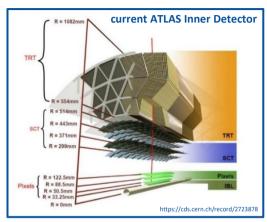
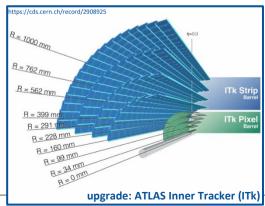


SERIAL POWERING AND ITS IMPLEMENTATION IN THE ATLAS ITK DETECTOR

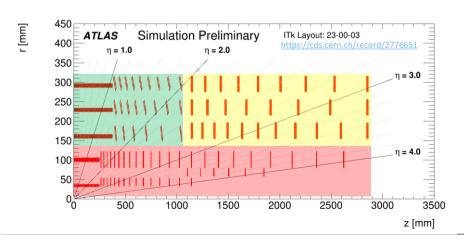
FLORIAN HINTERKEUSER FOR THE ATLAS COLLABORATION

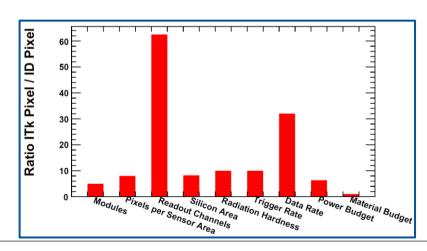

OUTLINE


- Introduction to the ITk Pixel Detector
- Implementation of serial powering (SP) in ITk Pixels
 - ITk pixel modules
 - HV distribution in the ATLAS ITk Pixel Detector
 - Data transmission and monitoring
 - Grounding & shielding

INTRODUCTION TO ITK PIXEL

- ATLAS Inner Detector to be replaced by an all-silicon tracker (ITk) for HL-LHC
- Outermost 4 layers: silicon strip sensors
- Inner 5 layers: Hybrid pixel modules in
 - Layer 0: 3D pixel sensors
 - Layer 1: 100μm & 150μm planar pixel sensors
 - Layer 1-4: 150μm planer pixel sensors

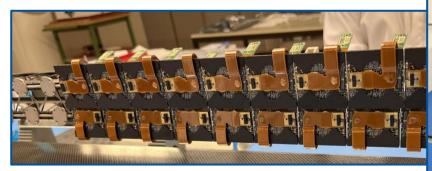


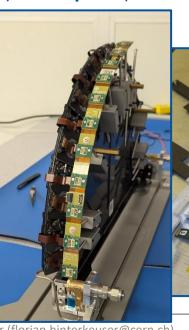


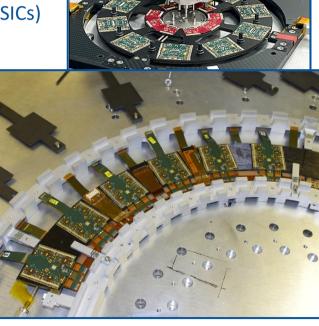
INTRODUCTION TO ITK PIXEL

- Approx. 8500 modules with ~33000 readout ASICs, each with a 384x400 matrix of 50x50μm² pixels → ~13 m² of active silicon
- Roughly **6-10** μ W total power dissipation per pixel
 - > **Total power** budget of **120 kW**, including ASICs, sensors, services

INTRODUCTION TO ITK PIXEL

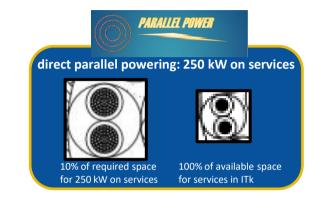

Layout determines key design parameters:

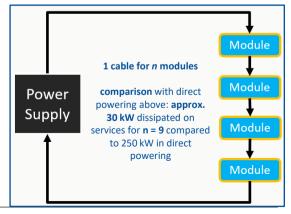

- 2 flavours of modules: quads (2x2 ASICs) and triplets (3x1 ASICs)


13 different flavours of local supports

- "Smallest" flavour: 8 triplets

- "Largest" flavour: 36 quads



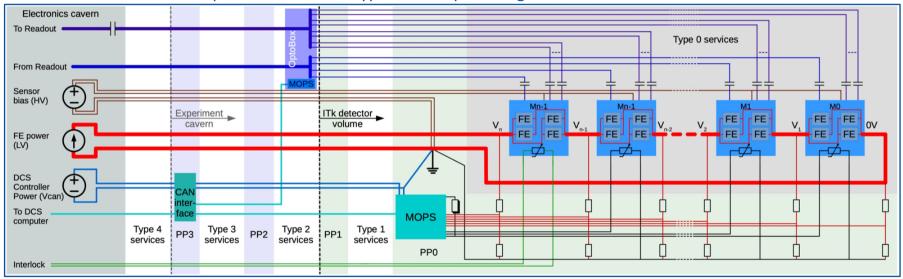


POWERING THE ITK PIXEL DETECTOR

- Upgraded pixel detector for ATLAS (and CMS)
 - Significantly more modules than their predecessors
 - **Significantly more pixels** per area than their predecessors
 - **Similar services volume** as their predecessors
- **Currently used parallel powering scheme is not feasible**
 - Assuming 1.25A per readout ASIC and AWG14 cables to supply power: 250 kW on services vs. 70 kW delivered power (~20% efficiency)
 - Incompatible with spatial constraints and cooling budget

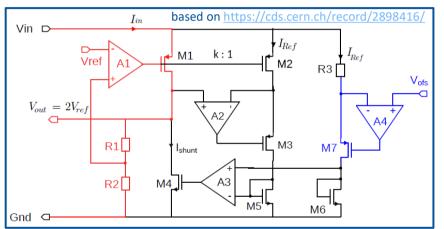
POWERING THE ITK PIXEL DETECTOR

- Upgraded pixel detector for ATLAS (and CMS)
 - Significantly more modules than their predecessors
 - Significantly more pixels per area than their predecessors
 - **Similar services volume** as their predecessors
- **Currently used parallel powering scheme is not feasible**
 - Assuming 1.25A per readout ASIC and AWG14 cables to supply power: 250 kW on services vs. 70 kW delivered power (~20% efficiency)
 - Incompatible with spatial constraints and cooling budget

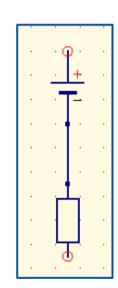

Flavour	Power Unit Type	Length	Number in ITk Pixel Detector
L0 Barrel	Linear Triplet	4	24
L0 Coupled Ring	Triplet	3	60
L0 Intermediate Ring	Triplet	5	24
L1 Barrel	Thin Quad	6	40
L1 Coupled Ring	Thin Quad	10	60
L1 Quad Ring	Thin Quad	10	32
L2 Barrel	Thick Quad	6	32
L2 Dailei	Tillek Quad	12	32
L2 Incl. Half-Ring	Thick Quad	8	48
L3 Barrel	Thick Quad	6	44
L3 Dallel	Tillek Quad	12	44
L3 Incl. Half-Ring	Thick Quad	11	64
L4 Barrel	Thick Quad	6	56
L4 Dailei	Tillek Quad	12	56
L4 Incl. Half-Ring	Thick Quad	14	72
L2 Half-Ring	Thick Quad	8	88
L3 Half-Ring	Thick Quad	11	64
L4 Half-Ring	Thick Quad	13	72
ITk Pixel Detector	-	Ø 9.2	912

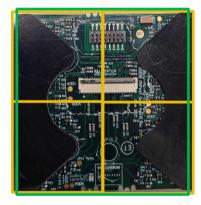
Use serial powering instead

POWERING THE ITK PIXEL DETECTOR


Example schematic of a typical serial powering chain in ITk Pixel

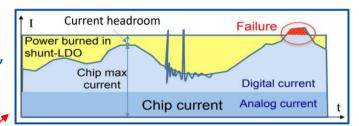


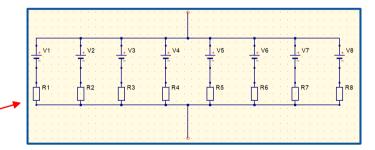

SERIAL POWERING IN ATLAS ITK SHUNT-LDO AND ITK PIXEL MODULES


$$V_{\text{in}} = V_{\text{ofs}} + R_{\text{eff}} \cdot I_{\text{in}}$$

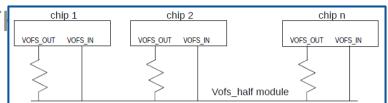
= $R_{\text{ofs}} \cdot I_{\text{ofs}} + \frac{R_3}{k+2} \cdot I_{\text{in}}$

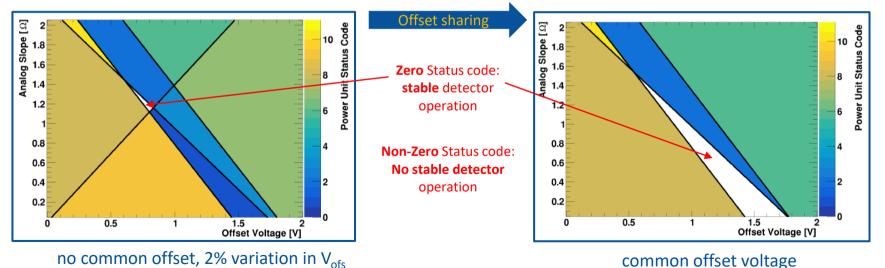
- SLDO regulator converts constant input current into a constant supply voltage for the ASIC
 - Surplus current *I_{shunt} ≥ 0 A* is drained through M₄
 - Dropout voltage V_{DO} across $M_1 \rightarrow higher V_{in}$ than VDDD/VDDA, O(0.2 V)


- ITk Pixel modules: **3 / 4 ASICs** on one module
- DC coupled sensors
 - → ASICs on module share a common "Local Module Ground"
- 2 independent SLDO regulators integrated per ASIC
 - → 6 / 8 parallel SLDOs on module
 - → **Redundancy** protects SP chain!
- Common supply line for module!
 - → Total input current?
 - → **Deal with spikes** in current drain
 - → Counter **current distribution** imbalances



Sensor Readout ASIC


- ITk Pixel modules: **3 / 4 ASICs** on one module
- DC coupled sensors
 - → ASICs on module share a common "Local Module Ground"
- 2 independent SLDO regulators integrated per ASIC
 - → 6 / 8 parallel SLDOs on module
 - → **Redundancy** protects SP chain!
- Common supply line for module!
 - → Total input current?
 - → Deal with spikes in current drain
 - → Counter **current distribution** imbalances
 - → **Headroom** significantly decreases power efficiency

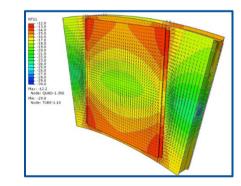


SERIAL POWERING ON T

Offset sharing

- Offset voltage generated by draining a small current through large resistor
- Can share a common offset voltage between ASICs connected in parallel

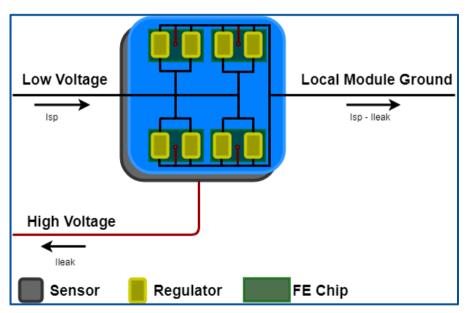
- Local power dissipation: serial powering not power efficient!
 - Up to 40% of the ASIC power dissipated in periphery (10% of ASIC area), depending on configuration state!
 - Temperature gradient on module → local current density varies on sensor, variation in per-pixel leakage current!


$$\varepsilon = \frac{P_{\text{load}}}{P_{\text{total}}}$$

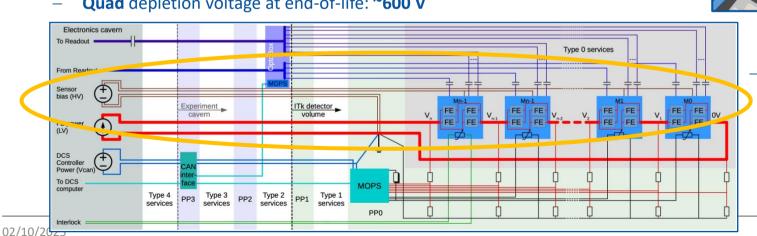
$$= \frac{V_{\text{core}} \cdot I_{\text{Load}}}{1.25V_{\text{core}} \cdot 1.2I_{\text{Load}}}$$

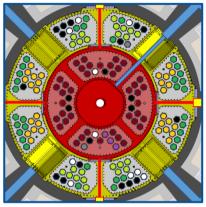
$$= 67\%.$$

Table 21: Estimated Power Distribution on the readout chip for the 2021 Power Model with a current overhead of 17%.


			Normal Operation [W/cm2]		No Configuration [W/cm2]		One FE Chip Open [W/cm2]		One FE Chip Open AND no Config [W/cm2]	
	Layer	Section	Periphery	Pixel-Matrix	Periphery	Pixel-Matrix	Periphery	Pixel-Matrix	Periphery	Pixel-Matrix
	LO	All	0.379	4.161	0.0	8.214	0.379	10.169	0.0	14.222
	L1	All	0.335	3.712	0.0	7.294	0.336	7.339	0.0	10.921
	L2-L4	All	0.289	3.411	0.0	6.502	0.289	6.648	0.0	9.739

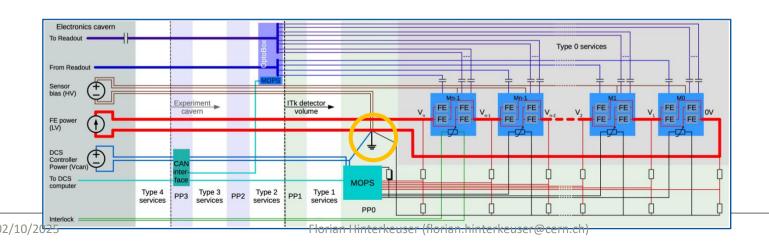
SERIAL POWERING IN ATLAS ITK HV DISTRIBUTION



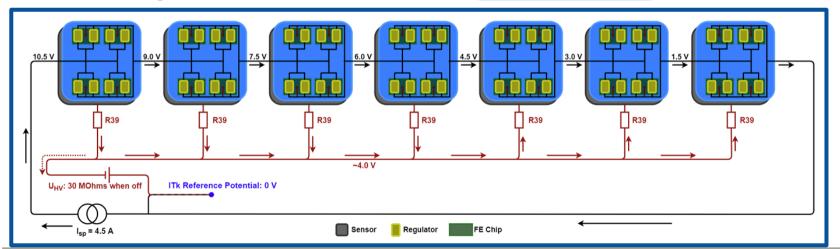


- Sensors are DC-coupled
- Majority: planar n-in-p sensors
- Negative depletion voltage applied to nonstructured side of the sensors
- Return through readout chip
- Reference potential for HV: "local module ground"

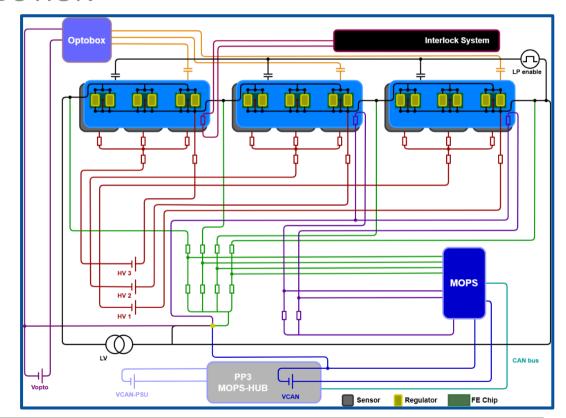
- ITk Pixel has ~8500 independent (sets of) sensors = quads or triplets
- Deploying individual HV lines: ~17000 pins required at Patch Panel 1 (no safety loops considered)
- **Total number** of pins available at PP1: **9048**
- **Need to economize HV lines** → parallel distribution to multiple modules in SP chain
 - Quad depletion voltage at start-up: ~50 V
 - Quad depletion voltage at end-of-life: ~600 V



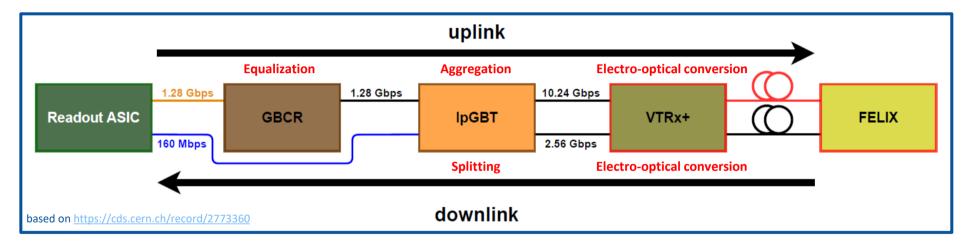
All quad SP chains have 2 HV lines, independent on the **number of** modules in that chain



- Single point of reference for the serial powering chain: the "OV-plane" on the Patch Panel 0 (on the local support)
- ATLAS G&S rules: the return line of every power supply unit must be referenced to this "0V-plane"
 - The "OV-plane" is connected to the ITk reference potential

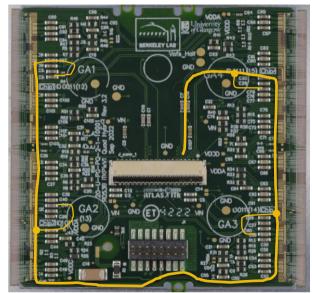


- Now off-state-behaviour of the PSU becomes relevant
- Standard issue HV PSU modules used in ID pixels have a high-impedance/high-resistance off mode
 - Some sensors at least partially depleted with LV = on, HV = off (regular operating condition)
 - Effective forward bias on some sensors with LV = on, HV = off (regular operating condition)
- Further investigations indicate no serious issue in ATLAS (ATL-ITK-PUB-2022-002)


- Concern for 3D sensors: rather low depletion voltage
 - LV staircase induced bias voltage might fully deplete sensor before irradiation
 - ITk Pixels solution: violation of G&S rules → individual HV lines with dedicated return line and "indirect" referencing

SERIAL POWERING IN ITK PIXEL DATA-TRANSMISSION AND MONITORING

- Opto-electrical transceivers outside of the detector package
- Up to ~6 m electrical transmission: downlink 160 Mbps, uplink 1.28 Gbps
- Pre-emphasis and equalization on uplink
- Aggregation of uplinks in lpGBT, optical transmission to counting rooms



- Downlinks:

- 1 downlink per module, 160 Mbps command stream → CDR on ASIC
- Multi-drop, AC-coupled for each readout ASIC on module flex (100nF)
- Distance between first and last drop: ~10 cm

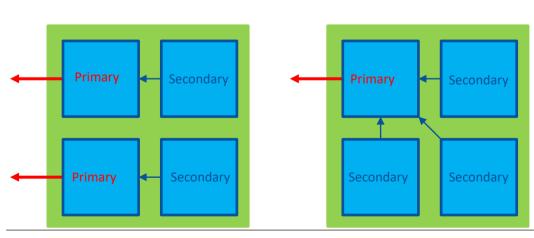
Addressing & downlink forwarding:

- Each ASIC has 4 address bits
- 1 downlink suitable for multiple modules
- Considered command forwarding to reduce material budget
- Eventually decided against that
 - Risk considerations (availability of detector)

https://cds.cern.ch/record/2876969

Uplinks

- Each ASIC capable of transmitting 4x1.28 Gpbs
- AC-coupling for each ASIC on module flex (8.2 nF)
- Outermost layers produce significantly less data
 - Reduce material budget through data merging



Optoboards

- 4 GBCR+lpGBT
- 1 VTRx+

Optoboxes:

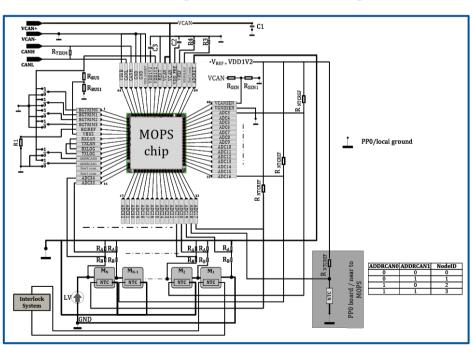
- up to 5 Bpol12
- up to 8 optoboards

- Uplinks
 - Each ASIC capable of transmitting 4x1.28 Gpbs
 - AC-coupling for each ASIC on module flex (8.2 nF)
 - Outermost layers produce significantly less data
 - Reduce material budget through data merging
- Possible complication when LV is on and optoboards not powered
 - Floating lpGBT ports pulled up to up to ~20 V through
 AC-coupling capacitor leakage
 - As precaution: interlock of serial power PSU and optobox PSU linked

Optoboards

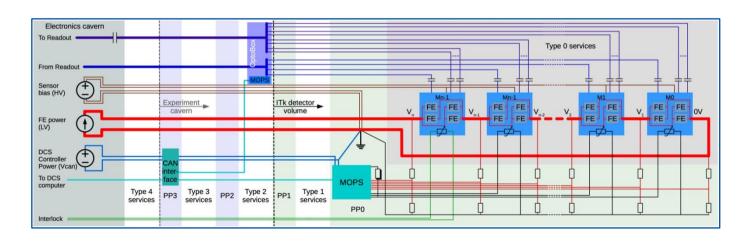
- 4 GBCR+lpGBT
- 1 VTRx+

Optoboxes:


- up to 5 Bpol12
- up to 8 optoboards

MONITORING

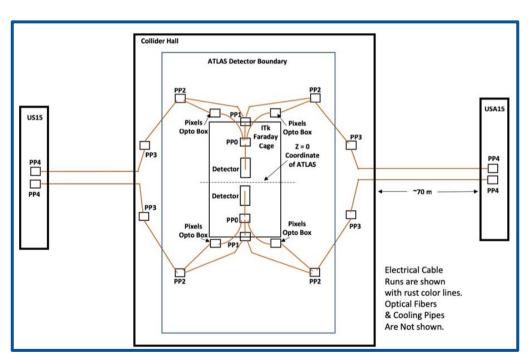
Limited monitoring of the detector through dedicated ASIC – Monitoring of Pixel System (MOPS)



- Located on PPO (on the local support)
- Monitoring of
 - One temperature sensor on each module
 - Voltage drop across each module
- Electrical communication to MOPS-HUB through custom 1.2V CAN bus
- Optical transmission to the DCS in counting rooms
- Mostly: one single MOPS per SP chain
- Additional temperature sensors on the module that are read out through the front-end ASIC, data transmitted through the data uplinks

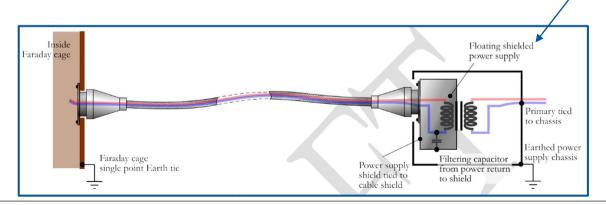
MONITORING

- A single NTC per SP chain is not connected to the MOPS
 - This goes directly to the interlock system
 - Always the last NTC in direction of flow of CO2 → dryout detected earliest at that module
 - Again due to limitation of pins and available space in service gaps

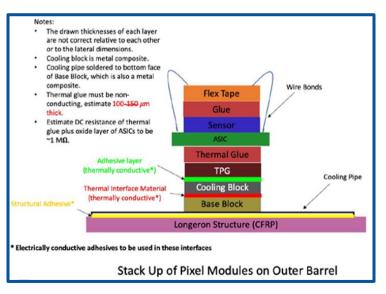


SERIAL POWERING IN ITK PIXEL GROUNDING & SHIELDING

- ATLAS G&S rules apply in general and were originally conceived without considering SP
- Design of SP chains originally based on "local" requirements without considering the ATLAS G&S rules
- Both had to be adapted in order to make them compatible!



- STRICT separation of all components
- Electrical components "belong" to one of four sectors:
 - A side powered from USA15
 - A side powered from US15
 - C side powered from USA15
 - C side powered from US15
- All electrical connections from a given PPO/EoS run through the same PP1 and are routed to the same service cavern


- ITk reference potential supplied through the Faraday Cage
 - Single tie between the Faraday Cage and the ATLAS ground
 - Single tie between the ITk reference potential and the "OV"-plane on each PPO
- All PSU are floating and are locally referenced to the ITk "0V"-plane/ITk reference potential
- All SP chains are strictly isolated from each other
- All cable shields are tied to the ITk reference voltage at PP1/optobox
- All cable shields are left floating at the "far end"

this does not normally exist in commercial PSU

- All conductive structures must be connected to the ITk reference potential
- By now, the electrical components (SP chain) is **electrically isolated** from the carbon **support structures**

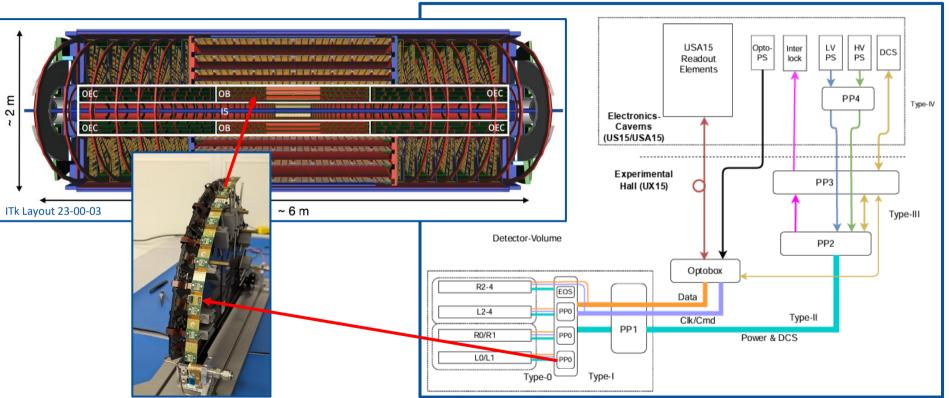
- This was different in the past:
 - Half-rings in endcaps were referenced through a direct connection to "OV"-plane on PPO
 - They were electrically isolated from the global mechanics support structures
 - E-breaks in the cooling pipes!
- In any case: careful not to short circuit the SP chain through the local support!

- Exceptions from the G&S rules
 - HV distribution in L0 → already discussed
 - Merging of "OV" planes of several SP chains on PPO → economization of MOPS
 - very little space close to beam pipe
 - very short SP chains in that area (in particular in barrel region)
 - 1 MOPS sufficient to monitor up to 3 SP chains → direct electrical connection between chains

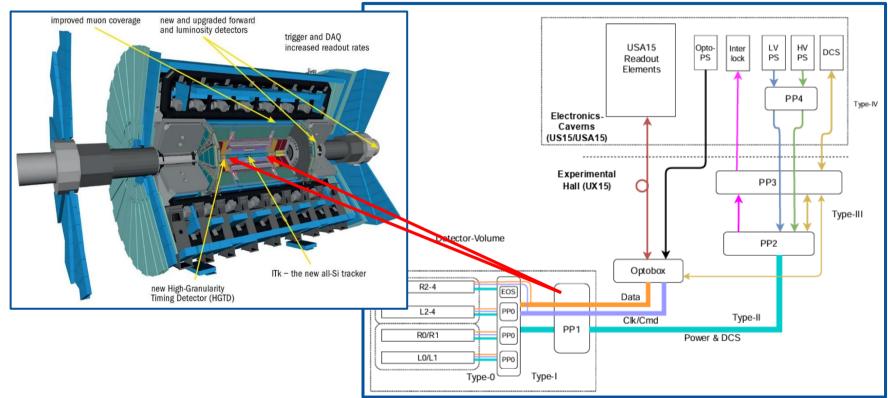
SUMMARY

- Hopefully could give a (rushed) overview of many years of R&D for ATLAS ITk Pixel
 - That was based on few, partially non-representative setups
- SP is simple on paper only, but convoluted system design
 - One needs to re-think the complete system from the ground up to get SP to work
- We still don't perfectly understand every detail of SP
 - System test with representative hardware in representative conditions is crucial
 - This requires available detector parts OR prototypes

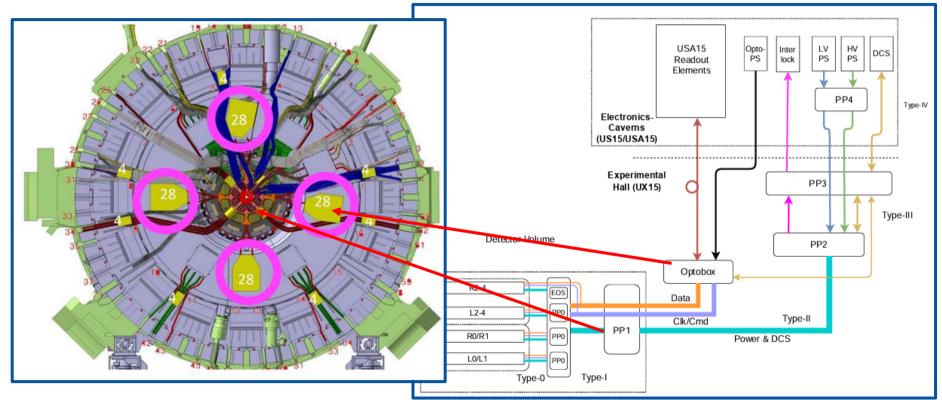
MAYBE USEFUL READING


- Some of the links are ATLAS internal
 - ITk public results: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ITkPublicResults
 - PubNote on Layout of the ITk
 - PubNote on HV distribution
 - ITk Pixel Services Specifications (internal)
 - ITk Grounding & Shielding (internal)
 - ITk Pixel Optosystem
 - ITk Pixel Readout ASIC
 - ITk Pixel System Test Overview
 - RD53 Pixel readout ASIC in JINST
 - My PhD thesis

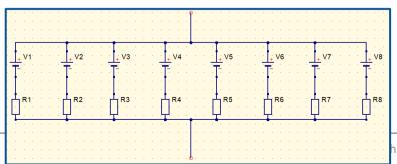
THANK YOU

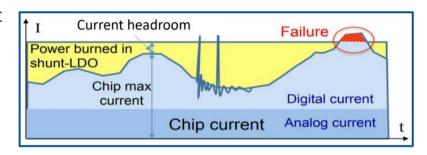


INTRODUCTION TO ITK PIXEL



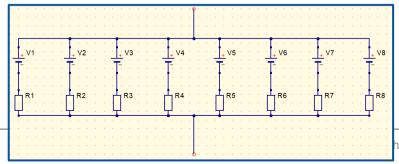
INTRODUCTION TO ITK PIXEL

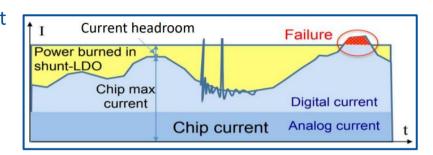


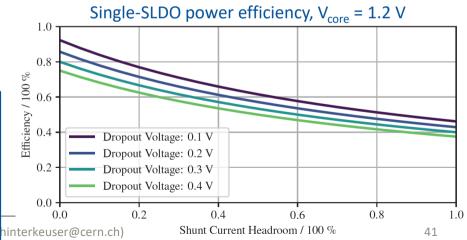

INTRODUCTION TO ITK PIXEL

- Determine (simulation & measurement) 'nominal' input current per chip
 - Add some overhead for 'unusual events'
- Current distribution on module
 - Analyse configuration phase space
 - Tolerances, process variation, manufacturing variability
 - Add some overhead

$$I_{\text{in}} = \left(1 + s_{\text{global}}\right) \sum_{i} I_{\text{Load},i}$$

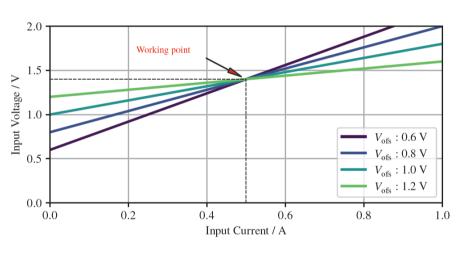

$$I_{j} = \frac{I_{\text{in}}}{\sum_{i} \frac{R_{j}}{R_{i}}} + \frac{\sum_{i} \frac{V_{i}}{R_{i}}}{\sum_{i} \frac{R_{j}}{R_{i}}} - \frac{V_{j}}{R_{j}}$$

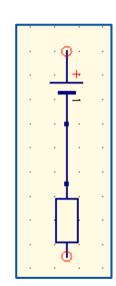

$$I_i \ge I_{\text{Load},i} \cdot (1 + s_{\min,i})$$



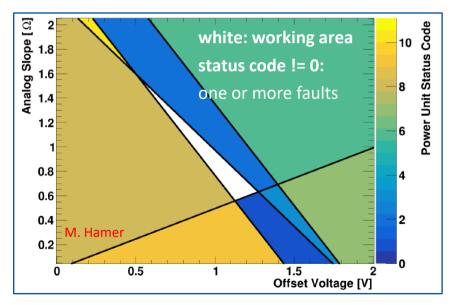
02/10/2025

- Determine (simulation & measurement) 'nominal' input current per chip
 - Add some overhead for 'unusual events'
- Current distribution on module
 - Analyse configuration phase space
 - Tolerances, process variation, manufacturing variability
 - Add some overhead
- Headroom decreases **SLDO** power efficiency





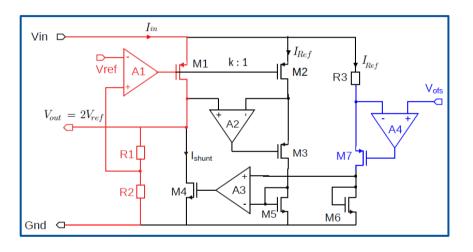
SERIAL POWERING


$$V_{\text{in}} = V_{\text{ofs}} + R_{\text{eff}} \cdot I_{\text{in}}$$

= $R_{\text{ofs}} \cdot I_{\text{ofs}} + \frac{R_3}{k+2} \cdot I_{\text{in}}$

- SLDO regulator converts constant input current into a constant supply voltage for the ASIC
 - Surplus current *I_{shunt} ≥ 0 A* is drained through M₄
 - Dropout voltage V_{DQ} across $M_1 \rightarrow higher V_{in}$ than VDDD/VDDA, O(0.2 V)

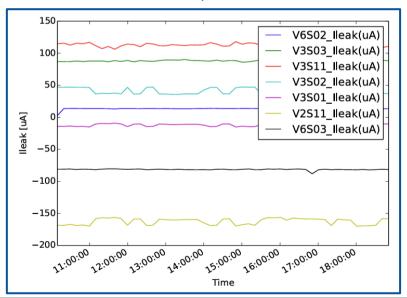
- **Example** for ITk Pixels **Layer 2** modules, highly simplified scenario (well defined, fixed max. deviations)
 - Numbers to be considered illustrative only

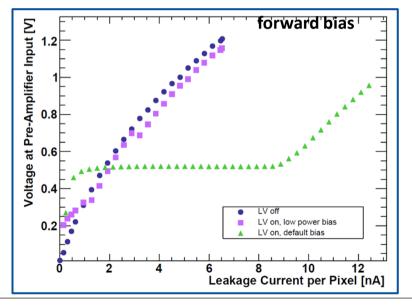


Parameter	arameter μ		max. deviation	
$R_{\mathrm{ext,i}}$	see Table 3.21	0.1%	2σ	
k_i	1040	1.5%	5σ	
$R_{\rm trace,i}$	see Table 3.21	0.1%	3σ	
$R_{ m Vofs}$	see Table 3.21	0.0%/0.1%	2σ	
$I_{ m ofs}$	$40 \mu\mathrm{A}$	1%/2.5%	3σ	

Criterion #	Description	Status Code Bit	Status Code Increment if Failed
1	$U > U_{\min}$	1	+8
2	$U < U_{\rm max}$	2	+4
3	$U_{ m high\ impedance} < U_{ m max,H}$	3	+2
4	$s_i > s_{i \text{ min}}$	4	+1

Table 3.19: Criteria that are used to determine if a given set of SLDO parameters is acceptable or not.

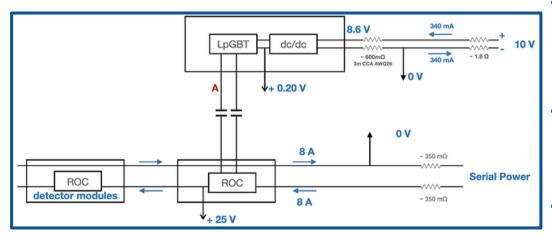

- Updated SLDO feature set to improve system reliability
 - Based on system test experience & detector design choices
- SLDO startup in early implementations unreliable -> additional offset startup
- 2-stage bandgap reference scheme
- Input voltage clamp (OVP) protects
 ASIC from voltage transients
- Undershunt current protection -> reduces transients from overloaded SLDOs
- Low power mode (LPM) for detector testing without cooling



HV DISTRIBUTION

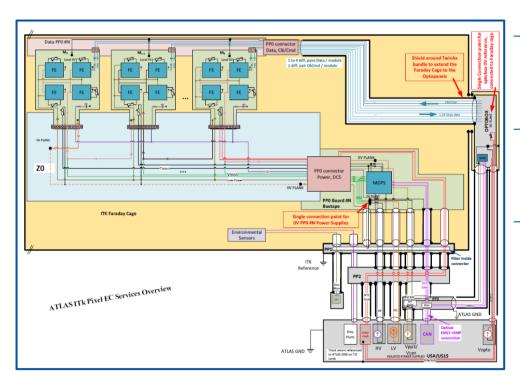
- ITk Pixel ASIC on power up: "low power configuration", i.e. minimum analog biases and disabled core columns
 - Estimated per-pixel leakage current below critical boundary
 - Alternative: low impedance/low resistance off-mode for HV PSU

https://cds.cern.ch/record/280844 4/files/ATL-ITK-PUB-2022-002.pdf



DATA TRANSMISSION SCHEME

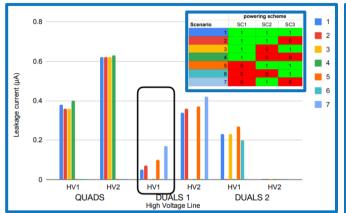
- Possible complication:
 - Leakage through parasitic parallel resistance in capacitors
 - For details, see this thread in the lpGBT user forum

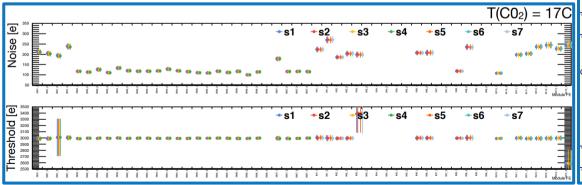


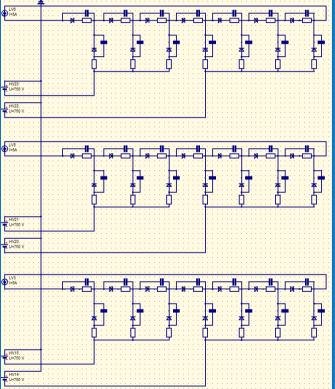
No hardware mechanism to prevent switching on the LV when optoboards are not powered → handled in DCS FSM

- There is a concern that the IpGBTs are damaged if the LV is on ("Serial Power") and Vopto is off
 - "Floating" IpGBT e-ports are pulled to module reference voltages (i.e. up to ~20V) through capacitor leakage currents
- The drawing is not entirely accurate for ITk Pixels due to the GBCR in between the module and IpGBT, but the problem is going to be the same (same pads, e-RX on GBCR)
- It is not clear how severe the problem really is
 → some basic tests we ran indicate it's fine
 - Better safe than sorry → interlocking of PSUs for optobox and SP current sources are linked

GROUNDING & SHIELDING

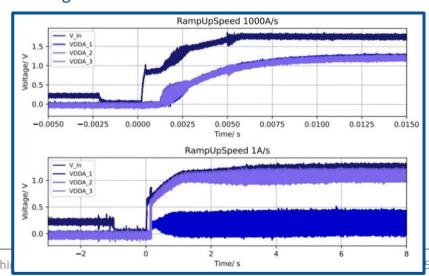

- The only shielded Type-1 Cables in ITk Pixels:
 - Data cables
 - CAN bus cables
- Both have different endpoints:
 - Optobox
 - PP1
- "OV"-plane is referenced through exactly one of both options
 - If the shields of either one are connected, the shield of the other flavour of cables is AC coupled to the "OV"-plane on PPO




GROUNDING & SHIELDING

old data from early system test using FE-I4 quad modules! local merging of SP chains did not show any issues in system test

→ looking into sharing optoboards for coupled SP chains



POWER SUPPLIES, START-UP & OPERATIONAL ISSUES

POWER SUPPLIES

- Currently in the process of evaluating pre-production power supply units in system test
- **Current source or voltage source?**
 - For module QC and some system level testing, ATLAS has been using voltage sources
 - The detector and the QC of loaded local supports, most institutes will use 'current sources'
 - Simulations hint at **better stability** of current sources during transients
 - But: both seems to work fine!
- Turn-on behaviour?
 - ~Fast ramp-up is required
 - Well specified before, no out-of-the world values required → not an issue
 - Again: off-mode behaviour of PSU can be an issue

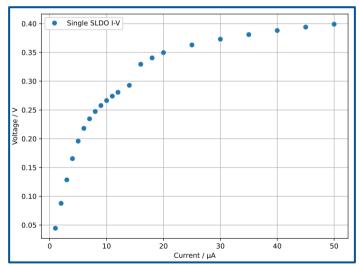
POWER SUPPLIES

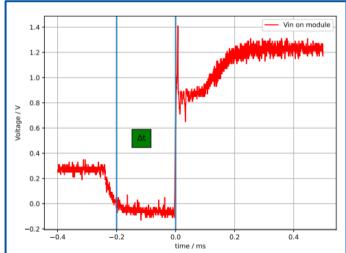
- Low voltage PSU to be used for ITk Pixel:
 PL510 current source
- $I_{IV} \le 10 \text{ A}, V_{IV} \le 48 \text{ V}$
 - Up to 300 W per channel
- Per-channel interlock
- 10 channels / 3U (19")
 - Up to 3 kW per crate
- Communication via Ethernet (RJ45)

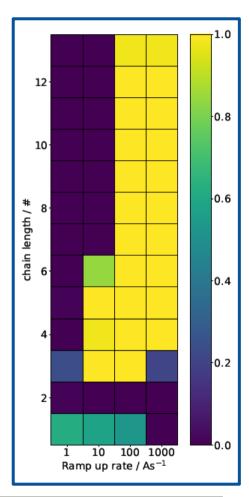
Initial specifications for LV power supply (Ireg)

	Min Value	Max Value	
Output Current	0.3 A	10.0 A	
Delivered Voltage	1.4 V	48 V	
Power	0 W	300 W	
Floating	50 V	50 V	
Capacitance from floating ground to chassis ground	-	1 uF	
Ripple for f <= 20 MHz	ole for f <= 20 MHz - 4 m		
Ripple for f > 20 MHz	-	0.15 mA pp	
Programmable Ramp (up and down, separately			
configurable)	1 A/s	10.000 A/s	
Set Current Precision/Resolution	0.5% / 8 bits	=	
Set Voltage Limit Precision/Resolution	0.5% / 8 bits	-	
Measured Current Precision/Resolution HIGH	0.5% / 8 bits	-	
Measured Current Precision/Resolution LOW	0.5% / 8 bits	-	
Measured Terminal Voltage Precision/Resolution	0.5% / 8 bits	-	
Long Term Stability	-	0.2 % / 10 K	
	This should be selectable between either High-		
	Ohmic (> 100 kOhms) or Low-Ohmic (< 10		
Off-Mode	Ohms).		
Maximum Overvoltage for fast Load Change	- 0.3 Ohms / 5 us: 400 mV		

Table 6: Specifications for Low Voltage Power Supplies (Current Sources)


PL510 prototype @ Uni Bonn

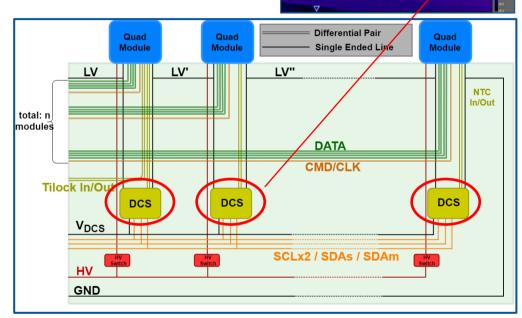




START UP

- Did extensive testing with current source prototype
 - Start-up issues observed in "chain length ramp speed" parameter space
 - Short chains and slow ramp-rates show start-up issues
- For short chains: caused by leakage of PSU in off-mode

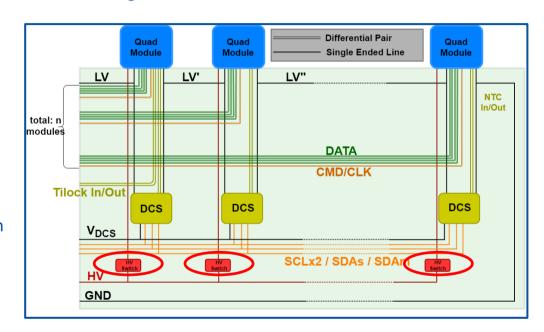
OPERATIONAL ISSUES


- System testing with production chip modules is still very much ongoing
- Foreseen turn-on procedure:
 - Power up MOPS ASIC for monitoring → this is designed to run without cooling
 - Power up optoboards → proper referencing of input pads (requires cooling for optoboxes running)
 - Power up readout ASICs → requires optoboxes to be powered up and CO2 cooling to be running
 - Turn on HV (sensor bias) → proper flow of leakage current
- Interlock interplay:

	action on individual channels or small channel groups			action on all channels		
	HV	LV	Opto-power	HV	LV	Opto- power
SP chain temperature	X	X	TBD			
Optobox temperature	Х	X	X			
BIS				X		
DSS				X	X	X

OPERATIONAL ISSUES

- Things we considered, but that didn't make it into the final design:
 - Individual, switchable bypass for every module (PSPP ASIC)
 - Multiple issues:
 - Power hungry bias resistors
 - Switchable low resistance path in parallel to the module LV
 - Negative input voltage on modules for standard PSU (LV off)
 - Fast switching (power!) triggered chain reaction → SP chain off



Decision to remove the PSPP ultimately driven by risk analysis

OPERATIONAL ISSUES

- Things we considered, but that didn't make it into the final design:
 - Individual, switchable bypass for every module (PSPP ASIC)
 - HV switches for each module
 - Require negative bias voltages up to -650 V
 - All components must be rated for twice that number
 - No signal available that can switch such high voltages
 - Fuses were studied instead
 - Expect up to 6.6mA per quad in nominal operation
 - No suitable fuses identified

