

Design and Updates CEPC Computing Platform

On behalf of CEPC computing team and IHEP-CC
November 10, 2025
The 2025 CEPC International Workshop

Outline

- 1 Overview
- 2 Computing Model (DCI)
- 3 Resource Provision
- 4 Current Status
- 5 Summary

Overview

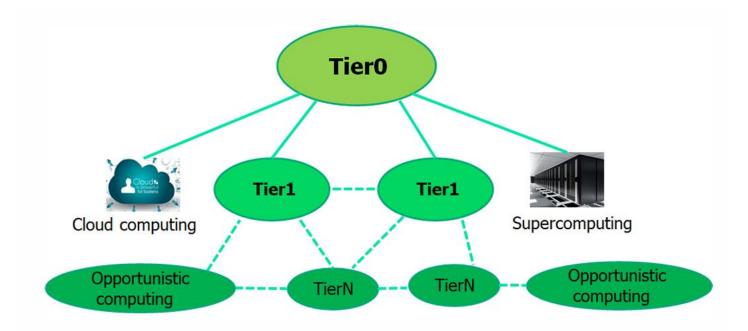
Resource Estimation

■ With a disk-to-tape storage ratio of 1:1 and a CPU utilization rate of 80%, along with an additional 10% allocated for physics analysis requirements

• Estimation over the five-year period:

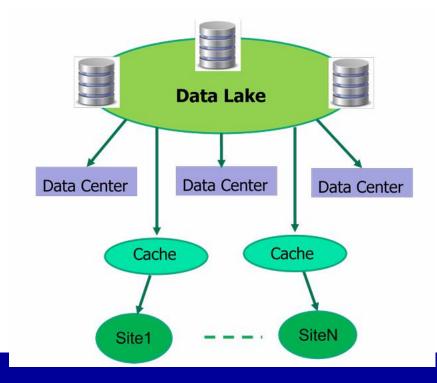
Table 13.1: Estimation of computational and storage resources

Mode	Disk (PB)	Tape (PB)	CPU (kHS23)
Higgs	40	40	220
Low-lumi Z	380	380	1,760
Total	420	420	1,980


Distributed Computing Infrastructure(DCI)

- Computing Model
- Workload management system
- Data management system
- Opportunistic computing
- Computing operations
- Open data
- Long term data preservation
- Resource provision
 - Computing
 - Storage
 - Network
 - Smart data center infrastructure

DCI – Computing Model


- Distributed computing paradigm and organizes resources in a hierarchy model
 - supercomputing centers, commercial cloud platforms, and other opportunistic sources
 - resource allocation, dynamic scheduling, job monitoring, and fault tolerance
- The example technologies: Dirac and PanDA

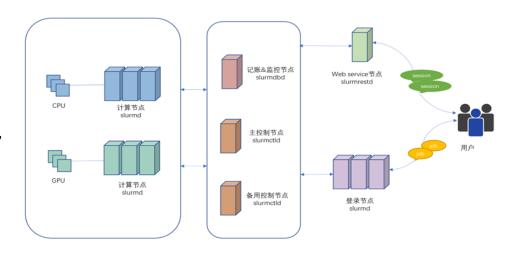
DCI – Data Model

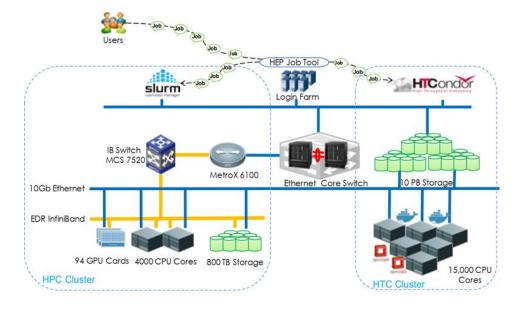
- A central data storage architecture with a multi-tier caching system
 - Efficiently handle, store, retrieve, and manage large volumes of data across distributed resources
 - The central storage service will be geographically distributed across large data centers
 - Data will be delivered through a multi-tier caching system
- The example technologies: DIRAC DMS and Rucio

Open Data

- The purpose of open data is to facilitate multi-tiered data interoperability and transparent knowledge sharing aligned with global open science frameworks
 - Level 1: datasets involved in those published results
 - extended figures/tables for contextual validation
 - Level 2: simplified data formats for outreach and analysis training
 - basic four-vector event-level data
 - Level 3: reconstructed data and simulated data together with analysis-level experiment-specific software
 - ◆ allowing to perform complete full scientific analyses using existing reconstruction
 - Level 4: basic raw data
 - ◆ allowing the production of new simulated signals or even re-reconstruction of collision and simulated data
- the Data Preservation in HEP (DPHEP):
 - IHEP is a member of DPHEP community

Long term data preservation


- According to DPHEP, A long-term data preservation model is designed to address data challenges of CEPC
 - it is essential to preserve not only experimental and reconstructed data but also reconstruction and simulation software
 - Multi-layer storage system: disk storage for medium to long-term data preservation,
 and tape libraries for permanent backup
 - All experimental data, reconstructed data, reconstruction software, and simulation software will be systematically stored and managed
 - it is also necessary to preserve the software and the data processing procedures. The reconstruction software and analysis processes will be preserved in a manner that allows for future execution and modification


Computing

Type of CEPC computing jobs

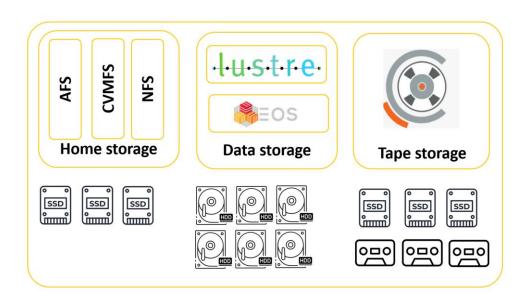
- Single-core job or multi-core job within one node: simulation, reconstruction, analysis
- Multi-core job on multi nodes or GPU job: part of reconstruction,
 Al training
- CEPC site computing service is based on HTCondor/Slurm
 - HTC service for single-core job or multi-core job within one node
 - ◆ Support 1,000,000 jobs queuing and 100,000 jobs running
 - HPC service for big multi-core job or GPU job
 - ◆ Support big-scale parallel job and GPU
- Intelligent scientist workstation service
 - Al support: pre-trained algorithms, curated datasets, and scalable inference services
 - service support: workflow design, parameter optimization, and collaborative analysis

Data Storage

User Home Storage Service

- Based on NVMe SSD and distributed file system architecture
- Provides high-concurrency, low-latency access for user home directories

Software Repository Storage


- Utilizes CVMFS for efficient software distribution
- Maintains version consistency with atomic file fetching

Data Storage

- Provides exabyte (EB)-level scalable storage capacity
- Supports multiple access protocols: XRootD, HTTP/HTTPS, FUSE, S3
- Designed for large-scale scientific computing, AI workloads, and data-intensive experiments

Tape Storage

- Offers high-capacity, cost-effective archival storage
- Suitable for long-term data preservation and multi-site backup

Network and Cyber Security

- Network system: Unified High-Performance Environment
 - Super High-Bandwidth: Intra- and inter-data center infrastructure for batch processing and cloud computing
 - Lossless Network: Enables large-scale data processing and AI services across geographically dispersed facilities
 - Ultra-Low Latency: Supports the Intelligent Scientist Workstation for interactive computing and realtime IoT operations
- Cybersecurity system: protection against diverse cyber threats for data processing systems, networks, and infrastructure
 - Management System: Establishes security policies, governance protocols, and procedural standard
 - Technical Architecture: Implements logically segmented security domains with layered defenses: Boundary Protection, IDS/IPS, Host Hardening, Vulnerability Management, Log Auditing
 - Security Operations: Features a big data analytics-driven security platform and a cross-facility cybersecurity alliance for joint defense coordination

Smart Data Center Infrastructure

- Green Energy Efficiency and Thermal Management
 - Integrate cold plate and immersion high-efficiency liquid cooling systems, addressing ultrahigh rack power densities (exceeding 100 kW)
 - By utilizing free natural cold sources (e.g. outdoor air, lake water) for cooling, cooling-related energy consumption (40–50% of total usage) is reduced
- Transforming data centers from high-carbon units into hubs of energy efficiency and low environmental impact
 - Prioritize adopting renewable energy sources (e.g. photovoltaic, wind power) to replace fossil fuel-based power supply
 - Utilizing heat pump waste heat recovery technology, the data center's waste heat provides district heating and domestic hot water
- •Al underpins intelligent data center operations
 - Machine learning models forecast cooling demands and optimize energy allocation

Current Status

- DIRAC is chosen as distributed computing framework
 - Originally from LHCb, now used for many new experiments: BELLEII, ILC, CTA, SKA.....
- CVMFS for software distribution
 - stratum0 operated @IHEP:/cvmfs/cepc.ihep.ac.cn/, stratum1 @IHEP and @RAL
- VOMS for managing CEPC users (would be reeplaced by IAM)
 - VOMS hosted @IHEP: https://voms.ihep.ac.cn:8443/voms/cepc/
- Lustre for data storage
 - An open source shared file system: /cefs/
- HTCondor and Slurm for local computing resource management

Current Status

Resources

- CPU: ~2000 cores (640 cores shared with ILC in grid)
- Storage: 3.7 PB, 2.9PB used (81%, should be considered to add more space)
- Network: a shared network link with 100 Gbps bandwidth between China and Europe

Jobs (in recent half year)

■ 6,318,503 jobs consumed 3,457,788 CPU hours

Summary

- CEPC needs large scale of resources for the future requirements
 - Million-core level computing power and EB-level data capacity
- Distributed Idea for computing model and data model
 - Would be consider more types of computing provides
- Resource provision will develop over current mature solutions
 - Computing, storage, network and infrastructure
- CEPC computing platform is supporting the pre-research work
 - Job and data

Thanks! Q&A