a verification

Backup

$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$

where

$$\sigma_F = \int_0^1 \frac{d\sigma}{d\cos\theta} d\cos\theta \quad \sigma_B = \int_{-1}^0 \frac{d\sigma}{d\cos\theta} d\cos\theta \quad (9)$$

and $cos\theta$ is the angle of the outgoing fermion measured relative to the incident electron direction. The experiments determine A_{FB} from fits to the angular distribution which can be written as

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta} = \frac{3}{8} \left(1 + \cos^2\theta \right) + A_{FB} \cos\theta \tag{10}$$

At the Z^0 pole, ignoring the γ and γZ interference terms, we can write

$$A_{FB}^{0,l} = \frac{3}{4} A_e A_l \tag{11}$$

where the lepton asymmetries are defined by

$$A_l \equiv \frac{2g_v^l g_a^l}{((g_v^l)^2 + (g_a^l)^2)} \tag{12}$$

with g_v^l and g_a^l being the vector and axial-vector coupling constants.

$$sin^2 \theta_w^{eff} = \frac{1}{4} \left(1 - \frac{g_v}{g_a} \right). \tag{6}$$

$$A_{FB}^{0,l} = rac{3}{4} (A_l)^2 \propto \left(rac{1 - 4 \sin^2 heta_w^{eff}}{(1 - 4 \sin^2 heta_w^{eff})^2 + 1}
ight)^2$$

https://doi.org/10.1016/S0920-5632(99)00392-8