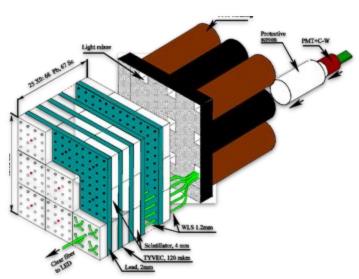


LHCb ECAL Upgrade II

Hengne Li

South China Normal University on behalf of the LHCb ECAL upgrade II working group

LHCb and physics goal

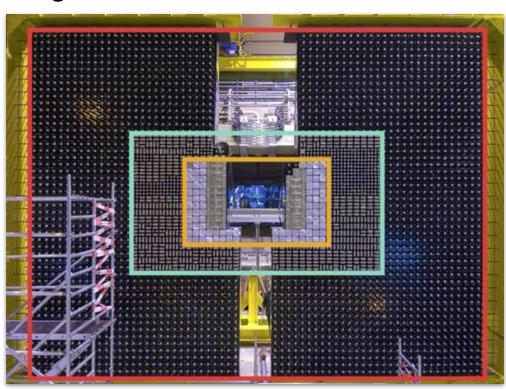

detector (at LHC) fully instrumented in forward region with unique kinematic coverage

$$2 < \eta < 5$$

 Designed for heavy flavor and CPV measurements, also good for hadron spectroscopy, rare decays, EW/Higgs/Top, and Heavy Ion physics.

The Current LHCb ECAL

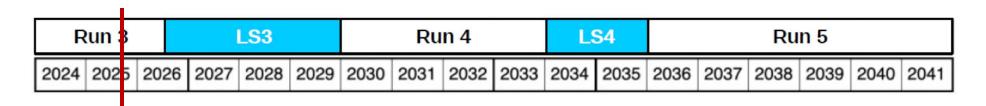
- **ECAL** is essential to all measurements involving neutrals and electrons
- \succ Optimized for π_0 and γ identification in the few GeV to 100 GeV region at $^2 imes 10^{32}~
 m cm^{-2}s^{-1}$


LHCB-TDR-023, LHCB-TDR-024, LHCB-TDR-026

- Shashlik technology used
- Scintillator: Polystyrene pterphenyl - POPOP
- WLS fibres: Kuraray Y-11

- Radiation hard up to 40 kGy
- Energy resolution:

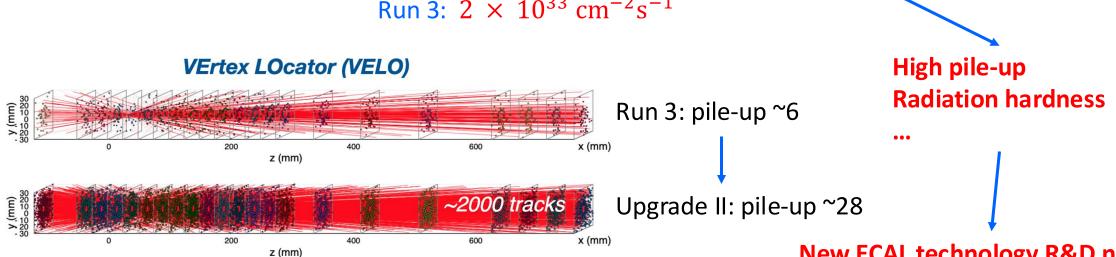
$$\sigma(E)/E$$
 $\approx 10\%/\sqrt{E(\text{GeV})} \oplus 1\%$



View from the back

— Large array of $\approx 50~\text{m}^2$ with 3312 modules and 6016 channels

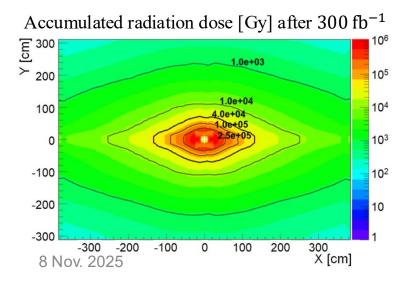
Motivation to upgrade

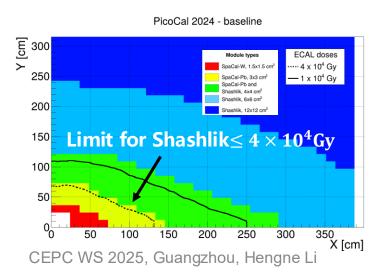

To fully use the opportunities provided by the HL-LHC for heavy flavor physics

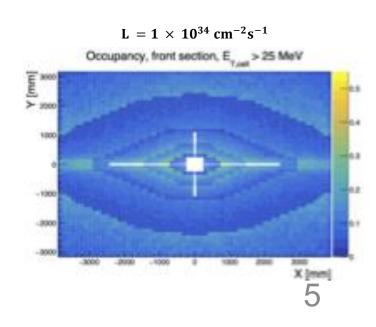
Original design: $2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

Run 3: $2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$

New ECAL technology R&D needed

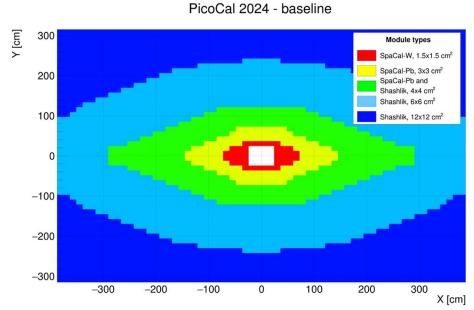

Motivation to upgrade


Requirements for the Upgrade II:


- ightharpoonup Radiation doses up to 1 MGy and $\leq 6 \times 10^{15}$ 1 MeV neq/cm² in the centre for 300 fb⁻¹
 - New technologies required for the center
- Pile-up mitigation crucial
 - Timing O(10 ps) precision
 - Increased granularity
 - longitudinal segmentation

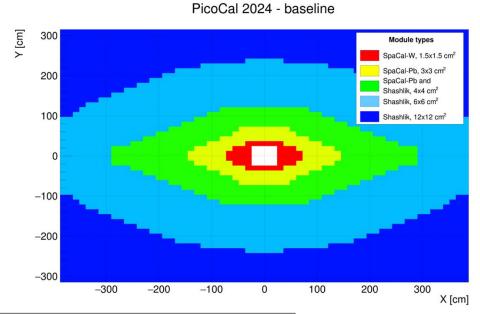
Scintillators R&D needed

> Keep current energy resolution of $\sigma(E)/E \approx 10\%/\sqrt{E \oplus 1\%}$


Technologies for ECAL Upgrade II

SPACAL technology for inner region.

- \rightarrow 1.5 \times 1.5 cm² cell W absorber and crystal fibres
 - Development of radiation-hard crystal fibres
 - Polystyrene fibres for Run 4, then replaced by crystals
- \geq 3 \times 3, 4 \times 4 cm² cell Pb absorber and plastic fibres:
 - Need radiation-tolerant plastic fibres


Shashlik technology for outer region

- \rightarrow 4 \times 4, 6 \times 6, 12 \times 12 cm² cell
 - Timing improved with faster WLS fibres and double-sided readout

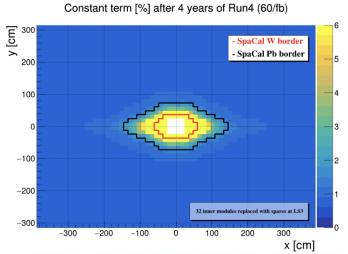
- > 176 new SpaCal modules in the inner region
 - → This region covers about 35% of photons and neutral pions from B-hadron decays over the ECAL acceptance
- The existing modules will be rearranged in rhombic areas (32) Shashlik modules with 4×4 cm² cell size will be replaced)

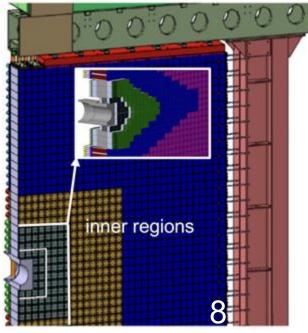
Cell size:	Modules:	Number of cells:
$2 \times 2 \text{ cm}^2$	16 new SpaCal-W modules with plastic fibres	576
$2 \times 2 \text{ cm}^2$	16 new SpaCal-W modules with plastic fibres - special shape	480
$3 \times 3 \text{ cm}^2$	104 new SpaCal-Pb modules with plastic fibres	1664
$3 \times 3 \text{ cm}^2$	40 new SpaCal-Pb modules with plastic fibres - special shape	480
$4 \times 4 \text{ cm}^2$	176 existing Shashlik modules	1584
$6 \times 6 \text{ cm}^2$	448 existing Shashlik modules	1792
$12 \times 12 \text{ cm}^2$	2'512 existing Shashlik modules	2512

The Upgrade Strategy

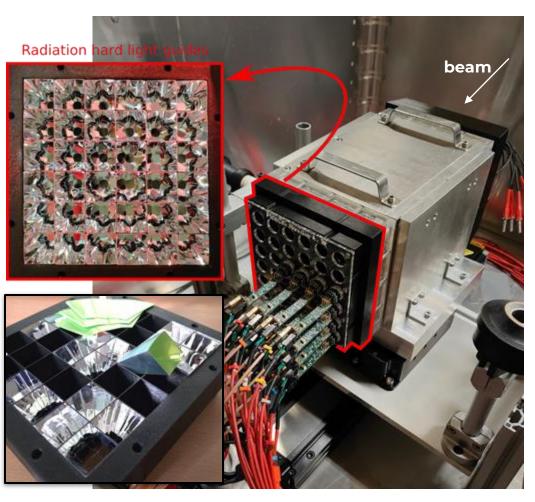
Run	LS3		Run 4			LS4		Run 5								
2024 202	5 202	6 2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041

Run 3 in 2022-Q2/2026:

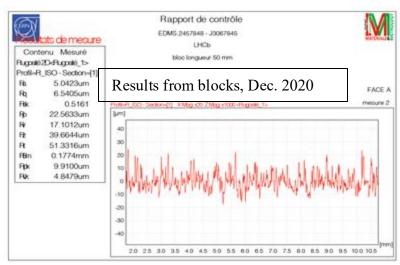

> Run with unmodified ECAL Shashlik modules at $L=2\times 10^{33}\, cm^{-2}s^{-1}$ (new 40 MHz readout)

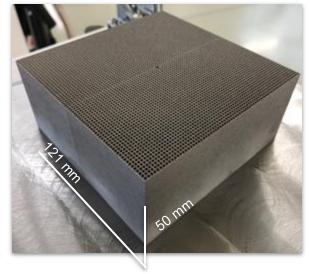

LS3 consolidation in Q3/2026-2029:

- Introduce single-section rad. tolerant SPACAL (2×2 and 3×3 cm 2 cells) in inner regions and rebuild ECAL in rhombic shape to improve performance at $L=2 \times 10^{33}$ cm $^{-2}$ s $^{-1}$
 - 32 SPACAL-W & 144 SPACAL Pb modules with plastic fibres compliant with Upgrade II conditions

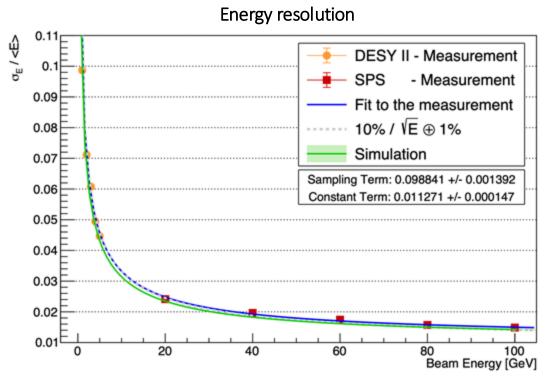

LS4 Upgrade II in 2034-2035 (PicoCal):

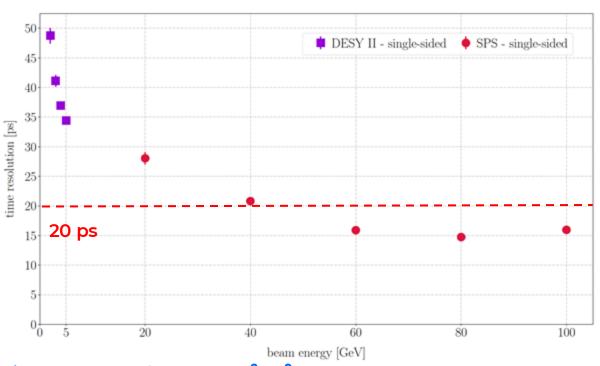
- Introduce double-section rad. hard SPACAL (1. 5×1 . 5, $3 \times 3 \& 4 \times 4 \text{ cm}^2$ cells) and improve timing of Shashlik modules for a luminosity of up to $L = 1 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
 - Innermost SPACAL-W modules equipped with crystal fibres
 - Include timing information and double-sided readout for pile-up mitigation
 8 Nov. 2025
 CEPC WS 2025, Guangzhou, Hengne Li





SpaCal - W Absorber - Polystyrene Fibres

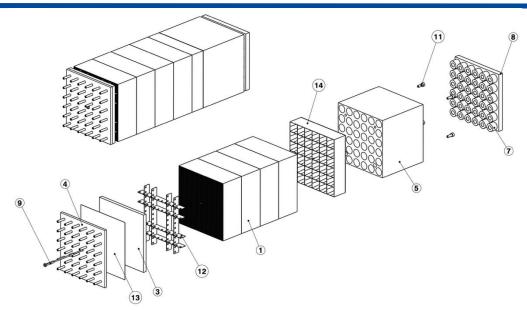

- Full size 121×121 mm² *Module 0* assembled at CERN in 2023:
- Passive materials:
 - 3D-printed W absorber
 - $3 \times 50 \text{ mm} + 1 \times 40 \text{ mm} \text{ long blocks}$
 - R&D performed with EOS, Germany
 - Very good mean roughness $R_a = 5 \mu m$ achieved
 - Smooth surface mandatory not to damage fibres
 - Radiation-hard "hollow light guides" made of 3M ESR
- Active materials:
 - Single-cladded Kuraray SCSF-78 square fibres $1 \times 1 \text{ mm}^2$



SpaCal - W Absorber - Polystyrene Fibres

LHCB-TDR-024 NIM A 1079, 170608 (2025)

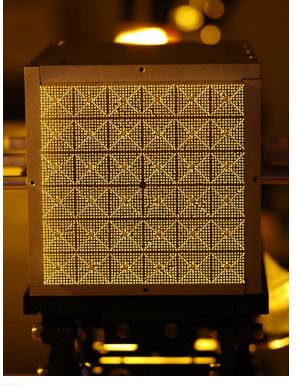
Energy resolution at 3°+3°:

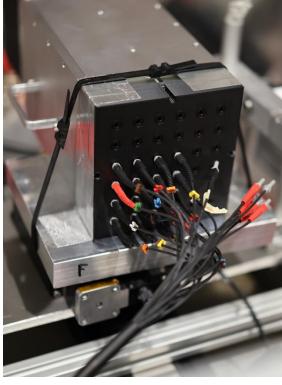

- Noise contribution subtracted
- R14755U-100 PMT
- Symmetric LGs: square to octagon
- Sampling term: $9.9 \pm 0.1 \%$
- Constant term: $1.13 \pm 0.01 \%$
- Very good agreement with simulation

Time resolution at 3°+3°:

- Multi-Anode(R7600U-M4) PMT with 4 channels
- Asymmetric LGs: square to square
- Single-sided readout
- Time resolution above 40 GeV: better than 20 ps

Performance in line with targets

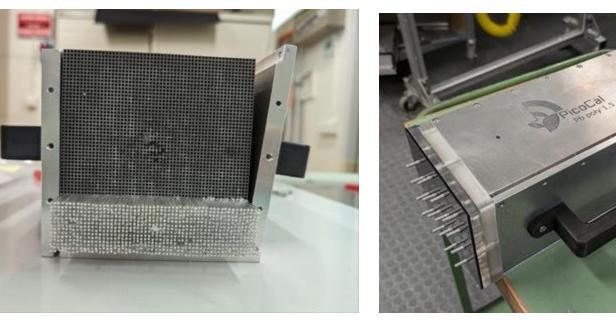

Ongoing R&D: Assembly for LS3

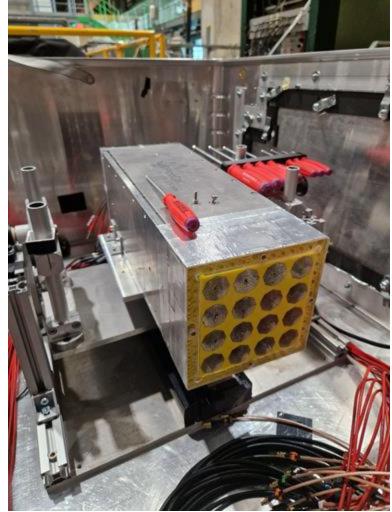


Test beam in May and Sept. 2025 at CERN SPS:

- First test of full Run 4 chain with new prototypes:
 - W absorbers
 - 3HF green plastic fibres (square fibres $1 \times 1 \text{ mm}^2$)
 - Optics assembly with bundlers and long "hollow" light guides
 - R9880U PMTs

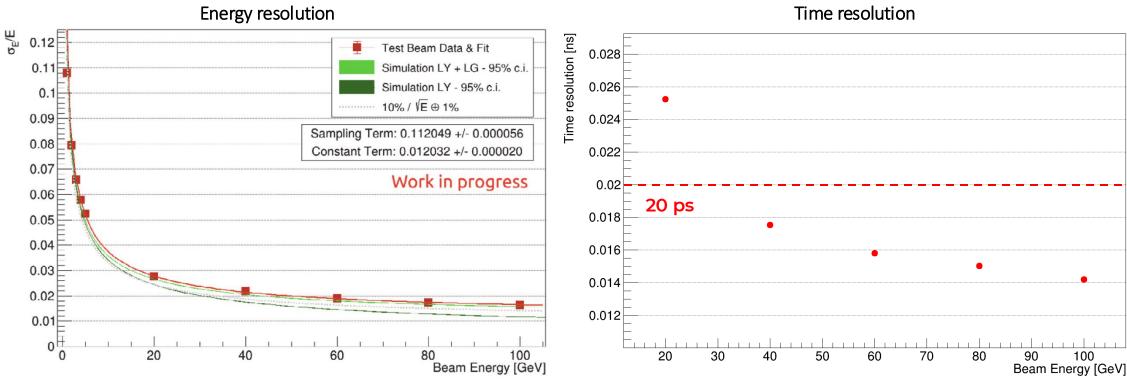
Test plan with new prototype in Nov. 2025 at DESY and CERN with final assembly strategy


- Cable clipping circuits
- 10 meter signal cables
- Read-out with Run 3 & 4 front-end boards electronics


SpaCal - Pb Absorber - Polystyrene Fibres

➤ Module 0 prototype assembled in June 2024

- Pb casting technology for absorber production
- Kuraray 3HF green fibres Ø 1.5 mm



SpaCal - Pb Absorber - Polystyrene Fibres

NIM A 1079, 170608 (2025)

Energy resolution at 3°+3°:

- **R11187 PMT**
- Symmetric LGs
- Single-sided readout
- Sampling term: 11.2 + 0.1 %
- $1.20 \pm 0.01 \%$ Constant term:
- Very good agreement with simulation

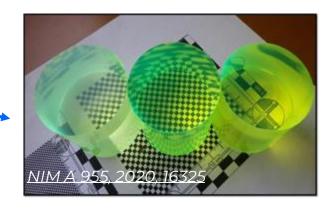
Time resolution at 3°+3°:

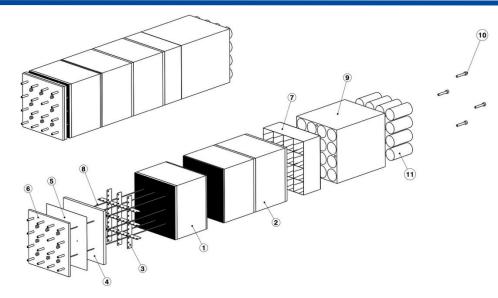
- Multi-Anode(R7600U-20) PMT with 4 channels
- Asymmetric LGs
- Double-sided readout
- Time resolution above 20 GeV: better than 20 ps

Performance in line with targets

Ongoing R&D: Plastic Scintillator

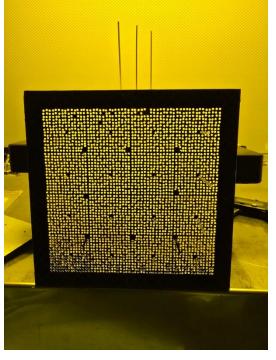
- > 3HF-based green fibres will be used for LS3 enhancement:
 - Better radiation tolerance than SCSF-78 matches requirements
 - However, longer decay time would affect time resolution


- Radiation hardness up to 100-200 kGy (hadrons)
- Fast timing performance
- Cost effectiveness


Formulations ¹⁾				<u>Kuraray</u> D	aray Datasheet			
Description	Color	Emission Spectra	Peak[nm]	Decay Time [ns]	Att.Leng.20 [m]			
SCSF-78	blue		450	2.8	>4.0			

Description		Constant	facilitie Atticens.			
	Color	Spectra	Peakinmi	[US]	Fills	
SCSF-78	blue	See the	450	2.8	>4.0	
SCSF-81	blue	following	437	2.4	>3.5	
SCSF-3HF(1500)	green	figure	530	7	>4.5	

- ▶ R&D ongoing on alternative materials:
 - Hosts other than polystyrene
 - Red and Green emitters


Ongoing R&D: Assembly for LS3

Test beam in May and Sept. 2025 at CERN SPS:

- First test of full Run 4 chain with new prototypes:
 - Pb absorbers
 - 3HF green plastic fibres (round fibres \emptyset =1.5 mm)
 - Optics assembly with bundlers and long "hollow" light guides
 - R9800 PMTs

Test plan with new prototype in Nov. 2025 at DESY and CERN with final assembly strategy

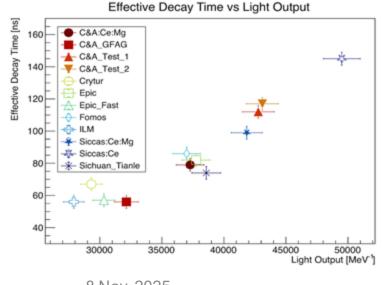
- Cable clipping circuits
- 10 meter signal cables
- Read-out with Run 3 & 4 front-end boards electronics

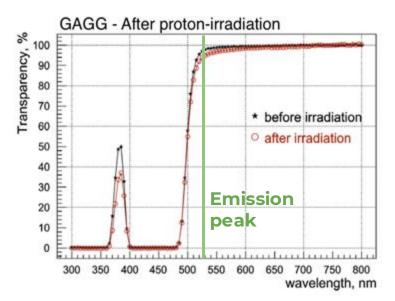
SpaCal - W Absorber - Crystal Fibres

NIM A 816 (2016) 176 NIM A 1000, 165231 (2021)

SPACAL prototype with W absorber and garnet crystals

Module details:


- Absorber in pure tungsten 19 g/cm³
- 9 cells of 1.5 \times 1.5 cm²


 $(R_M \sim 1.5 \text{ cm})$

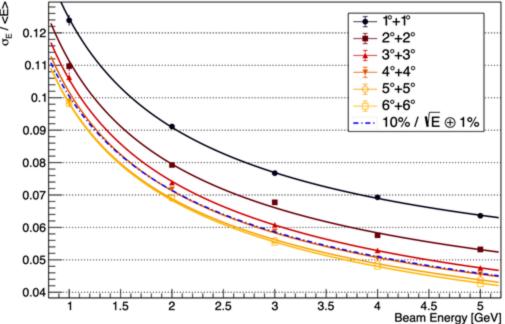
4+10 cm long

 $(7 + 18 X_0)$

- Reflective mirror between sections
- Squared garnet crystal fibres ($1 \times 1 \text{ mm}^2$ cross section)

GAGG as scintillating material

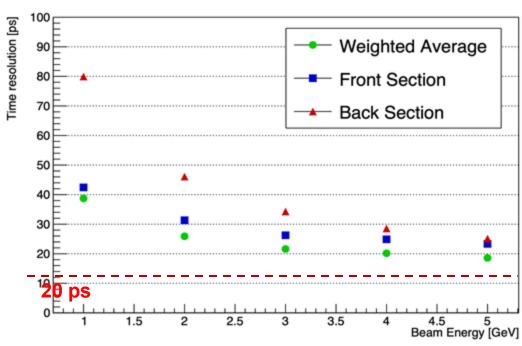
- > High light output and relatively fast decay time ($\sim 50 \text{ ns}$)
 - Tunable scintillation properties
- Radiation hardness tested up to 1 MGy


8 Nov. 2025

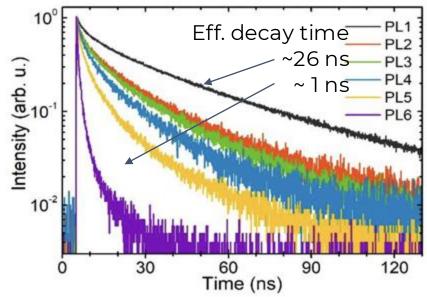
CEPC WS 2025, Guangzhou, Hengne Li

SpaCal - W Absorber - Crystal Fibres

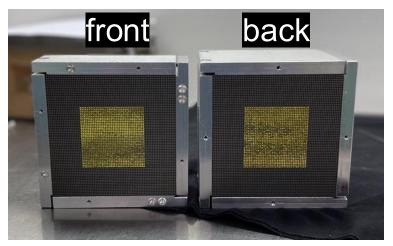
NIM A 1045, 167629 (2022)


Energy Resolution

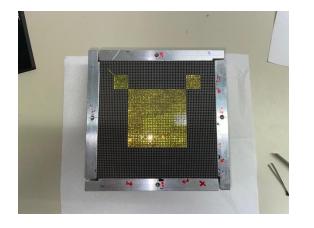
- Resolution improves increasing the incidence angle
- Energy resolution at 3°+3°:
 - Sampling term: $10.2 \pm 0.1 \%$
 - Constant term: 1-2%


Performance in line with targets

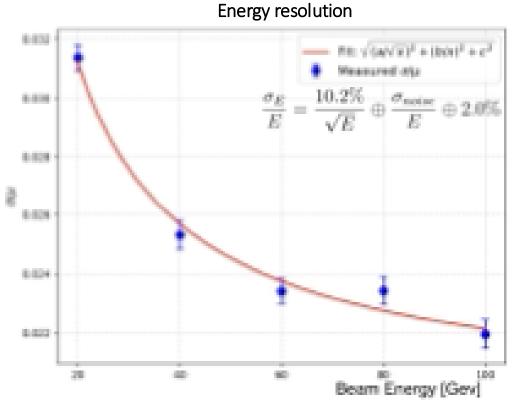
Time Resolution C&A GFAG



- Time stamps obtained using CFD algorithm
- **➤** Time resolution C&A GAGG at 3°+3°:
 - Measurement in direct contact with MCD(R7600U-20) PMTs for ultimate performance
 - Double-sided readout
 - $-18.5 \pm 0.2 \text{ ps } @ 5 \text{ GeV}$


Ongoing R&D: Accelerating Scintillation

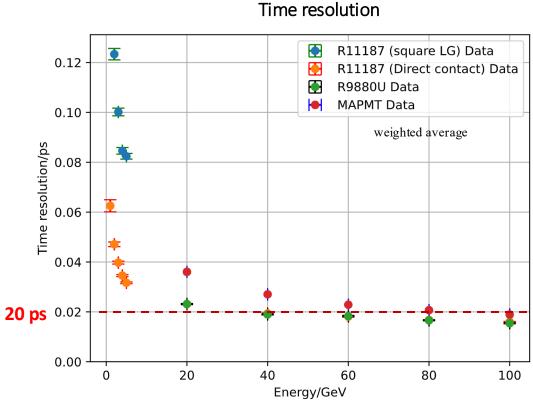
Material Advances, 2022, 3, 6842



- \triangleright The issue: current commercial GAGG has scintillation decay time $> 40~\mathrm{ns}$
 - Mitigate spill-over effect on time resolution
- Novel GAGG compositions developed to quench scintillation
 - Light yield reduced
 - Decay time accelerated
 - Time resolution kept competitive
- > R&D to produce large-size and homogeneous Czochralski ingots
- Collaboration with:
 - SiPAT, China
 - FZU and Crytur, Czech Republic
 - European project TWISMA including CERN, ILM & UCB, and ISMA
- The Second prototype in June 2024
 - SiPAT GAGG with decay time ~ 20 ns
 - 3D-printed absorber with LaserAdd, China
 - > Two more cells filled in 2025 with new GAGG fibers with decay time ~10 ns
 - One with GAGG from FZU/Crytur
 - One with GAGG from SiPAT

8 Nov. 2025 CEPC WS 2025, Guangzhou, Hengne Li

SpaCal - W Absorber - Crystal Fibres

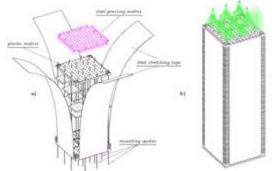


► Energy resolution at 3°+3°:

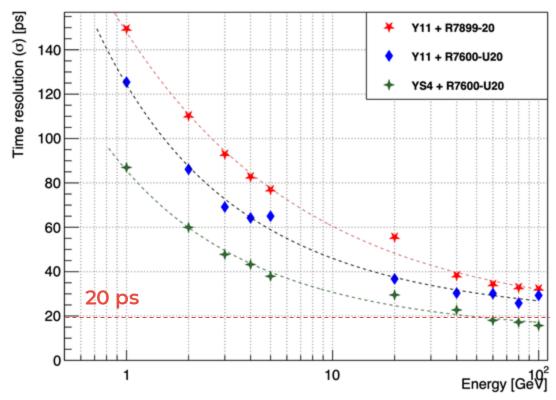
- Sampling term: $10.6 \pm 0.2 \%$

— Constant term: ∼2 %

First measurements performed with non-optimal configuration degradation of energy and time resolution expected



> Time resolution SIPAT GAGG at 3°+3°:


- R11187 (Direct contact) and R9880U have similar performance (<20 ps when > 20 GeV)
- MAPMT and R11187 (square LG and only front part) much worse in time resolution

Shashlik R&D

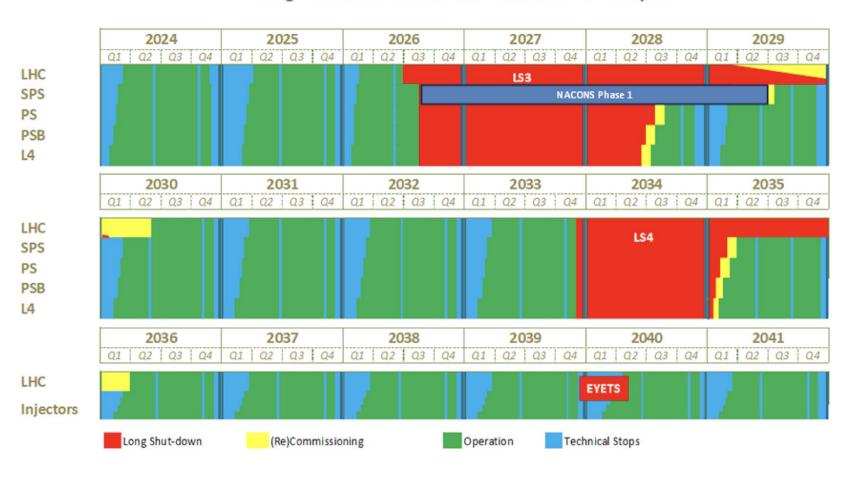
- Current LHCb Shashlik modules have good time properties
- Improvements:
 - Replacing WLS fibres (Kuraray)
 - Y-11 (7 ns decay time) ← Current LHCb
 YS-2 (3 ns decay time)
 - YS-4 (1.1 ns decay time)
 - Double-sided readout
- Time resolution at 3°+3°:
 - Current(R7899-20) and faster(R7600-20) PMT
 - Time resolution above 40 GeV: better than 20 ps (single-sided readout)

Time resolution - Single-sided readout

Summary and conclusion

The LHCb ECAL needs to be enhanced and upgraded during the LHC LS3 and LS4

- > The innermost 176 modules need to be replaced in LS3 due to radiation damage
 - SpaCal with Tungsten/Lead absorber and plastic fibres meets the requirements
- ➤ The Upgrade II in LS4 introduces picosecond-level timing and more demanding radiation hardness requirements
 - Better than 20 ps achieved with Shashlik and SpaCal at high energy
- Comprehensive R&D ongoing (also interesting for other future projects)
 - Test beam measurements with prototypes
 - Detailed Monte Carlo simulations
 - Study of novel absorber production techniques
 - Study of suitable LGs, bundlers, PMTs and development of readout electronics
 - Investigation of new radiation-hard and fast scintillators

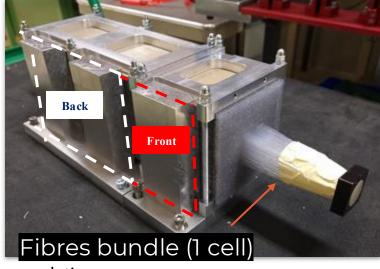


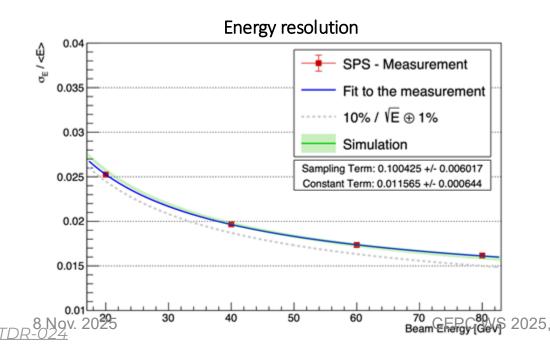
Thanks for your attention!

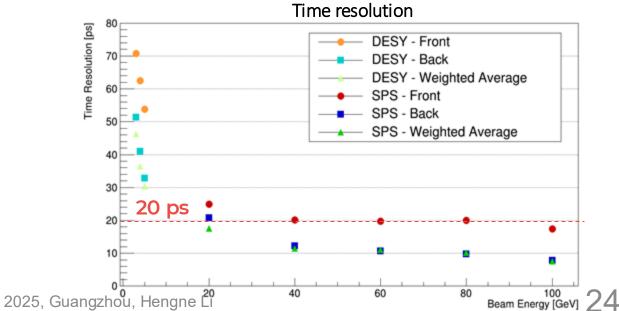
Back up

Updated CERN accelerator schedule

Long Term Schedule for CERN Accelerator complex

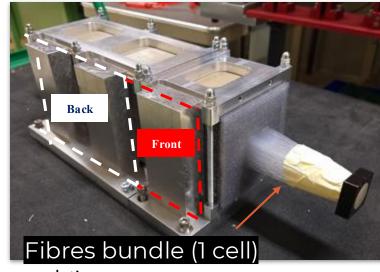



- Run 3 extended till end of June 2026
- LHC restart for Run 4 in 2030
- LHC LS4 moved by one year to 2034-35
- LS5 becomes EYTES
- Also impact on SPS test beams!


SpaCal - Pb Absorber - Polystyrene Fibres

Pb absorber and polystyrene fibres:

- -8 + 21 cm long $(7 + 18 X_0)$
- Reflective mirror between sections
- Kuraray SCSF-78 round fibres $\emptyset = 1.0 \text{ mm}$

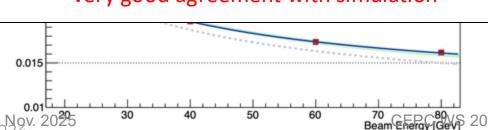

SpaCal - Pb Absorber - Polystyrene Fibres

Pb absorber and polystyrene fibres:

- -8 + 21 cm long $(7 + 18 X_0)$
- Reflective mirror between sections
- Kuraray SCSF-78 round fibres $\emptyset = 1.0 \text{ mm}$

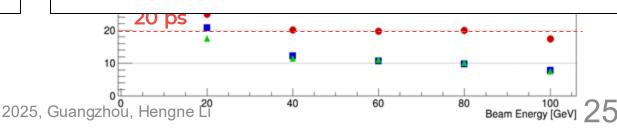
Energy resolution

Performance in line with targets



Time resolution

Energy resolution at 3°+3°:


 $0.04 \, r$

- Noise contribution subtracted
- Sampling term: $10.0 \pm 0.6 \%$
- Constant term: $1.16 \pm 0.06 \%$
- Very good agreement with simulation

> Time resolution at 3°+3°:

- Measurement in direct contact with fast MCD(R11187) PMTs
- Double-sided readout
- Time resolution above 20 GeV: better than 20 ps

