### The Electroweak precision observables of the 2HDM+S

#### Juxiang Li

in collaboration with Cheng Li, Shufang Su and Wei Su Based on [arXiv: 2507.14288]

CEPC, Guangzhou, Nov 06



#### Introduction

- The 2HDM+S (complex singlet extension of 2HDM) could be motivated by Dark Matter candidate, etc..
- ullet We need to explore some possible way to distinguish different BSM models. (2HDM or 2HDM+S?)
- The 2HDM+S can differ from 2HDM, where the W and Z bosons self energy (i.e. STU observables) receive the difference.  $(STU \leftrightarrow \Delta m_i, \alpha_i)$

### The 2HDM+S

The 2HDM + Singlet is an extension of 2HDM [S. Baum et al. 18], with the following scalars:

$$\Phi_{1} = \begin{pmatrix} \chi_{1}^{+} \\ \frac{v_{1} + \rho_{1} + i\eta_{1}}{\sqrt{2}} \end{pmatrix}, \qquad \Phi_{2} = \begin{pmatrix} \chi_{2}^{+} \\ \frac{v_{2} + \rho_{2} + i\eta_{2}}{\sqrt{2}} \end{pmatrix}, \qquad S = v_{S} + \rho_{S} + i\eta_{S}, \tag{1}$$

Where  $\Phi_1$ ,  $\Phi_2$  are the SU(2)<sub>L</sub> doublets, and S is the gauge singlet.

- The mass spectrum of the 2HDM+S includes three neutral CP-even Higgs  $(h, H \text{ and } h_S)$ , two neutral CP-odd Higgs  $(A \text{ and } A_S)$ , and one pair of charged Higgs  $H^{\pm}$ .
- ullet The STU observables only depend on the  $h_iVV$  couplings, which are independent on the explicit symmetry structures of the Higgs potential and the Yukawa type.
- We only focus on the general *STU* effect despite of other constraints.

### The 2HDM+S in the mass eigenstate

The CP-even fields mix and generate three scalar Higgs

$$R\begin{pmatrix} \rho_1 \\ \rho_2 \\ \rho_S \end{pmatrix} = \begin{pmatrix} H \\ h \\ h_S \end{pmatrix}, \qquad RM_S^2 R^T = \operatorname{diag}\{m_H^2, m_h^2, m_{h_S}^2\}. \tag{2}$$

We fix the order of eigenvalues and the R matrix is given by the following configuration

$$R = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{\alpha_{hS}} & s_{\alpha_{hS}} \\ 0 & -s_{\alpha_{hS}} & c_{\alpha_{hS}} \end{pmatrix} \begin{pmatrix} c_{\alpha_{HS}} & 0 & s_{\alpha_{HS}} \\ 0 & 1 & 0 \\ -s_{\alpha_{HS}} & 0 & c_{\alpha_{HS}} \end{pmatrix} \begin{pmatrix} c_{\alpha} & s_{\alpha} & 0 \\ -s_{\alpha} & c_{\alpha} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
(3)

The CP-odd fields mix and generate one goldstone boson and two pseudoscalar Higgs

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & & \\ 0 & & R^A \end{pmatrix} \begin{pmatrix} c_{\beta} & s_{\beta} & 0 \\ -s_{\beta} & c_{\beta} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \\ \eta_S \end{pmatrix} = \begin{pmatrix} G^0 \\ A \\ A_S \end{pmatrix}, \qquad R^A = \begin{pmatrix} c_{\alpha_{AS}} & s_{\alpha_{AS}} \\ -s_{\alpha_{AS}} & c_{\alpha_{AS}} \end{pmatrix}, \tag{4}$$

### The 2HDM+S in the mass eigenstate

The input parameters of the mass eigenstate

$$\underbrace{\tan\beta,\ m_h,\ m_H,\ m_A,\ m_{H^\pm},\ c_{\beta-\alpha}}_{\text{2HDM parameters}}\ \underbrace{v_S,\ m_{h_S},\ m_{A_S},\ \alpha_{HS},\ \alpha_{hS},\ \alpha_{AS}}_{\text{singlet parameters}}.$$

We disentangled the  $3\times3$  mixing scenarios into the following fundamental scenarios

| Case 0   | $c_{\beta-\alpha}=\alpha_{HS}=\alpha_{hS}=\alpha_{AS}=0$ |                      |
|----------|----------------------------------------------------------|----------------------|
| Case I   | $\alpha_{HS} = \alpha_{hS} = \alpha_{AS} = 0$            | $c_{eta-lpha} eq 0$  |
| Case II  | $c_{eta-lpha}=lpha_{HS}=lpha_{AS}=0$                     | $\alpha_{hS} \neq 0$ |
| Case III | $c_{\beta-\alpha}=\alpha_{hS}=\alpha_{AS}=0$             | $\alpha_{HS} \neq 0$ |
| Case IV  | $c_{\beta-lpha}=lpha_{hS}=lpha_{HS}=0$                   | $\alpha_{AS} \neq 0$ |

- Case-0 is the alignment limit of 2HDM,  $h_{125}$  couplings are the same to SM
- Case-I is on the 2HDM case, the singlet fields are decoupled
- Case-II is the case where h<sub>125</sub> mix with h<sub>S</sub>
- Case-III is the case where doublet H mix with h<sub>S</sub>
- Case-IV is the case where doublet A mix with  $A_S$

### The *STU* observables

The electroweak precision observables STU are defined by the self-energy of the W and Z bosons. [E. Peskin et al, 92']

$$\alpha(m_Z)T = \frac{\Pi_{WW}(0)}{m_W^2} - \frac{\Pi_{ZZ}(0)}{m_Z^2},\tag{5}$$

$$\frac{\alpha(m_Z)}{4s_W^2c_W^2}S = \frac{\Pi_{ZZ}(m_Z^2) - \Pi_{ZZ}(0)}{m_Z^2} - \frac{c_W^2 - s_W^2}{s_Wc_W} \frac{\Pi_{Z\gamma}(m_Z^2)}{m_Z^2} - \frac{\Pi_{\gamma\gamma}(m_Z^2)}{m_Z^2},$$
 (6)

$$\frac{\alpha(m_Z)}{4s_W^2}(S+U) = \frac{\Pi_{WW}(m_W^2) - \Pi_{WW}(0)}{m_W^2} - \frac{c_W}{s_W} \frac{\Pi_{Z\gamma}(m_Z^2)}{m_Z^2} - \frac{\Pi_{\gamma\gamma}(m_Z^2)}{m_Z^2},\tag{7}$$

The observables and corresponding precision used in STU fitting at CEPC are as follows: [CEPCStudyGroup 18']

| Observables                     | CEPC                                         |  |  |  |  |
|---------------------------------|----------------------------------------------|--|--|--|--|
| $\delta m_h$ [GeV]              | $5.9 \times 10^{-3}$                         |  |  |  |  |
| $\delta lpha_{ m had}$          | $4.7 \times 10^{-5}$<br>$5.0 \times 10^{-4}$ |  |  |  |  |
| $\delta m_Z$ [GeV]              |                                              |  |  |  |  |
| $\delta m_t$ [GeV]              | $6.0 \times 10^{-1}$                         |  |  |  |  |
| $\delta m_W$ [GeV]              | $1.0 \times 10^{-3}$                         |  |  |  |  |
| $\delta \Gamma_{W}$ [GeV]       | $2.8 \times 10^{-3}$                         |  |  |  |  |
| $\delta \Gamma_{Z}$ [GeV]       | $5.0 \times 10^{-4}$                         |  |  |  |  |
| $\delta A_{b}^{\mathrm{FB}}$    | $1.0 \times 10^{-4}$                         |  |  |  |  |
| $\delta A_{\rm FB}^{\rm FB}$    | $2.2 \times 10^{-4}$                         |  |  |  |  |
| $\delta A_{\ell}^{\mathrm{FB}}$ | $5.0 \times 10^{-5}$                         |  |  |  |  |
| $\delta \overset{\iota}{R}_{h}$ | $4.3 \times 10^{-5}$                         |  |  |  |  |
| $\delta R_c$                    | $1.7 \times 10^{-4}$                         |  |  |  |  |
| $\delta R_{\ell}$               | $2.1 \times 10^{-3}$                         |  |  |  |  |
| $\delta\sigma_{ m had}$ [nb]    | $5.0 \times 10^{-3}$                         |  |  |  |  |

### The STU observables

The estimated ranges of STU and their corresponding correlation matrix were obtained using the Gfitter package [Gfitter 14']. The results are shown below:

$$\begin{array}{lll} S^{\mathrm{exp}} = 0 \pm 1.82 \times 10^{-2}, & T^{\mathrm{exp}} = 0 \pm 2.56 \times 10^{-2}, & U^{\mathrm{exp}} = 0 \pm 1.83 \times 10^{-2}, \\ \mathrm{corr}(S,T) = +0.9963, & \mathrm{corr}(S,U) = -0.9745, & \mathrm{corr}(T,U) = -0.9844. \end{array}$$

Perform a global fit between theoretical and experimental values using  $\chi^2$  to determine the model's feasible region.

$$\chi_{STU}^2 = \left(S - S^{\text{exp}} - T - T^{\text{exp}} - U - U^{\text{exp}}\right) \cdot \cos^{-1} \cdot \begin{pmatrix} S - S^{\text{exp}} \\ T - T^{\text{exp}} \end{pmatrix} < 5.99, \tag{8}$$

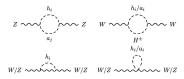
where

$$\mathbf{cov} = \begin{pmatrix} \Delta_{S}^{2} & \operatorname{corr}(S, T)\Delta_{S}\Delta_{T} & \operatorname{corr}(S, U)\Delta_{S}\Delta_{U} \\ \operatorname{corr}(S, T)\Delta_{S}\Delta_{T} & \Delta_{T}^{2} & \operatorname{corr}(T, U)\Delta_{T}\Delta_{U} \\ \operatorname{corr}(S, U)\Delta_{S}\Delta_{U} & \operatorname{corr}(T, U)\Delta_{T}\Delta_{U} & \Delta_{U}^{2} \end{pmatrix}, \tag{9}$$

The two-dimensional fit to the STU parameters at 95% C.L. corresponds to  $\Delta\chi^2=\chi^2_{STU}-\chi^2_{STU}|_{\text{minimal}}<5.99$ .

### The STU observables in 2HDM+S

Feynman diagrams that contribute to the self energy of the SM gauge bosons.



The contributions to the STU parameters from various Higgses can be found in Ref.[W. Grimus et al. 08']. Using those expressions, the STU parameters in 2HDM+S are given by the following equation:

$$T = \frac{1}{16\pi s_{W}^{2} m_{W}^{2}} \left[ \sum_{i}^{3} |c_{h_{i}H^{\pm}W^{\mp}}|^{2} F(m_{H^{\pm}}^{2}, m_{h_{i}}^{2}) + \sum_{i}^{2} |c_{a_{i}H^{\pm}W^{\mp}}|^{2} F(m_{H^{\pm}}^{2}, m_{a_{i}}^{2}) - \sum_{i,j} |c_{a_{i}h_{j}Z}|^{2} F(m_{a_{i}}^{2}, m_{h_{j}}^{2}) + 3 \sum_{i}^{3} |c_{h_{i}VV}|^{2} \left( F(m_{Z}^{2}, m_{h_{i}}^{2}) - F(m_{W}^{2}, m_{h_{i}}^{2}) \right) - 3 \left( F(m_{Z}^{2}, m_{h}^{2}) - F(m_{W}^{2}, m_{h}^{2}) \right) \right], \tag{10}$$

$$S = \frac{1}{24\pi} \left[ (2s_{W}^{2} - 1)^{2} G(m_{H^{\pm}}^{2}, m_{H^{\pm}}^{2}, m_{Z}^{2}) + \sum_{i,j} |c_{a_{i}h_{j}Z}|^{2} G(m_{a_{i}}^{2}, m_{h_{j}}^{2}, m_{Z}^{2}) - 2 \ln(m_{H^{\pm}}^{2}) - \ln(m_{h}^{2}) + \sum_{i} c_{h_{i}h_{i}VV} \ln(m_{h_{i}}^{2}) + \sum_{i} c_{a_{i}a_{i}VV} \ln(m_{a_{i}}^{2}) + \sum_{i} |c_{h_{i}VV}|^{2} \hat{G}(m_{h_{i}}^{2}, m_{Z}^{2}) - \hat{G}(m_{h}^{2}, m_{Z}^{2}) \right], \tag{11}$$

- The U observable does not get significant effect from this model
- The T observable usually play the dominant role of STU constraint



# 2HDM limit (Case-0 & Case-I)

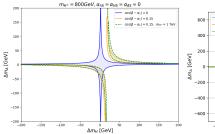
#### $\alpha_{hS} = \alpha_{HS} = \alpha_{AS} = 0$

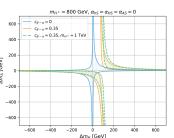
For convenience, we define the following mass splittings:

$$\Delta m_H = m_H - m_H^{\pm},$$

$$\Delta m_{HS} = m_{h_S} - m_H^{\pm},$$

$$\Delta m_A = m_A - m_H^{\pm},$$
  
$$\Delta m_{AS} = m_{A_S} - m_H^{\pm},$$





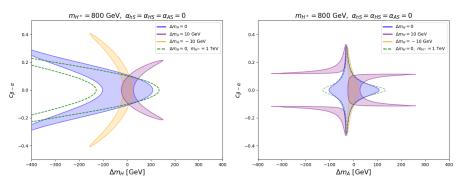
- Blue region: the Case-0, which centers around  $\Delta m_H = 0$  or  $\Delta m_A = 0$  (left CEPC and right LHC).
- The orange region in the left figure corresponds to  $c_{eta-lpha}=0.15$ , with the allowed regions shift to the right. In particular, the  $\Delta m_A = 0$  point with  $\Delta m_H \sim 20$  GeV and  $c_{\beta-\alpha} = 0.15$  would be excluded.
- The orange region in the right figure, the  $\Delta m_A = 0$  point with  $\Delta m_H \sim 100$  GeV and  $c_{\beta-\alpha} = 0.35$  would be excluded.
- The STU observables behave basically the same as the 2HDM in this case.

# 2HDM limit (Case-0 & Case-I)

 $\alpha_{hS} = \alpha_{HS} = \alpha_{AS} = 0$ 

$$T_0 = \frac{1}{16\pi s_W^2 m_W^2} \left[ F(m_{H^{\pm}}^2, m_H^2) - F(m_A^2, m_H^2) + F(m_{H^{\pm}}^2, m_A^2) \right]$$
 (12)

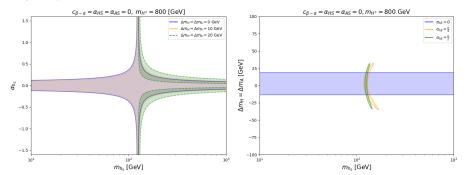
$$S_0 = \frac{1}{24\pi} \left[ (2s_W^2 - 1)^2 G(m_{H^{\pm}}^2, m_{H^{\pm}}^2, m_Z^2) + G(m_A^2, m_H^2, m_Z^2) + \ln\left(\frac{m_H^2}{m_{H^{\pm}}^2}\right) + \ln\left(\frac{m_A^2}{m_{H^{\pm}}^2}\right) \right]$$
(13)



- These two figures demonstrate that the *STU* measurement results provide the maximum upper limit of  $\Delta m_H \sim 100$  GeV or  $\Delta m_A \sim 100$  GeV.
- Compared to the LHC, the upper limit on  $\Delta m_H$  or  $\Delta m_A$  has been reduced.

#### Case-II

$$\alpha_{hS} \neq 0$$
,  $c_{\beta-\alpha} = \alpha_{HS} = \alpha_{AS} = 0$ 



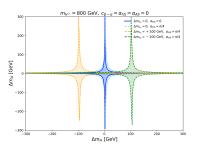
$$T = \frac{1}{16\pi s_W^2 m_W^2} 3s_{\alpha_{hS}}^2 \left[ F(m_Z^2, m_{h_S}^2) - F(m_W^2, m_{h_S}^2) - F(m_Z^2, m_{h_{125}}^2) + F(m_W^2, m_{h_{125}}^2) \right] + T_0$$
(14)

- In the two-dimensional parameter space of  $m_{h_S}$  vs.  $\alpha_{h_S}$  shown in the left panel, it can be seen that the STU constraints would be weak when  $m_{h_S}$  close to 125 GeV.
- For larger  $\alpha_{hS}$ , larger values of  $\Delta m_H = \Delta m_A$  can be reached, where 2HDM exclude, when  $m_{hS}$  is heavier.

Juxiang Li (SYSU) STU in 2HDM+S CEPC, Guangzhou, Nov 06 11/22

#### Case-III

$$\alpha_{HS} \neq 0$$
,  $c_{\beta-\alpha} = \alpha_{hS} = \alpha_{AS} = 0$ 



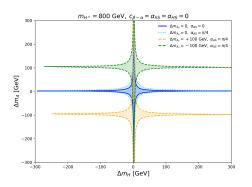
$$c_{\alpha HS}^2 m_H + s_{\alpha HS}^2 m_{h_S} = m_{H\pm} \tag{15}$$

- Dark blue region: the Case-0. For  $\alpha_{HS}=\pi/4$  and  $\Delta m_{hS}=0$ , the STU allowed region would be slightly enlarged compared to the Case-0.
- The STU allowed region would be shifted by  $\alpha_{HS}$  and  $\Delta m_{HS}$ , while the constraints can be always allowed when  $\Delta m_A = 0$ .
- The mass relation Eq. (15) ensures that the STU constraints can be fulfilled for arbitrary  $\alpha_{HS}$ , when  $\Delta m_A=0$ .

12 / 22

#### Case-IV

 $\alpha_{AS} \neq 0$ ,  $c_{\beta-\alpha} = \alpha_{hS} = \alpha_{HS} = 0$ 

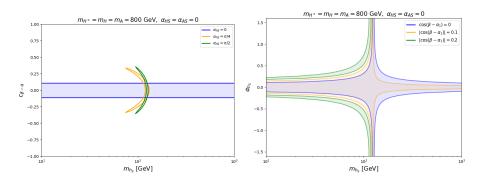


$$c_{\alpha_{AS}}^2 m_A + s_{\alpha_{AS}}^2 m_{A_S} = m_{H^{\pm}}.$$
 (16)

- The STU allowed region would be shifted by  $\alpha_{AS}$  and  $\Delta m_{AS}$ , while the constraints can be always allowed when  $\Delta m_H=0$ .
- The figure is almost identical to the above, except that the H and A have been interchanged.

4□ > 4ⓓ > 4ಠ > 4ಠ > 1
9

# STU in 2HDM+S beyond the alignment limit



 We observe that the singlet mixing angles of 2HDMS can make the parameter space allow, where 2HDM is excluded.

14 / 22

## Summary

#### Conclusions

- We disentangle and extract the effect of each mixing angles in the 2HDM+S, and set up four fundamental cases. wherem the case-0 and case-I are on the 2HDM limit.
- The STU properties of case II  $(\alpha_{hS} \neq 0)$  mainly depends on the mass difference between  $m_{h_S}$  and  $m_{h_{125}}$ .
- In case III or IV  $(\alpha_{HS} \neq 0 \text{ or } \alpha_{AS} \neq 0)$ , the STU constraints can be fulfilled when the mass relation  $c_{\alpha_{HS}}^2 m_H + s_{\alpha_{HS}}^2 m_{h_S} = m_{H^\pm}$  or  $c_{\alpha_{AS}}^2 m_A + s_{\alpha_{AS}}^2 m_{A_S} = m_{H^\pm}$  is satisfied
- 2HDMS can have the allowed parameter space where 2HDM is excluded. In this region, the two models can potentially be distinguished.
- At the CEPC, the *STU* observables are provided with higher precision.

#### Outlook

 Interplay with collider searches constraints as well as the cosmological effect. (In proceeding)

### Thank you!

## The Higgs to gauge bosons couplings

|                                  |                                                                                                       | 0  | 1                  | Ш                  | Ш                          | IV                 |
|----------------------------------|-------------------------------------------------------------------------------------------------------|----|--------------------|--------------------|----------------------------|--------------------|
|                                  | $c_{h_iVV} = R_{i1}c_{\beta} + R_{i2}s_{\beta}$                                                       |    |                    |                    |                            |                    |
| $c_{HVV}$                        | $c_{eta-lpha}c_{lpha_{	extit{HS}}}$                                                                   | 0  | $c_{\beta-\alpha}$ | 0                  | 0                          | 0                  |
| $c_{hVV}$                        | $s_{eta-lpha}c_{lpha_{	extit{hS}}}-c_{eta-lpha}s_{lpha_{	extit{HS}}}s_{lpha_{	extit{hS}}}$            | 1  | $s_{eta-lpha}$     | $c_{\alpha_{hS}}$  | 1                          | 1                  |
| $C_{h_S}VV$                      | $-s_{eta-lpha}s_{lpha_{hS}}-c_{eta-lpha}s_{lpha_{HS}}c_{lpha_{hS}}$                                   | 0  | 0                  | $-s_{\alpha_{hS}}$ | 0                          | 0                  |
|                                  | $c_{A_iH_jZ} = R_{i1}^A R_{j1} + R_{i2}^A R_{j2}$                                                     |    |                    |                    |                            |                    |
| $c_{AHZ}$                        | $-c_{lpha_{AS}}c_{lpha_{HS}}s_{eta-lpha}$                                                             | -1 | $-s_{eta-lpha}$    | -1                 | $-c_{lpha_{\mathit{HS}}}$  | $-c_{\alpha_{AS}}$ |
| $c_{AhZ}$                        | $c_{lpha_{AS}} \Big( c_{eta - lpha} c_{lpha_{hS}} + s_{eta - lpha} s_{lpha_{HS}} s_{lpha_{hS}} \Big)$ | 0  | $c_{eta-lpha}$     | 0                  | 0                          | 0                  |
| $c_{Ah_SZ}$                      | $-c_{lpha_{AS}}\Big(c_{eta-lpha}s_{lpha_{hS}}-s_{eta-lpha}s_{lpha_{HS}}c_{lpha_{hS}}\Big)$            | 0  | 0                  | 0                  | $s_{lpha_{HS}}$            | 0                  |
| $c_{A_SHZ}$                      | $s_{lpha_{AS}}c_{lpha_{HS}}s_{eta-lpha}$                                                              | 0  | 0                  | 0                  | 0                          | $s_{lpha_{AS}}$    |
| $c_{A_ShZ}$                      | $-s_{lpha_{AS}}ig(c_{eta-lpha}c_{lpha_{hS}}+s_{eta-lpha}s_{lpha_{HS}}s_{lpha_{hS}}ig)$                | 0  | 0                  | 0                  | 0                          | 0                  |
| $c_{A_Sh_SZ}$                    | $s_{lpha_{AS}} \Big( c_{eta-lpha} s_{lpha_{hS}} - s_{eta-lpha} s_{lpha_{HS}} c_{lpha_{hS}} \Big)$     | 0  | 0                  | 0                  | 0                          | 0                  |
|                                  | $c_{\phi_i H^\pm W^\mp} = R^\phi_{i2} c_eta - R^\phi_{i1} s_eta$                                      |    |                    |                    |                            |                    |
| C <sub>HH</sub> ± <sub>W</sub> ∓ | $-ic_{lpha_{HS}}s_{eta-lpha}$                                                                         | -i | $-is_{\beta-lpha}$ | -i                 | $-ic_{\alpha_{HS}}$        | -i                 |
| $c_{hH^\pm W^\mp}$               | $i\left(c_{eta-lpha}c_{lpha_{hS}}+s_{eta-lpha}s_{lpha_{HS}}s_{lpha_{hS}} ight)$                       | 0  | $ic_{eta-lpha}$    | 0                  | 0                          | 0                  |
| $c_{h_SH^\pm W^\mp}$             | $-i\left(c_{\beta-\alpha}s_{\alpha_{hS}}-s_{\beta-\alpha}s_{\alpha_{HS}}c_{\alpha_{hS}}\right)$       | 0  | 0                  | 0                  | $-is_{lpha_{\mathit{HS}}}$ | 0                  |
| $c_{AH^\pm W^\mp}$               | $c_{lpha_{AS}}$                                                                                       | 1  | 1                  | 1                  | 1                          | $c_{\alpha_{AS}}$  |
| c <sub>AsH±W</sub> ∓             | $-s_{lpha_{AS}}$                                                                                      | 0  | 0                  | 0                  | 0                          | $-s_{\alpha_{AS}}$ |

## Back up

The general form of the Higgs potential

$$V_{2\text{HDM}} = m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - \left( m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right) + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \left( \frac{\lambda_5}{2} (\Phi_1^{\dagger} \Phi_2)^2 + \text{h.c.} \right).$$
(17)

$$V_{S} = m_{S}^{2} S^{\dagger} S + \frac{m_{S}^{\prime 2}}{2} (S^{2} + \text{h.c.}) + \left(\frac{\lambda_{1}^{\prime \prime}}{4!} S^{4} + \frac{\lambda_{2}^{\prime \prime}}{3!} S^{2} (S^{\dagger} S) + \text{h.c.}\right) + \frac{\lambda_{3}^{\prime \prime}}{4} (S^{\dagger} S)^{2}$$

$$+ \left[ S^{\dagger} S \left(\lambda_{1}^{\prime} \Phi_{1}^{\dagger} \Phi_{1} + \lambda_{2}^{\prime} \Phi_{2}^{\dagger} \Phi_{2} + \lambda_{3}^{\prime} \Phi_{1}^{\dagger} \Phi_{2}\right) + S^{2} \left(\lambda_{4}^{\prime} \Phi_{1}^{\dagger} \Phi_{1} + \lambda_{5}^{\prime} \Phi_{2}^{\dagger} \Phi_{2} + \lambda_{6}^{\prime} \Phi_{1}^{\dagger} \Phi_{2} + \lambda_{7}^{\prime} \Phi_{2}^{\dagger} \Phi_{1}\right)$$

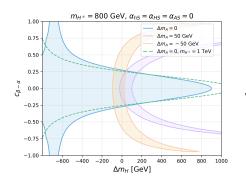
$$+ \frac{\mu_{S1}}{3!} S^{3} + \frac{\mu_{S2}}{2} S(S^{\dagger} S) + S \left(\mu_{11} \Phi_{1}^{\dagger} \Phi_{1} + \mu_{22} \Phi_{2}^{\dagger} \Phi_{2} + \mu_{12} \Phi_{1}^{\dagger} \Phi_{2} + \mu_{21} \Phi_{2}^{\dagger} \Phi_{1}\right) + \text{h.c.} \right]$$

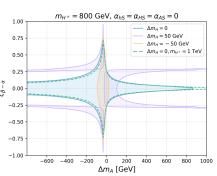
$$(18)$$

# 2HDM limit (Case-0 & Case-I)

 $\alpha_{hS} = \alpha_{HS} = \alpha_{AS} = 0$ 

$$S_0 = \frac{1}{24\pi} \left[ \left( 2s_W^2 - 1 \right)^2 G(m_{H^{\pm}}^2, m_{H^{\pm}}^2, m_Z^2) + G(m_A^2, m_H^2, m_Z^2) + \ln\left(\frac{m_H^2}{m_{H^{\pm}}^2}\right) + \ln\left(\frac{m_A^2}{m_{H^{\pm}}^2}\right) \right]$$
(19)

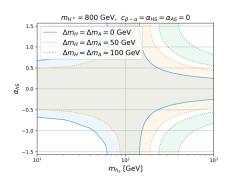


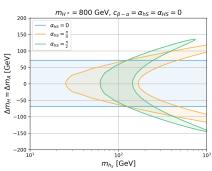


- The updated *STU* measurement results provide the maximum upper limit of  $\Delta m_H$  or  $\Delta m_A$ , when  $\Delta m_A$  or  $\Delta m_H$  is 0.
- When  $m_H$  is around 125 GeV,  $c_{\beta-\alpha}$  has no limit for  $\Delta m_A=0$

#### Case-II

$$\alpha_{hS} \neq 0$$
,  $c_{\beta-\alpha} = \alpha_{HS} = \alpha_{AS} = 0$ 





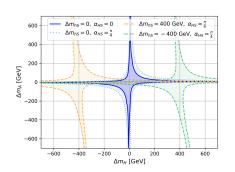
$$T = \frac{1}{16\pi s_W^2 m_W^2} 3s_{\alpha_{hS}}^2 \left[ F(m_Z^2, m_{h_S}^2) - F(m_W^2, m_{h_S}^2) - F(m_Z^2, m_{h_{125}}^2) + F(m_W^2, m_{h_{125}}^2) \right] + T_0$$
(20)

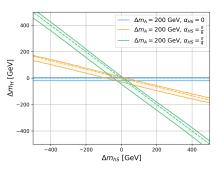
- The STU constraints would be weak when  $m_{h_S}$  close to 125 GeV
- For larger  $\alpha_{hS}$ , the larger  $\Delta m_H = \Delta m_A$  can be reached, where 2HDM exclude, when  $m_{hS}$  is heavier.

Juxiang Li (SYSU) STU in 2HDM+S CEPC, Guangzhou, Nov 06 19 / 22

#### Case-III

$$\alpha_{HS} \neq 0$$
,  $c_{\beta-\alpha} = \alpha_{hS} = \alpha_{AS} = 0$ 



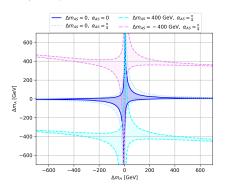


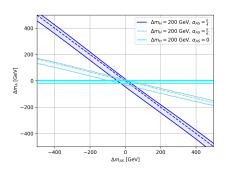
$$c_{\alpha_{HS}}^2 m_H + s_{\alpha_{HS}}^2 m_{h_S} = m_{H\pm} \tag{21}$$

- The STU allowed region would be shifted by  $\alpha_{HS}$  and  $\Delta m_{HS}$ , while the constraints can be always allowed when  $\Delta m_A = 0$ .
- The mass relation Eq. (15) ensures that the STU constraints can be fulfilled for arbitrary  $\alpha_{HS}$ , when  $\Delta m_A=0$ .

#### Case-IV

$$\alpha_{AS} \neq 0$$
,  $c_{\beta-\alpha} = \alpha_{hS} = \alpha_{HS} = 0$ 



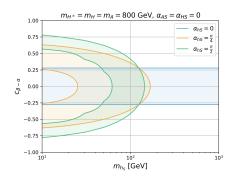


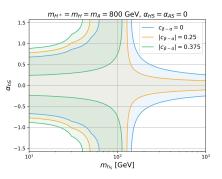
$$c_{\alpha_{AS}}^2 m_A + s_{\alpha_{AS}}^2 m_{A_S} = m_{H^{\pm}}. \tag{22}$$

- The STU allowed region would be shifted by  $\alpha_{AS}$  and  $\Delta m_{AS}$ , while the constraints can be always allowed when  $\Delta m_H = 0$ .
- The mass relation Eq. (16) ensures that the STU constraints can be fulfilled for arbitrary  $\alpha_{AS}$ , when  $\Delta m_H \neq 0$ .

21/22

# STU in 2HDM+S beyond the alignment limit





The singlet mixing angles of 2HDMS can make the parameter space allow, where 2HDM is excluded

22 / 22