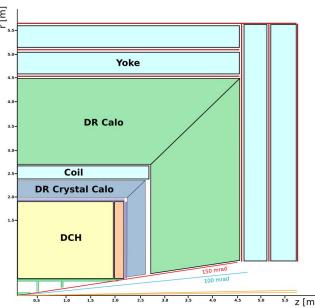

Dual-Readout Crystal Calorimetry for future e⁺e⁻ colliders

M. Lucchini INFN & University of Milano-Bicocca, Italy for the MAXICC and Calvision groups

Guangzhou, November 6-10, 2025

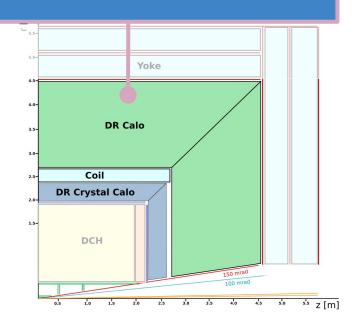

Hybrid dual-readout calorimetry in the IDEA detector

 Evaluate the potential and the feasibility of integrating a cost-effective homogeneous dual-readout segmented crystal EM calorimeter in the

IDEA detector

First studies and concept descriptions in:

- Conceptual design: <u>2020 JINST 15 P11005</u>
- O Jet performance: 2022 JINST 17 P06008
- New IDEA baseline: arXiv:2502.21223v1
- Activity at 360 degrees:
 - Simulation studies (from standalone to full sim)
 - R&D on technology and proof-of-principle
 - Prototyping of a calorimetric module

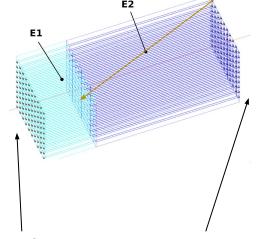

Hybrid dual-readout calorimetry

in the IDEA detector

 Evaluate the potential and the feasi homogeneous dual-readout segn IDEA detector

See tomorrow's talk from R.Ferrari for details on the Fiber (Hadronic) section of the DR Calorimeter

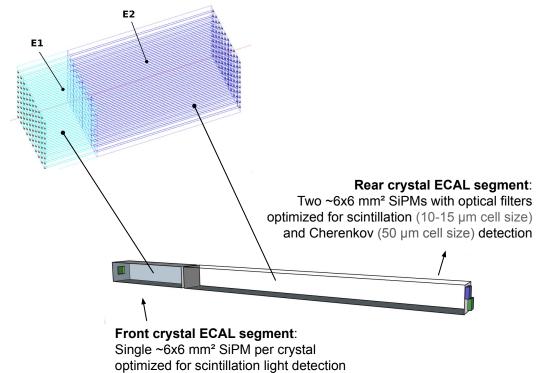
- First studies and concept descriptions in:
 - O Conceptual design: 2020 JINST 15 P11005
 - o Jet performance: 2022 JINST 17 P06008
 - New IDEA baseline: arXiv:2502.21223v1
- Activity at 360 degrees:
 - Simulation studies (from standalone to full sim)
 - R&D on technology and proof-of-principle
 - Prototyping of a calorimetric module


Conceptual layout

Contained number of channels
Transverse granularity: 1x1-1.5x1.5 cm²
Longitudinal segmentation: 2 layers
Total channel count ~2M

Optimize energy resolution:

no dead material at


shower maximum

Simplify integration aspects:
SiPM+electronics readout,
cooling and services only at
front and rear sides

Conceptual layout

Dual-readout implementation Cost-effective SiPM readout Optical filters for separation of Cherenkov and scintillation signal from the same active elements

(10-15 µm cell size)

Energy resolution - simulation

- Electromagnetic energy resolution better than 3%/√E⊕1% with homogenous crystals
- Simultaneous detection of scintillation and cherenkov signal to maintain applicability of the dual-readout method in a hybrid calorimeter concept
 - o Correct event-by-event the fluctuations of e.m. shower fraction in both calorimeter segments
 - Restore linear response to hadronic showers and achieve energy resolution of ~30%/√E⊕2%

High EM energy resolution potential at e⁺e⁻ Higgs factories

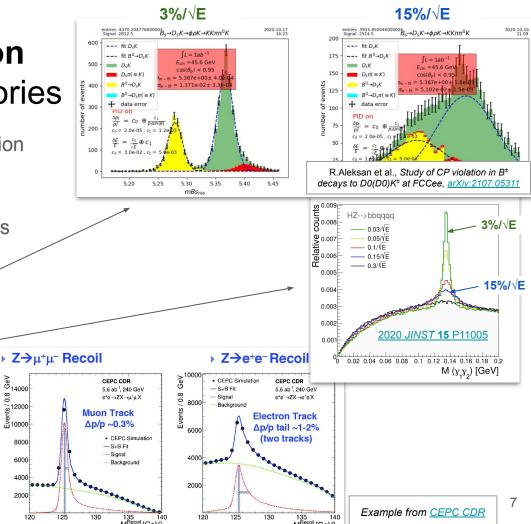
A calorimeter with 3%/√E EM energy resolution has the potential to improve event reconstruction and expand the landscape of possible physics studies at e⁺e⁻ colliders

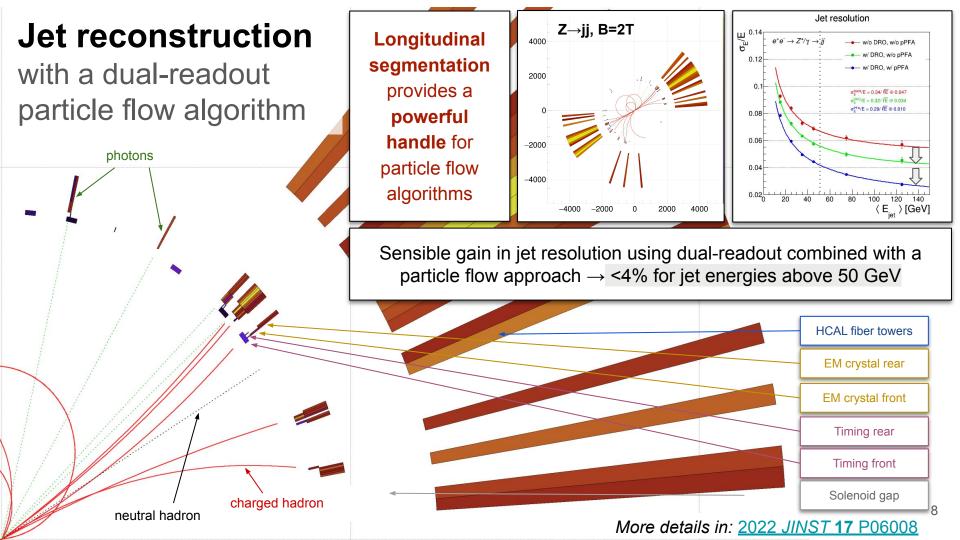
- **CP violation studies** with B_s decay to final states with low energy photons
- Clustering of π^0 's photons to improve performance of jet clustering algorithms

§ 514000

12000

å10000

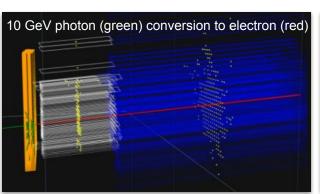

8000

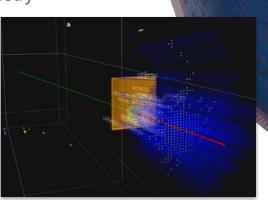

6000

4000

2000

Improve the resolution of the recoil mass signal from Z→ee decays to ~80% of that from $Z\rightarrow \mu\mu$ decays (recovering Brem photons)

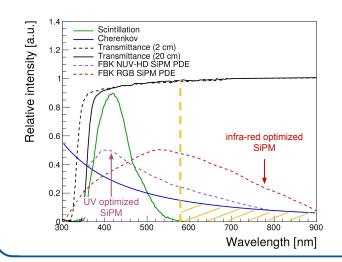




Implementation in **key4hep** gearing up

 Great progress in developing a fully differentiable detector geometry and simulation in key4hep (<u>github</u>)

- SiPMs and digitized readout implemented
- ML angular resolution and e/gamma regression studies underway
- Integration with IDEA detector underway
- Generated proper digis in key4hep and realistic TB module geometry


Still much work to do!

See W.Chung at CALOR2024

Dual strategy for dual-readout **implementation**

PWO (λ-based)

- Highest refractive index, lowest R_M and X₀
- Low light yield at 420 nm → easier to filter out scintillation light with a dedicated SiPM+optical filter and detect C photons at λ>580 nm
- Fast decay time (~10 ns) → hard to separate
 S and C using pulse shape

BG(S)O (λ+t-based)

- Higher light yield (10-30x PWO) at 480 nm
 - → excellent photostatistics
 - → harder to filter out scintillation photons
 - \rightarrow narrower band for infrared C photon detection (λ >680 nm)
- Wider transparency band for 'UV Cherenkov' (λ∈[320,380] nm)
- Slow decay time (~100-300 ns) → can separate S/C with timing

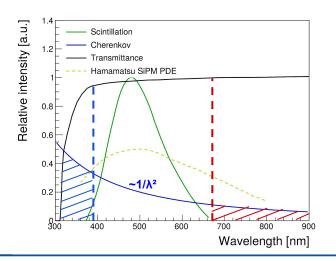
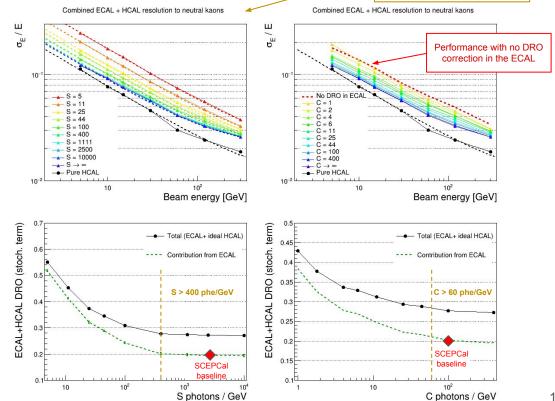
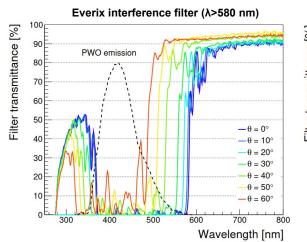
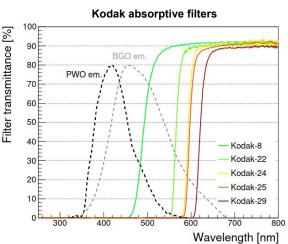
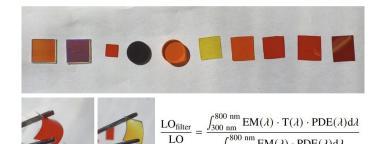



Photo-statistic requirements for S and C

Smearing according to Poisson statistics


- A poor S (scintillation signal) impacts the hadron (and EM) resolution stochastic terms:
 - S > 400 phe/GeV
- A poor C (Cherenkov signal) impacts the C/S and thus the precision of the event-by-event DRO correction
 - C > 60 phe/GeV
- Baseline layout choices (granularity and SiPM size) to provide sufficient light collection efficiency in Geant4
 - Need experimental validation with lab and beam tests




R&D and prototyping with PWO

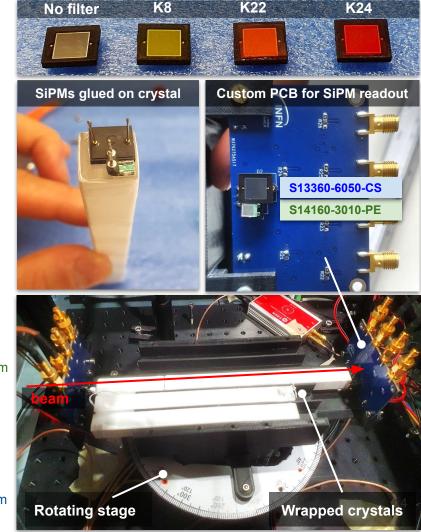
Laboratory measurements - optical filter selection

- Focus on thin filters (~100 μm) for optimal integration with SiPMs
- Interference filters discarded due to the angular dependence of their transmittance curve
- Identified a few ~100 um thick filters which let pass
 less than 1% of PWO scintillation light (K24, K25)

Photon transmittance at normal incidence angle

Filter label	BGO/BSO	PWO
Hoya-U330	8.8%	26.8%
Hoya-O56	12.8%	0.3%
Kodak-8	40.7%	7.9%
Kodak-22	11.2%	0.1%
Kodak-24	6.2%	<0.1%
Kodak-25	5.5%	<0.1%
Kodak-29	2.7%	<0.1%
Eve-Abs-580	8.1%	<0.1%
Eve-Int-580	7.0%	1.4% →8.0%*
Eve-Int-650	1.1%	2.5% → 15.0 %*

*when considering angular distribution of scintillation photons

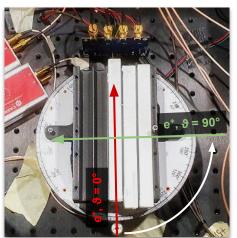

Test beam setup and goals

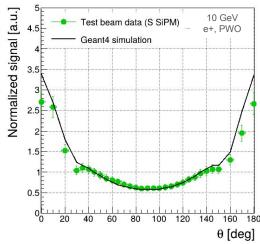
CERN H6, July 2024

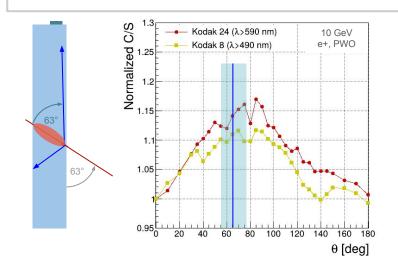
- Focus on single crystal test (PWO and BGO) to assess photon yields for both scintillation and cherenkov light
- Rotating stage to study angular dependence of the Cherenkov signal
- SiPM readout using transimpedance amplifiers on custom PCB + waveform digitized with CAEN V1742 and oscilloscope

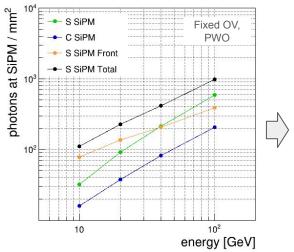
Rear S SiPM

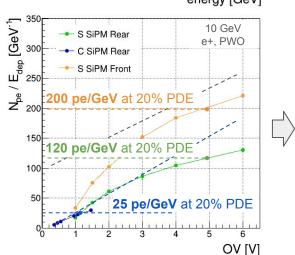
3x3 mm² 10 um (no filter) 150 mm 50 mm e⁺ beam Front S SiPM Rear C SiPM 3x3 mm² 10 um 6x6 mm² 50 um (K24 filter) (no filter)

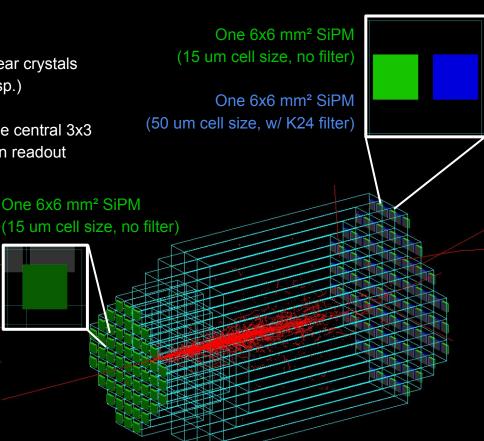

Test beam results - C angular dependence in PWO


Rotation of crystal axis with respect to beam direction in the range 0-180°


Factor 6 variation of energy deposited in crystal reasonably reproduced by Geant4


Calculation of S/C event-by-event shows


- Maximum of C-signal in correspondence of Cherenkov emission angle in PWO
- Variation less pronounced when S contamination is larger (Kodak 8 filter vs Kodak 24)
- Only few percent variation for a few deg around 0°

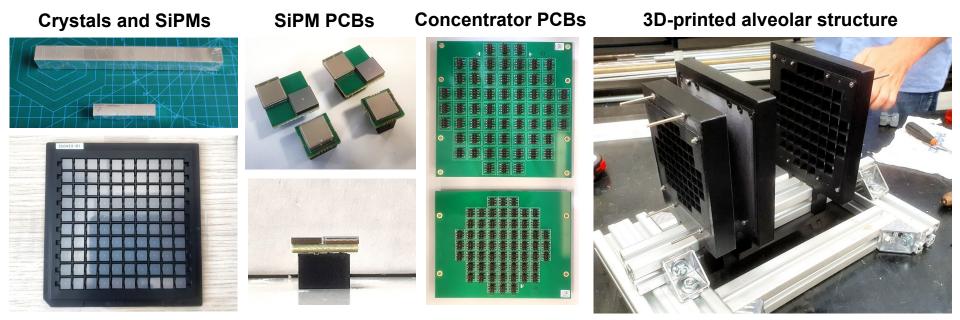

Test beam results - light yields in PWO

- Fraction of shower energy in front crystal decreases as expected due to shower maximum depth change
- Calibrated sum of front and rear scintillation signals and Cherenkov signal grow linearly with deposited energy

- Number of photoelectrons detected can be used to define SiPM/filter specifications:
 - Scintillation: ~36 pe/GeV/mm² at 20% PDE
 - \rightarrow need 6x6 mm² SiPM and 40% PDE to reach target
 - Cherenkov: ~0.7 pe/GeV/mm² at 20% PDE
 - → need 6x6 mm² SiPM and 40 PDE to reach target
 - Contamination from S photons to C-signal <10%
 - → specification satisfied

Prototype design

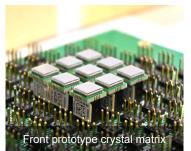
- Plan to assemble a 9x9 PWO matrix
 - o 10x10x50 mm³ front crystals, 14x14x160 mm³ rear crystals
 - 6x6 mm² SiPMs (15 and 50 um, for S and C, resp.)
 - Electronics with FERS-5200 (Citiroc1A)
 - Mechanical design to enable the exchange of the central 3x3 core with BSO crystals and waveform digitization readout



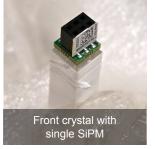
10x10x50 mm³ crystals

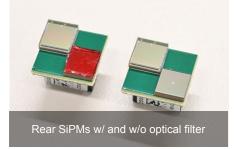
14x14x160 mm³ crystals

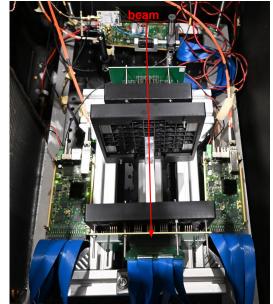
Prototype components under procurement

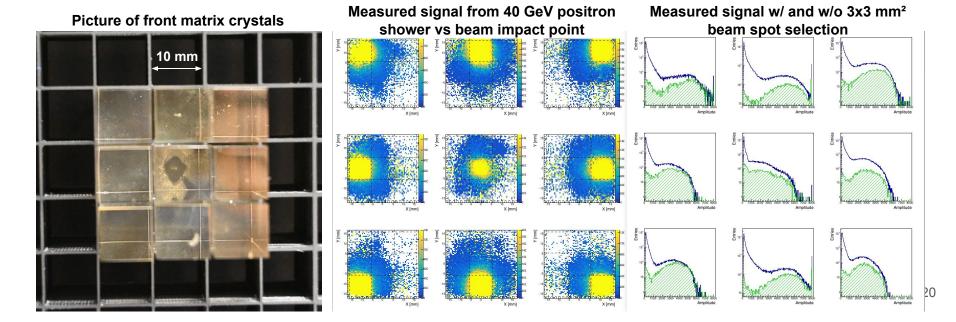

All components in hand except crystals (issue with export license)

Pictures from recent **test beam** (Sept-Oct 2025)


 A test with only few crystals mounted but full prototype mechanics, electronics and readout chain performed at the SPS H6 in Sept-Oct 2025

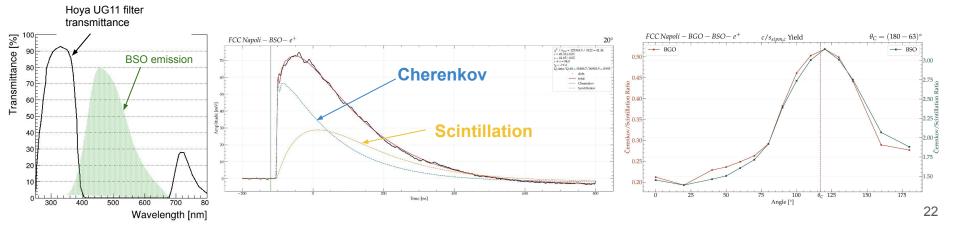






First glance at test beam data

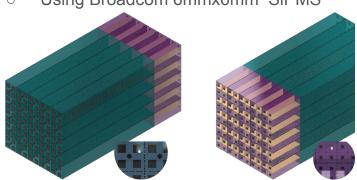
- Ongoing analysis on first data taken with
 - New SiPMs → improved PDE and better light collection efficiency
 - FERS 5200 electronics and EUDAQ framework

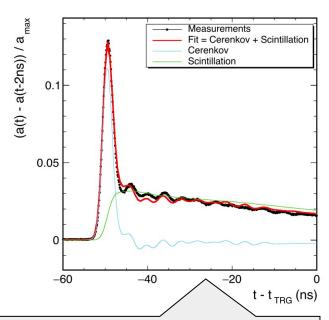


R&D and prototyping with BGO/BSO

Test beam results - C angular dependence in BSO

BSO crystal coupled to SiPM with UG11 optical filter (<1% of S light passing through) Template pulse shape fitting of SiPM+filter signal in BSO yields a good estimate of the cherenkov signal

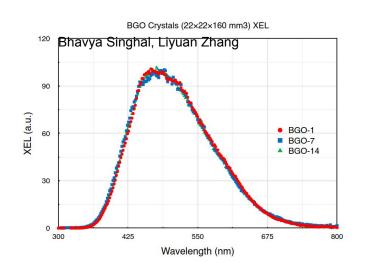

Angular dependence of C/S peaks as expected around cherenkov cone emission angle (~63°)



BGO prototype geometry

Development of a second full containment prototype made of BGO crystals ongoing lead by Calvision

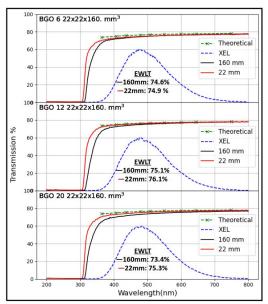
- 10x10 front array, 1 SiPM/crystal
 - Readout with FERS CITIROC
 - Finalizing choice of small cell SiPMs now
- 5x5 rear array, 4 SiPM/crystal, UG330 filters
 - Readout with DRS or other >=2GS/s digitizer
 - Use waveform analysis to separate S/C
 - Using Broadcom 6mmx6mm SiPMS

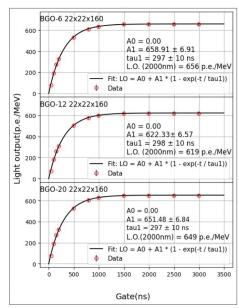


Decomposition of S / C in BGO waveform after SDL filter

- > 150 Č PE/GeV (4x 6mx6mm SiPMs)
- expect ~2x greater yield w/ optimal light coupling

First 20 large BGO crystals


- BGO crystals (22×22×160 mm³) for rear segment under test at Caltech
- Initial checks and uniformity look good
- Waiting for delivery for front crystals and some rear crystals due to export issues



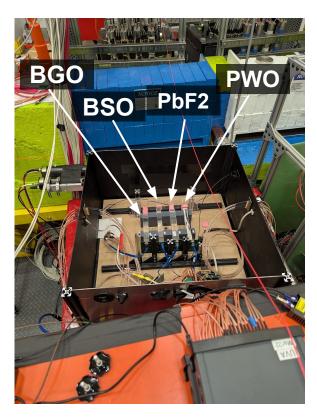
Shanghai SICCASS High Technology Corporation

Summary and outolook

- A broad R&D program to optimize dual-readout in scintillating crystals using optical filters and SiPM is progressing well thanks to successful beam test campaigns in 2024/2025
 - Will continue, in parallel with prototype construction
- Construction of two full containment prototypes is close to completion
 - Plan to be tested on beam in Q2-Q3 2026
 - Following step: a combined test beam with fiber dual-readout (DRCAL) calorimeter
- Good progress on full simulation implemented in key4hep: working on reconstruction and validation before moving to higher level physics studies

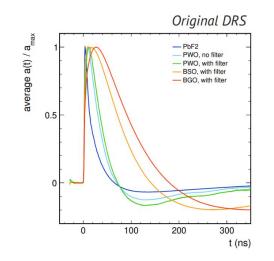
acknowledgments

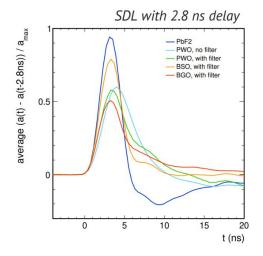
Additional material

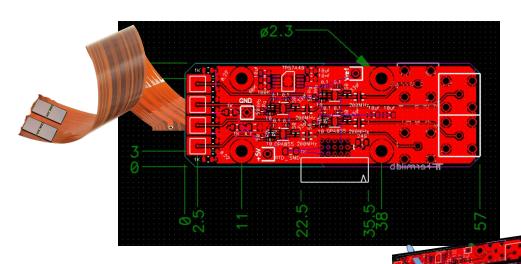

A broad collaboration

- Interest and efforts growing since 2023
 - o INFN:
 - INFN groups: Milano-Bicocca, Napoli, Perugia
 - Coordination within the RD_FCC italian collaboration and national grants (PRIN 2022 MAXICC)

o CALVISION:


- A DOE funded project bringing together several US institutions
- Maryland, Princeton, UVa, Caltech, FNAL, ANL, SLAC*, Michigan, Catholic University of America*, Brandeis*, Stonybrook*, Rutgers*, TTU. MIT, Baylor*, Purdue, Caltech
- CERN (Switzerland) with the support of European widening project TWISMA (GA 101078960)
- IN2P3-IP2I (France)

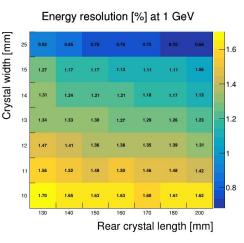

Jefferson Laboratory test beam (2025)

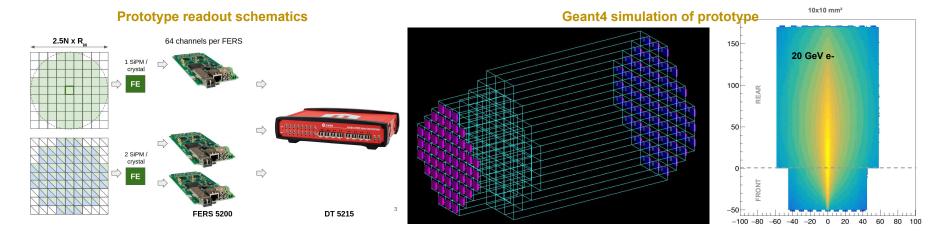

Recent opportunity to take electron data with a faster electronics version of the 2024 DESY TB amps

 Compare S/C separation w/ and w/o SDL filter and versus sampling rates (analysis in progress)

Electronics for rear module (Sergey Los, FNAL)

Rear amplifiers


- 4 channels/board
- Based on OPA 855
- O(ns) rise time
- Flex circuit to connect to crystals
- One board fits in "shadow" of one crystal



Front flex circuits and adapter for FERS to be designed next

PWO-based prototype

- Layout optimization (crystal dimensions) ongoing
- Procurement of FERS-5200 + DT5215 CAEN electronics for readouted completed, purchase of crystals and SiPMs in early 2025
- Design of mechanical support and front-end about to start
- Plan to use DAQ/readout system common to HIDRA (fiber dual-readout calorimeter) prototype for optimal integration

