

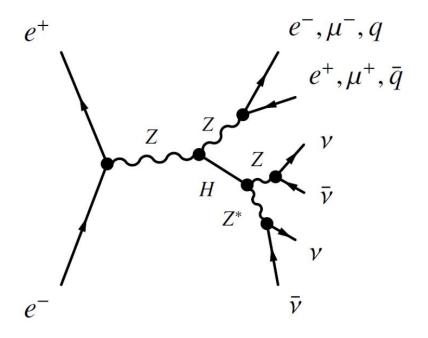
Searches for the Higgs Boson Invisible Decay at the CEPC

Geliang Liu (刘格良)

Nov. 5 – 10, 2025, CEPC Workshop 2025

Motivation

Higgs boson invisible decays


- Higgs strahlung: $ee \rightarrow Z^* \rightarrow ZH$ $ee \rightarrow Z(\rightarrow ee/\mu\mu/qq)H(\rightarrow invisible)$
- In the SM: $H \rightarrow ZZ^* \rightarrow 4v$
 - BR(H \rightarrow 4v)=**0.105**%
- BSM: H→sparticles / dark matter / LLPs, ...

Strong probe of BSM physics

- **Direct search** for new physics
- By nature **model-independent**

> Tests of detector performances

- The overall validity of the particle flow (PF) algorithm
- Large phase space coverage
- Reconstruction of missing kinematics

Previous studies

At the LHC

Experiments	Data	Expected results	Publication	
ATLAS	13 TeV; 139 fb-1	UL on BR(H→inv): 10%	JHEP08(2022)104	
CMS	13 TeV; 139 fb-1	UL on BR(H→inv): 10%	PRD 105 (2022) 092007	

Future electron-positron colliders

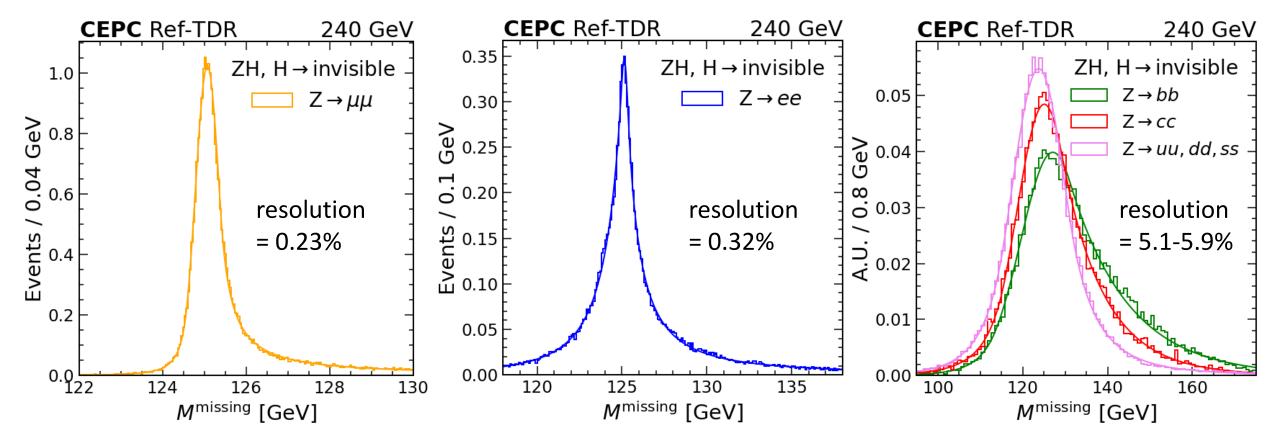
Experiments	Data	Expected results	Publication
ILC	250, 350, 500 GeV; 250, 350, 500 fb-1	UL on BR(H→inv): 0.26%	arXiv:1909.07537
FCC-ee	240+365 GeV; 10.8, 3 ab-1	3.9 σ on BR(H \rightarrow ZZ \rightarrow 4v)	<u>Presentation</u>
CEPC (CDR)	240 GeV; 5.6 ab-1	UL on BR(H→inv): 0.26%	<u>Chinese Phys. C 44 123001</u>

• Superiorities of electron-positron colliders:

- Initial state well recognized
- No pileup contamination
- Better signal-over-background ratios for SM Higgs boson production.
- Aim: estimate H invisible searches based on CEPC reference detector full simulation

Samples

> Simulation samples produced with CEPCSW 25.3.6


Experiments	Processes	Events
Signal	Z(→ee/μμ/qq)H(→4v)	100k per final state
4-fermion (4f) backgrounds	single-Z, single-W, Z-or-W ZZ, WW, ZZ-or-WW 41 different final states in total	400k per final state
2-fermion (2f) backgrounds	ee, μμ, ττ, qq	100k – 400 k per final state
H visible decay	(ee/μμ/ττ/vv/qq) + H→visible	1M per sample

• All samples will be scaled to an integrated luminosity of 21.6 ab-1

Key property

Missing mass

- $p^{visible} = \sum_{i}^{objects} p_i$
- $p^{\text{missing}} = p^{\text{total}} p^{\text{visible}}$, $p^{\text{total}} = (0, 0, 0, 240 \text{ GeV})$

Powerful discriminant thanks to full reconstruction of missing information and good detector resolution

Event selection

Baseline selection

- Start from the objects reconstructed from the particle flow algorithm (PFO)
- Object selection to define different final states / channels
- Preliminary kinematic selection

2μ channel:

- Two muons, with $|\cos\theta| < 0.99$
- Opposite charge.
- $M_{uu} \in [40, 120] \text{ GeV}$

2e channel:

- Two electrons, with $|\cos\theta| < 0.99$
- Opposite charge.
- $M_{ee} \in [40, 120] \text{ GeV}$

2q channel:

- At least two PFOs
- $M^{visible} \in [30, 130] \text{ GeV}$
- $p^{visible} \in [10, 80] \text{ GeV}$

Lepton identification

- based on full detector information;
- great performance with >90% efficiency and <1% (0.1%) for e (μ) at p > 2 GeV;
- being used in many benchmark analyses in the CEPC ref-detector TDR
- Orthogonality guaranteed: 2μ > 2e > 2q

Event selection

Kinematic selection

Further suppress backgrounds while keeping a high signal efficiency

2μ channel:

- $E_{recoil} > 125 \text{ GeV}$
- $M_{recoil} > 110 \text{ GeV}$
- $M_{missing} \in (110,150) \text{ GeV}$
- $E_{visible} \in (80,120) \text{ GeV}$
- $M_{visible} < 120 \text{ GeV}$
- $P_{\text{visible}} \in (20, 70) \text{ GeV}$
- $E_{neutral} < 60 \text{ GeV}$
- $N_{charged} < 7$
- $N_{neutral} < 10$
- $|D_0| < 0.05 \text{ mm}$
- $|Z_0| < 0.1 \, \text{mm}$

2e channel:

- $E_{recoil} > 125 \text{ GeV}$
- $M_{recoil} > 120 \text{ GeV}$
- $M_{\text{missing}} \in (50,160) \text{ GeV}$
- $E_{\text{visible}} \in (80,190) \text{ GeV}$
- $M_{visible} < 160 \text{ GeV}$
- $P_{\text{visible}} \in (20, 70) \text{ GeV}$
- $E_{neutral} < 90 \text{ GeV}$
- $N_{charged} < 7$
- $N_{neutral} < 15$
- $|D_0| < 0.1 \, \text{mm}$
- $|Z_0| < 0.1 \, \text{mm}$

2q channel:

- $M_{\text{missing}} \in (100,170) \text{ GeV}$
- $E_{\text{visible}} \in (70,130) \text{ GeV}$
- $P_{\text{visible}} \in (20, 70) \text{ GeV}$
- $E_{\text{charged}} \in (15,100) \text{ GeV}$
- $E_{neutral} \in (5,90) \text{ GeV}$
- $N_{charged} > 5$
- $N_{neutral} > 10$
- Jet $N_{charged} > 0$
- Jet $N_{neutral} > 2$

- * D_0 , Z_0 : transverse, longitudinal impact parameter of the inner track w.r.t. to IP
- For 2q channel: jets are clustered with ee-kt algorithm, requiring 2 jets

^{*} $p_{recoil} = p_{total} - p_{l_1} - p_{l_2}$

Selection cutflow table

	process	signal	2(μ/e/q)+2v	2f	visible H	others
2μ	total yield	1.56E+02	6.13E+06	1.92E+09	4.40E+06	4.09E+08
	Baseline sel eff	96.1%	32.0%	2.35%	2.55%	0.88%
	Kinematic sel eff	98.0%	19.8%	3.40%	0.44%	5.31%
	selected	1.46E+02	3.88E+05	1.53E+06	4.91E+02	1.78E+05
2e	total yield	1.61E+02	6.02E+06	1.92E+09	4.40E+06	4.09E+08
	Baseline sel eff	83.8%	41.7%	1.03%	1.96%	1.60%
	Kinematic sel eff	95.3%	23.0%	3.35%	2.19%	5.77%
	selected	1.29E+02	5.78E+05	6.62E+05	1.89E+03	3.77E+05
2q	total yield	3.13E+03	7.98E+06	1.92E+09	4.40E+06	4.07E+08
	Baseline sel eff	99.0%	66.1%	9.24%	19.8%	8.35%
	Kinematic sel eff	95.4%	38.1%	37.29%	37.8%	12.9%
	selected	2.96E+03	2.01E+06	6.62E+07	3.28E+05	4.37E+06

Multi-variate analysis

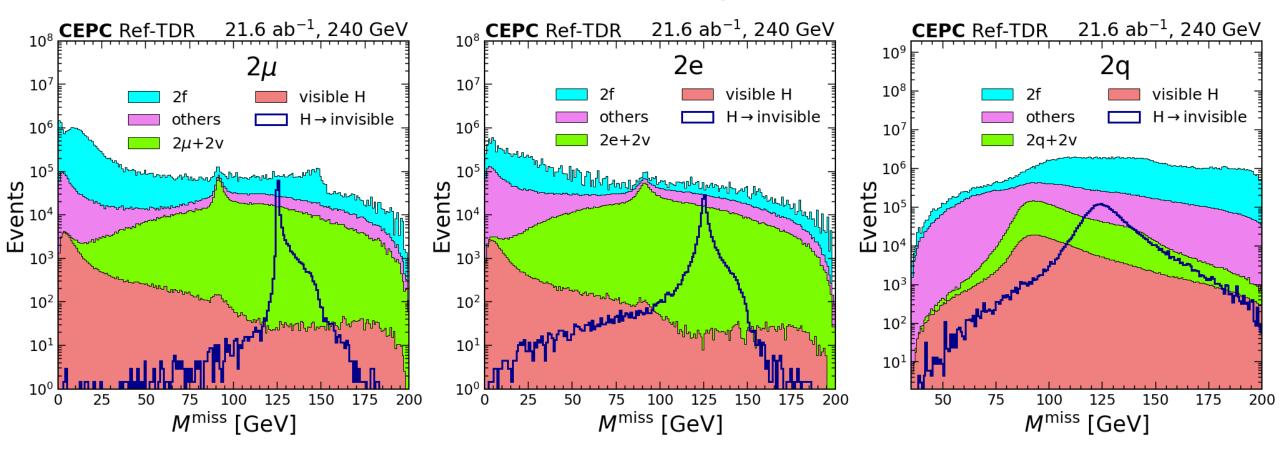
XGBoost models

trained in each channel to further distinguish signal and backgrounds

Input features

2μ channel:

- $E_{\mu\mu}$, $M_{\mu\mu}$, $P_{\mu\mu}$, $P_{\mu\mu}^T$ M_{recoil}
- M_{recoil}
- M_{recoil}
 E_{visible}, M_{visible}, P_{visible}
- $M_{missing}$
- $\Delta \varphi_{\mu\mu}$, $\Delta R_{\mu\mu}$ $D_0^{\mu_1}$, $D_0^{\mu_2}$, $Z_0^{\mu_1}$, $Z_0^{\mu_2}$
- N_{charged}, N_{neutral}, E_{neutral}


- 2e channel:
 Ε_{μμ}, Μ_{μμ}, Ρ_{μμ}, P^T_{μμ}
 Μ_{recoil}
 Ε_{visible}, M_{visible}, P_{visible}, P^T_{visible}

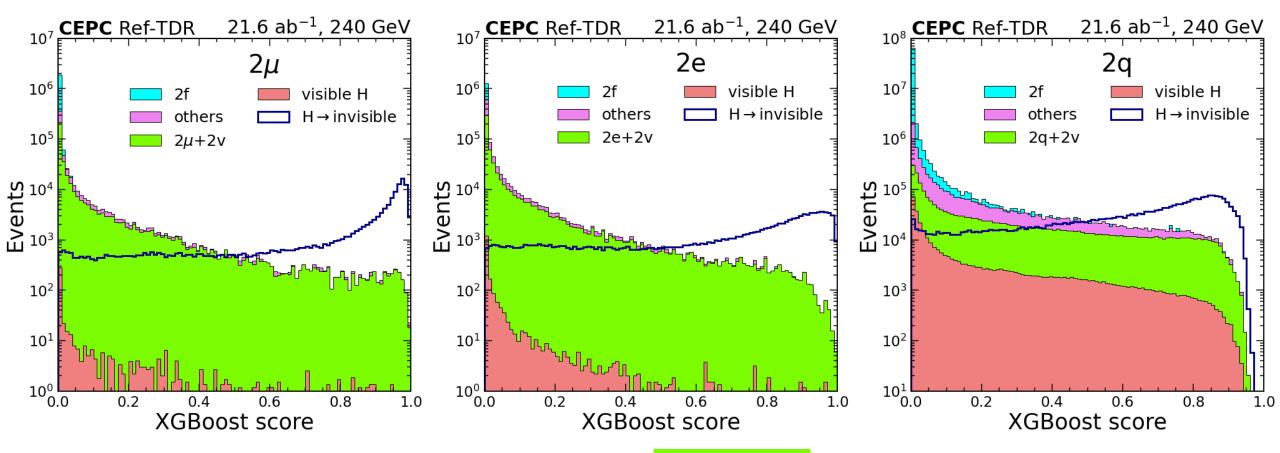
2q channel:

- $E_{visible}$, $M_{visible}$, $P_{visible}$, $P_{visible}^{T}$

- N_{charged}, N_{neutral} N^{j₁}_{charged}, N^{j₂}_{charged}
- $ECF_2^{j_1}$, $ECF_2^{j_2}$ (energy correlation function)

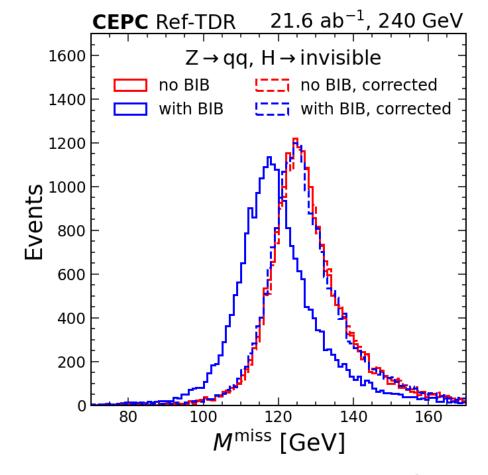
Important features: missing mass

- The **signal** distributed around 125 GeV ($BR(H \rightarrow invisible)$ set to be 1).
- Reducible background 2(μ/e/q)+2v distributed around 91 GeV.
- Other backgrounds distributed around 0 or flatly.


Important features: visible pt

- The signal distributed around 50 GeV.
- 2(μ/e/q)+2v distributed flatly.
- 2f distributed around 0: mostly in high |cosθ| region.

ML-based discriminant


XGBoost score distributions

- Main backgrounds contaminating with signals: 2(μ/e/q)+2ν
- See backup for <u>overtraining tests</u>, <u>feature importance</u> and <u>correlations</u>

Systematic uncertainties

- Theoretical uncertainties
 - Not considered, should have small impacts
- Lepton efficiency, energy corrections, jet energy corrections
 - Believed to be <1% thanks to the expected large datasets for calibration
- Beam induced backgrounds (BIB)
 - After filters of collimators, the main BIB is pair production: ee → eeγγ → eeee
 - Very low energy: not recognized by the tracker
 - **Very forward**: induce neutral objects with $|\cos\theta| > 0.98$
 - Treatment: discard neutral objects with |cosθ| >
 0.98
 - Negligible impacts on energy scale and resolution

Statistical inferences

- > Statistical analyses are performed with the CMS combine tool.
- ➤ Parameter of interest: BR(H→invisible)
- Discriminating variable: XGBoost score
 - Binned likelihood fits & asymptotic formulae
- Statistical-uncertainty-only results
- Two scenarios:
 - SM H invisible as a signal: expected uncertainty and statistical significance
 - BSM H→invisible as a signal, while the SM one is a background: expected upper limits at 95% confidence level.

Statistical-only results

channel	5.6 ab-1			21.6 ab-1			
	uncertainty (SM)	CDR uncertainty	significance (SM)	UL (BSM)	uncertainty (SM)	significance (SM)	UL (BSM)
2μ	-80%/+84%	222%	1.2σ	0.18%	-42%/+43%	2.5σ	0.089%
2e	-100%/+124%	428%	0.9σ	0.27%	-60%/+62%	1.7σ	0.13%
2q	-58%/+58%	90%	1.7σ	0.12%	-29%/+29%	3.4σ	0.061%
combine	-44%/+45%	82%	2.3σ	0.092%	-22%/+22%	4.5σ	0.047%

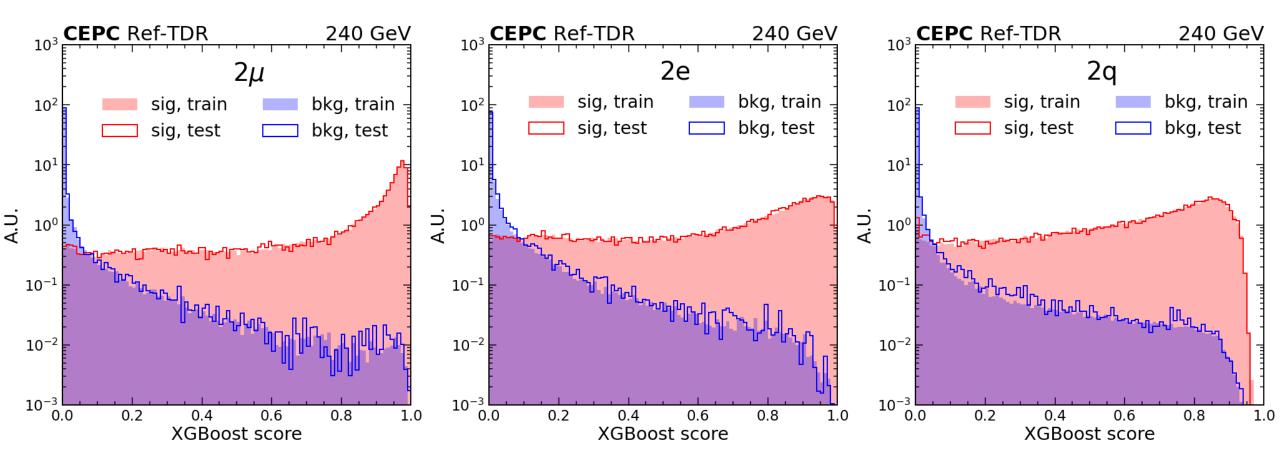
- Much better sensitivities than the CDR studies!
- Thanks to the MVA algorithm

- Within SM: close to discovery level
- BSM: sensitive to any invisible decays with a branching ratio ~ 0.05%

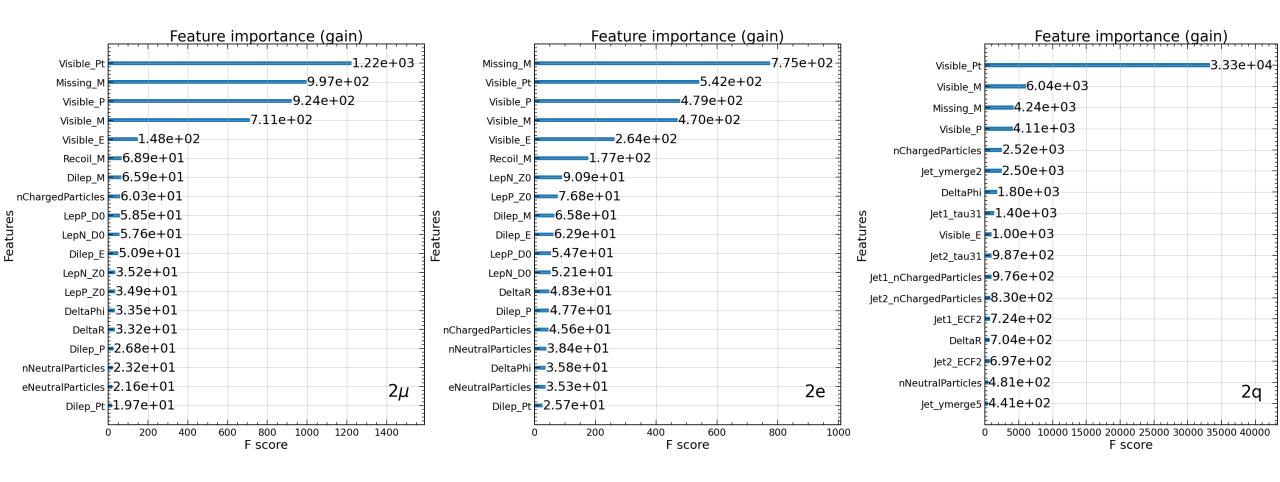
Conclusion and prospects

Preliminary searches for Higgs boson invisible decays are performed

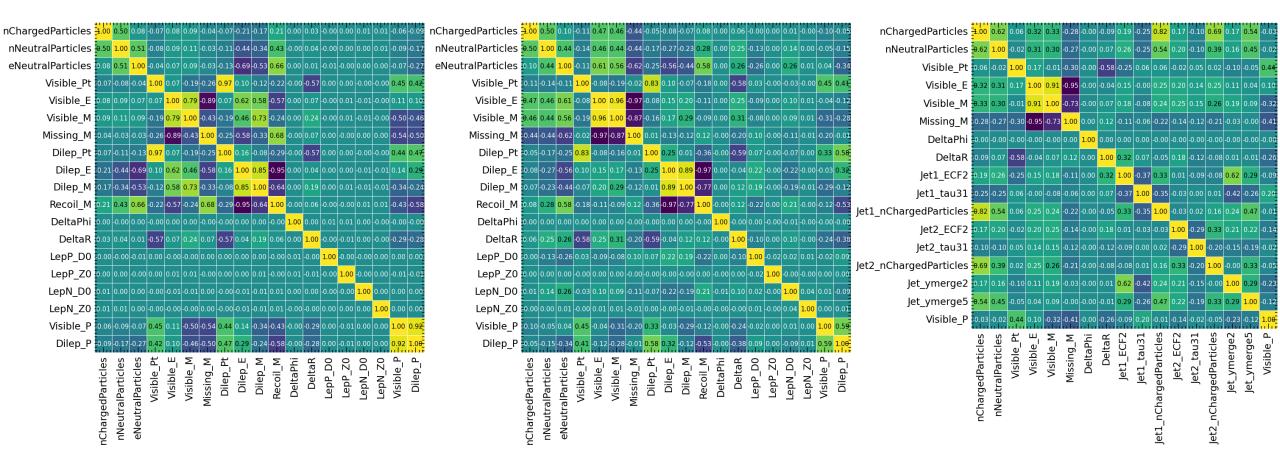
- Missing mass with good resolution as the key feature
- Much improved sensitivities thanks to the ML-based algorithm


Ongoing developments

- Jet-flavor tagging information
 - Jet-origin-ID developed based on the CEPC ref-detector shows great performances.
 - Different jet flavors have different resolution and background composition: potential improvements on sensitivities.
 - Categorization based on jet flavors; add jet flavors as input features to XGBoost models.
- Parameterization / smoothening of the XGBoost score distributions.
- Consideration of systematic uncertainties in more details.


Thanks for your attention!

Backup


XGBoost overtraining

XGBoost feature importance

XGBoost feature correlation

