

FPGA based RDMA for BEE Readout

2025.11.09

Outline

- Background
- RoCE v2 on FPGA
- Research Progress
- Summary and Outlook

Background——Data Transmission Protocol

TDAQ (Trigger and Data Acquisition System)

- Rising luminosity in particle physics
- Increasing data volumes
- Critical Needs: Bandwidth & Real-Time Processing

Traditional Data Transfer Protocol

- I/O bottleneck issue
- High data copying overhead, limiting data transfer bandwidth

Application buffer OS TCP/IP buffer Driver buffer Adapter buffer Adapter buffer

Data Transmission progress

RDMA (Remote Direct Memory Access)

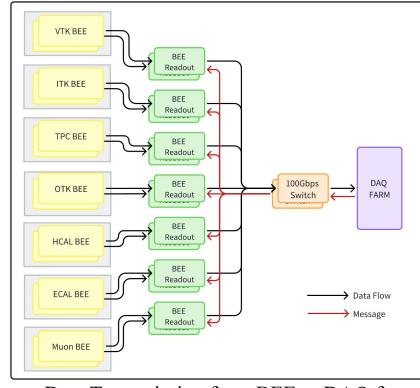
- Kernel Bypass: Eliminates kernel involvement in the data transmission process
- Direct data transfer between user-space buffers and NIC buffers
- High throughput & low latency

The adoption of RDMA will enable high-performance, efficient data transfer, characterized by high throughput, low latency, and minimal computational overhead.

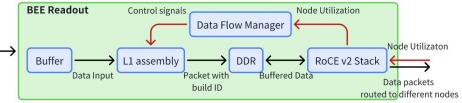
Data Transmission	RDMA Latency (µs)	TCP/IP Latency (μs)
FPGA - FPGA	0.5-2	10-40
PC - PC	1.5-3	15-50
Best Result	<1	>10

Background——CEPC

CEPC


 Study the Higgs boson and other physical processes through electron-positron collisions

RDMA for BEE Readout


- High Data Rate
- Low-Latency Demand
- L1 assembly implemented in BEE readout module, enables the dispatch of event data segment to individual HLT nodes

Future Work

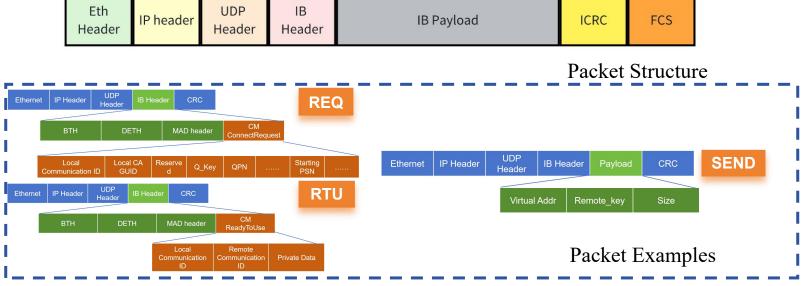
- GPUDirect RDMA: FPGA → GPU Memory
- Enable faster and more efficient trigger algorithms by cutting latency
- RDMA network stack on FPGA
- BEE readout module

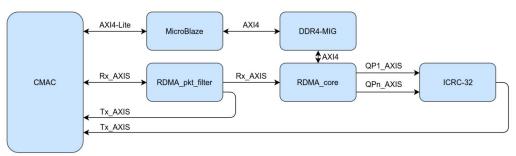
Data Transmission from BEE to DAQ farm

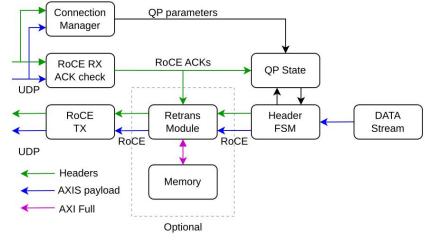
BEE Readout Module

Background——RDMA Protocol

Protocol	Base Transport Protocol	Property	Use Case
InfiniBand	Hardware-based RDMA Protocol	 Low latency、High throughput、 Mature CPU offload Highest cost、WAN complexity 	Event Reconstruction (CMS Run-2)HPC ClusterALICE EPNFarm
RoCE v1	Layer 2 Ethernet	Leverages Ethernet hardware, low costNon-routable	
RoCE v2	UDP/IP over Layer 3 Ethernet	 Leverages Ethernet hardware, routable, IP-network compatible A little bit higher latency 	 DAQ (ESRF RASHPA、DUNE FPGA) Event Reconstruction (CMS Run-3, LHCb) SmartNIC
IWRAP	TCP/IP	 Lowest cost (leveraging mature TCP/IP) Highest processing overhead and latency 	Specific Cluster Network (CERN)


RoCE v2: A Balanced Choice (Based on complexity, cost, performance, and research trends)


Background——RoCE v2

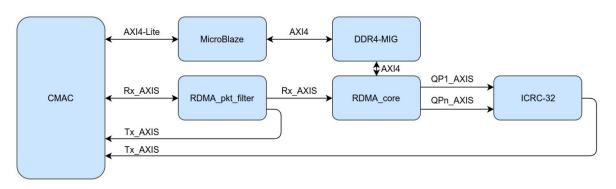

RoCE v2

- Connection Setup
 - Manual Out-of-Band (OOB) via TCP/UDP
 - Automated via RDMA CM and librdmacm
- RoCE v2 Support
 - Operations: Send, Write, Read, Receive...
- Based on two open source projects

Project 1

Project 2

RoCE v2 on FPGA

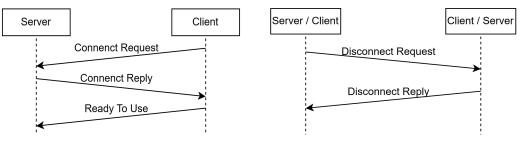

- Aims: HL-LHC FELIX Platform Optimization (ATLAS)
- Firmware Design
 - VCU128 Evaluation Kit
 - RDMA core + CMAC + DDR
 - Receive, Send, and Write have been implemented
 - Supports retransmission and multi-QP management

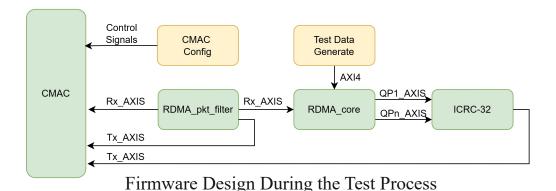
Nvidia Mellanox Connectx-5

AMD FPGA VCU118 Evaluation Kit

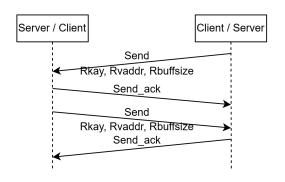
Firmware Design

- RDMA_core: Parses and generates UDP packets compliant with RoCE v2 protocol
- RDMA_pkt_filter: Verifies RoCE v2 packets and responds to ARP messages
- DDR4 MIG: Manages temporary data storage with DDR4 SDRAM
- CMAC: Frame Assembly, CRC Checking, PCS Interaction


Research Progress——Data transfer process



Changes in the Firmware


- Fix the timing issue occurred during the transplant process
- CMAC Config module: Enables configuration of the CMAC core
- Test Data Generate module: Generate test data

Connection Establish

Send Founction

- FPGA-to-PC Data Transmission Successful
 - Connection established
 - Send function implemented
 - Debugging the Write and continuous data transfer functions.

	PC
CPU	Intel(R) Xeon(R) Gold 6226 CPU @ 2.70GHz
NIC	ConnectX-5
Server/Client	Client
	FPGA board
Model	FPGA board VCU118 Evaluation Kit
Model QSFP28	

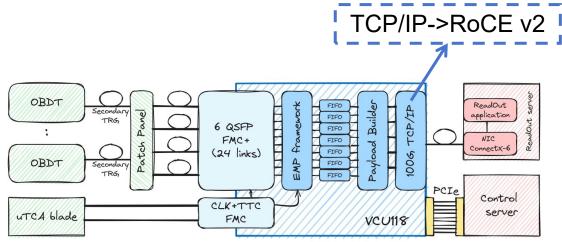
RoCEv2 on FPGA

- Aim: Replaces TCP/IP to enable direct data transfer from FPGA to Readout Server (CMS)
- Firmware Design:
 - Implements RDMA protocol on top of the UDP/IP stack
 - VCU118 Evaluation Kit + ConnectX-5

Implementing RoCEv2 in Verilog for FPGA

<u>Gabriele Bortolato</u>^{a,b,c}, Matteo Migliorini^c, Andrea Triossi^{a,b}

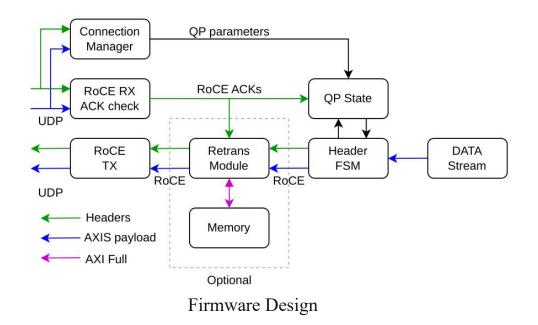
^aINFN sez. Padova, ^bDFA Padova University, ^cCERN

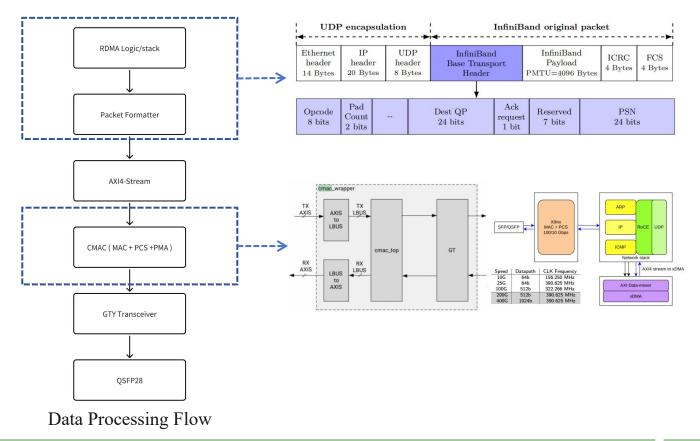


Front-end RDMA over Converged Ethernet, real-time firmware simulation DOI 10.1088/1748-0221/19/03/C03038

https://github.com/Gabriele-bot/100G-verilog-RoCEv2-lite

Figure 1. Schematic representation of the DT 40 MHz readout system. From left to right: the connection to the CMS TCDS and secondary lpGBT links from the OBDTs are received by a VCU118. A simplified illustration of its main components is shown in the middle box. The firmware is based on the CMS EMP framework, connected via a set of FIFOs and a payload builder process to a 100G TCP/IP module. Board and firmware are monitored and controlled via PCIe. A second server is used to receive and process the TCP/IP stream.

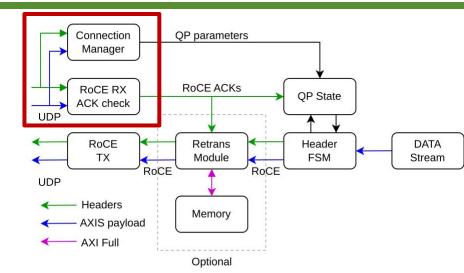

40 MHz triggerless readout of the CMS Drift Tube muon detector .1088/1748-0221/19/02/C02050


- Completed project reproduction
- Executed firmware functional and performance tests

Research Progress——Firmware Design

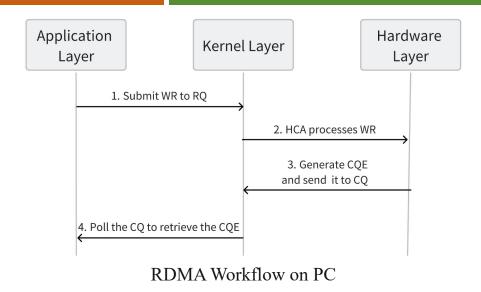
- A transmit-only RoCE v2 implementation
- Supporting only RC RDMA Write and RC Send operations
- The receive path is strictly limited to ACK and NAK processing

Research Progress——Software Design



Server (PC) QP establish

- 1. Open the RDMA device and allocate a Protection Domain (PD)
- 2. Allocate a Completion Queue (CQ)
- 3. Create a Queue Pair (QP)
- 4. Register a Memory Region (MR)
- 5. Initialize QP state: RESET \rightarrow INIT, INIT \rightarrow RTR, RTR \rightarrow RTS


Synchronize QP information and control the FPGA's QP state

- Send connection information (QPN, PSN, MEM Base ADDR, MEM Key) in a fixed frame format to a
 UDP port other than 4791
- Transition the FPGA's QP to RTS state via the Connection Manager

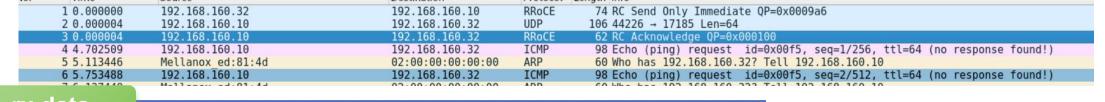
Research Progress——Software Design

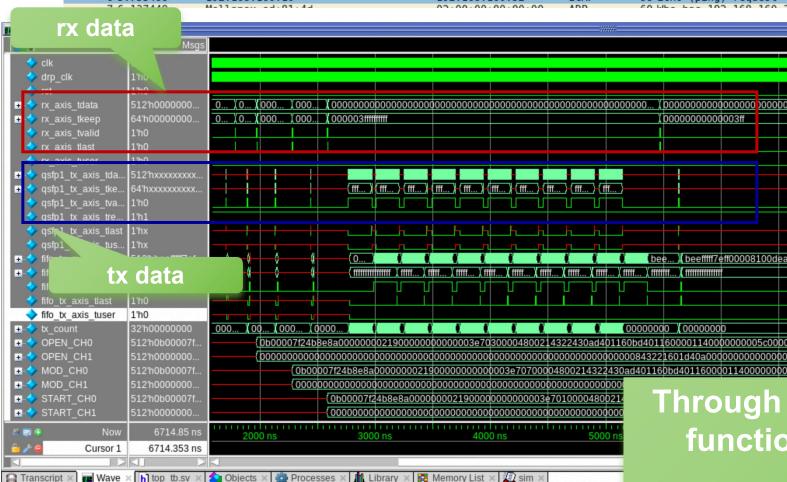
- Post Work Request (WR)
- Hardware processes WR
- Generate Completion Queue Entry (CQE)
- CQE enters Completion Queue (CQ)
- Poll Completion Queue (CQ)

• **Busy-Polling** - Fastest, but CPU intensive

The application, in a tight loop, continuously and repeatedly calls the polling function (e.g., ibv_poll_cq) to check for new Completion Queue Entries (CQEs) in the Completion Queue (CQ).

• Event-Driven / Blocking - Most efficient, but higher latency


The application does not actively poll. Instead, it requests the hardware to notify it via an "event" when a new CQE arrives. The application's thread "sleeps" or blocks until the event occurs.


• **Hybrid Polling** - A best-practice compromise

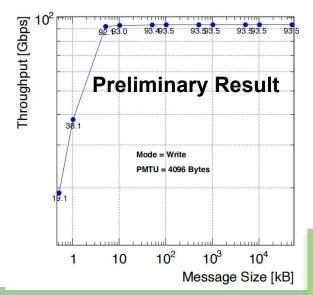
Combines the advantages of the two methods above. It first performs a short period of busy-polling. If no CQE is received during this time, it switches to the event-driven blocking mode, waiting for the next notification.

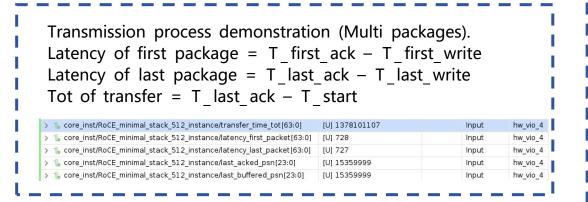
Functional Test

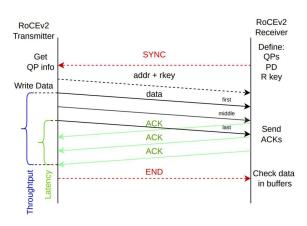
- RDMA Packages Captured
- Simulation (AXI bus data, ping/arp/udp) & Messages
- Fix iCRC padding issue in write function

Through simulation test, the firmware functionality has been verified as correct.

Performance Test




Throughput


When the message size exceeds 5 kB, the attained throughput is 92.1 Gbps,
 and the maximum throughput is approximately 93.5 Gbps

Latency

- Use OP code, PSN, bth_valid, and aeth_valid to identify the first and last sent packets and validate the received ACK
- Msg.size=262kB, Msg.num=2e5(50GB)
- Single package latency \approx 730 clock \approx **2.27 \mus**

Enabling future software triggers and high data-rate operations under high luminosity.

Performance Test

Reliability

- Non-PRBS data
 - Test completed successfully
- Data from Parallel PRBS Generator
 - Parallel PRBS Generator Module
 - Software was developed to verify the consistency between the sent and received data
 - Excessive synthesis time & memory usage (>100 GB during synthesis)

To be continued...

Summary and Outlook

- Project 1: Partial functional testing has been completed, and further development is required
- Project 2: Developed and tested throughput, latency, and stability during data transmission
 - ✓ Continuous transmission logic
 - ✓ Receiver software development
 - ✓ Throughput (firmware debugging)
 - ✓ 92.1 Gbps throughput, 2.27 µs latency

Outlook

- RDMA Network Stack
 - DDR-Based retransmission implementation
 - Multi-QP Management
 - Priority Flow Control (PFC)
 - Backend computation/Storage pressure
- BEE readout module: The integration with HLT demo will be completed

Thanks!