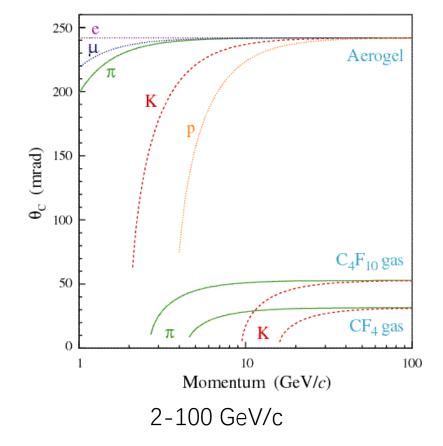
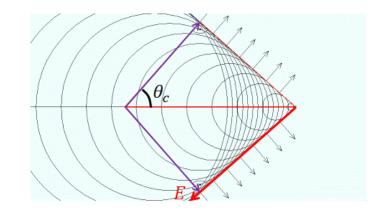
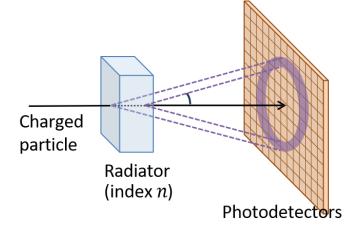


Preliminary consideration of a Cherenkov detector at CEPC

Zhonghua Qin, IHEP CEPC Workshop, Nov.9, 2025


Outline


- A reminder of the Cherenkov detector
- Motivation of a Cherenkov detector for CEPC
- Location of the Cherenkov detector for CEPC
- Technologies used for Cherenkov detector
- Design of the CEPC Cherenkov detector
- R&D on aerogel radiator
- Investigation on photon detectors
- Summary

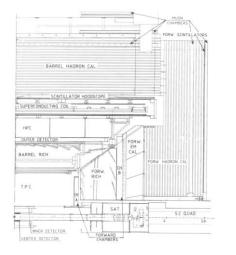

A reminder of Cherenkov detector

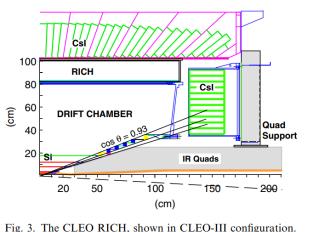
• Cherenkov detector is a powerful tool for charged particle identification, especially for particles with a momentum up to several tens of GeV/c where the ToF is not applicable

LHCb RICH-1 (Aerogel+ C_4F_{10} gas radiator) RICH-2 (CH₄ gas radiator)

RICH 2025, Kodai Matsuoka

Threshold:
$$\beta > 1/n$$


Cherenkov angle:
$$\cos \theta_c = \frac{1}{n\beta}$$


Number of photons:
$$\frac{dN_{\gamma}}{dE} = \left(\frac{\alpha}{\hbar c}\right) Z^2 L \sin^2 \theta_C$$

Separation power:
$$N_{\sigma} \approx \frac{|m_1^2 - m_2^2|}{2P^2\sigma[\theta_{\sigma}(tot)]\sqrt{n^2 - 1}}$$

Cherenkov detector widely used by many experiments

- A lot of high energy particle /nuclear/astrophysics/neutrino physics experiments around the world
- -DELPHI, CLEOIII, BABAR, BELLE I & BELLE II, LHCb, ALICE, COMPASS, STAR, PANDA, NA62, CLAS12, AMS02... (and many neutrino experiments not listed)

Instrumented Flux Return

1.5 T Solenoid

Drift Chamber

e⁺ (3.1 GeV)

Electromagnetic Calorimeter

DIRC Standoff Box and Magnetic Shielding

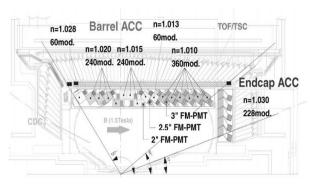
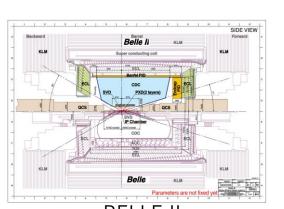



Fig. 1. Schematic drawing of the BELLE-ACC system.

DELPHI

CELOIII

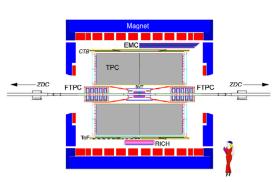
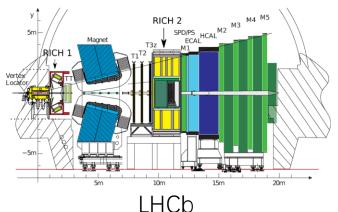
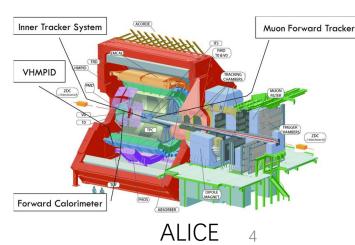
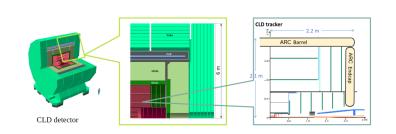
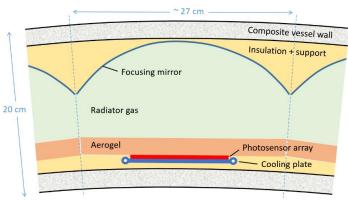




Fig. 2. Cutaway side view of the STAR detector as configured in 2001.

BABAR

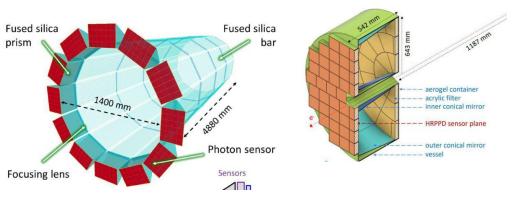
BELLE I

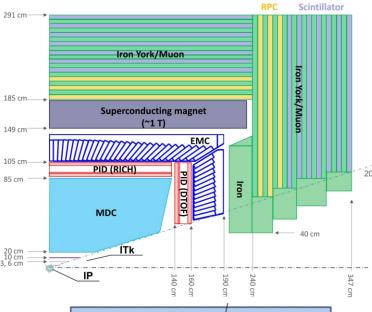


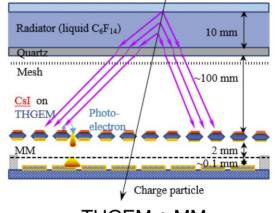

Proposed also by the future experiments

Such as FCC-ee, EIC, STCF ···

Design of Array of RICH Cells (ARC)

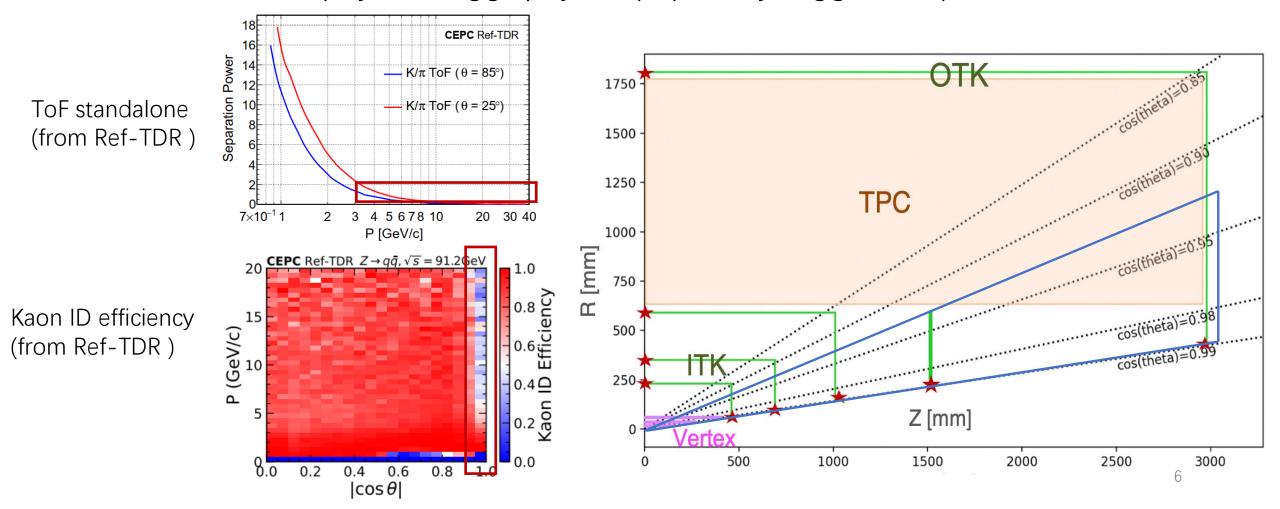

- The ARC was designed to be integrated with the CLD detector, between the tracker and the ECAL
- The ARC thickness is 20 cm, the barrel length is 4.4 m and the endcaps are placed as the bases of the barrel





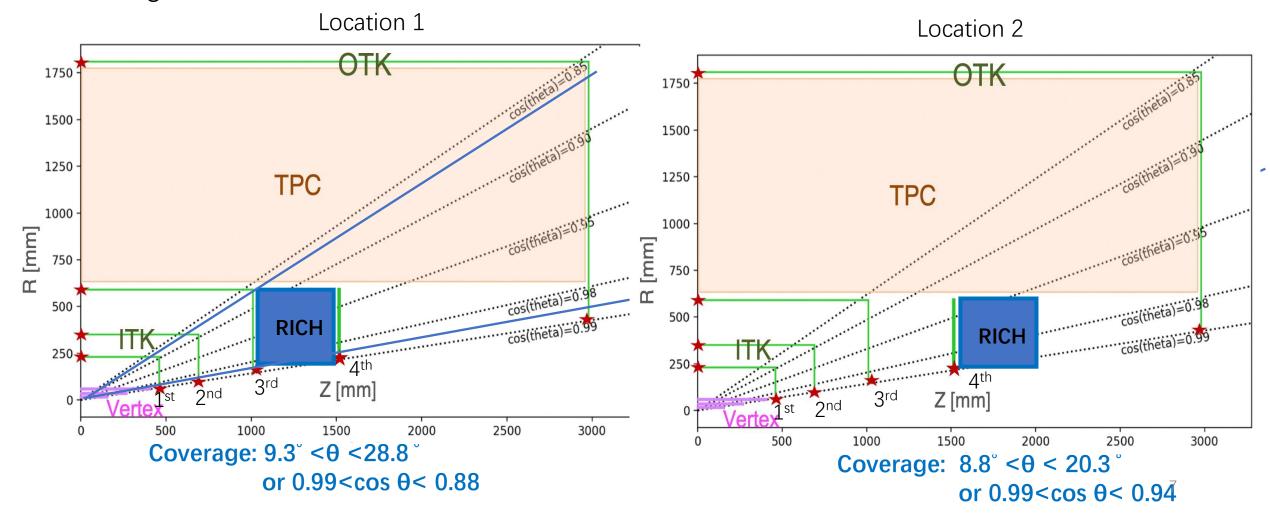
FCC-ee (CLD detector concept)

Forward Electromagnetic Barrel Electromagnetic Dual-radiator RICH Calorimeter W/SciFi ITS3-based vertex Backward MPGD - outer lavers Hadronic Calorimete Forward Hadron Backward Electromagnetic Calorimeter Time-of-Flight PbWO4 crystals AC-LGAD strips

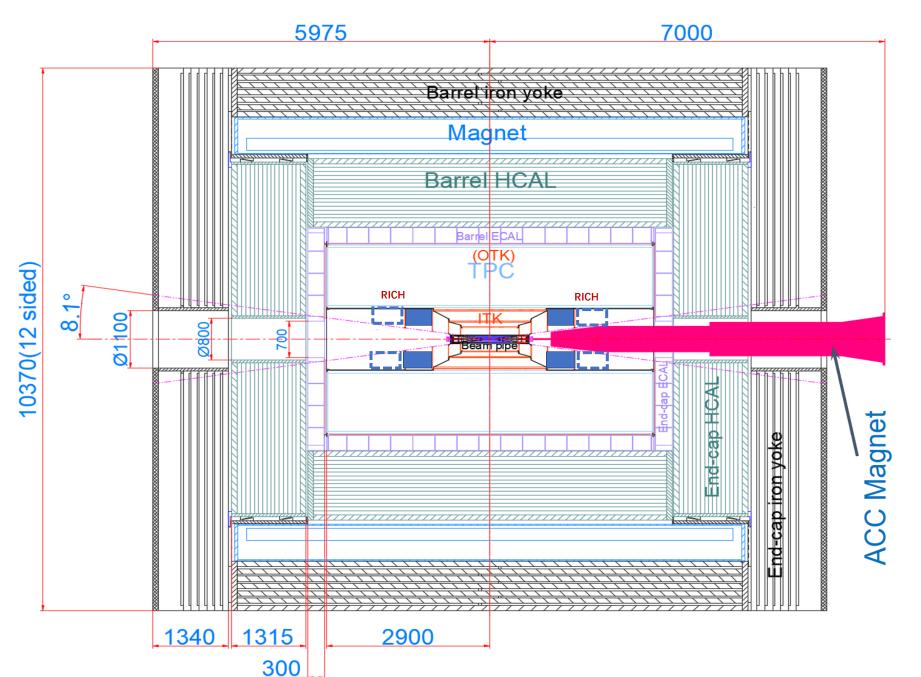


ePIC detector at EIC

THGEM + MM

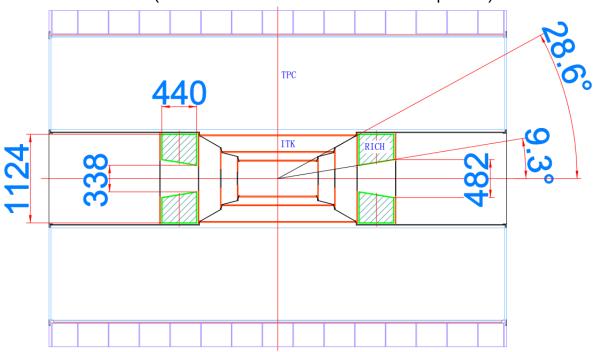

Motivation of the Cherenkov detector for CEPC

- A Cherenkov detector at CEPC is helpful, for high momentum PID(up to 20 GeV/c) at the endcap/forward region where only short tracks or even no tracks pass through TPC (so dN/dx not good)
- It's critical for flavor physics, Higgs physics (especially Higgs -> ss), etc.

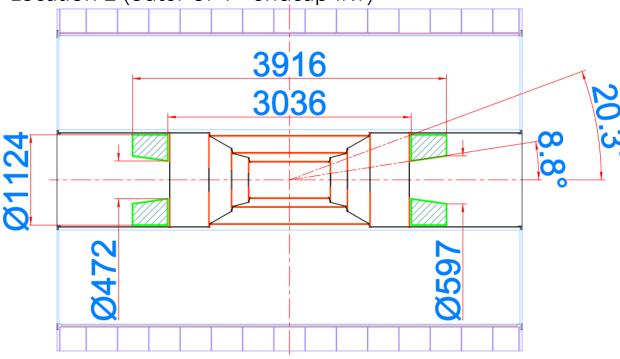


Possible location of the Cherenkov detector at CEPC

- Two possible locations without changing the other detector design in ref-TDR
- Depending on physics requirement, Cherenkov detector performance and also material budget


An overall view for the detector

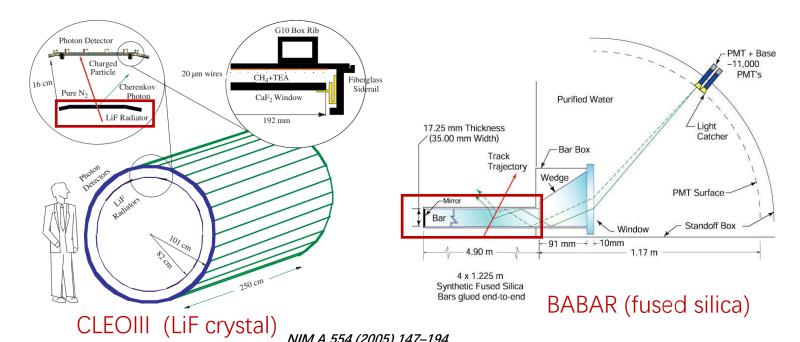
Drawings for the two locations

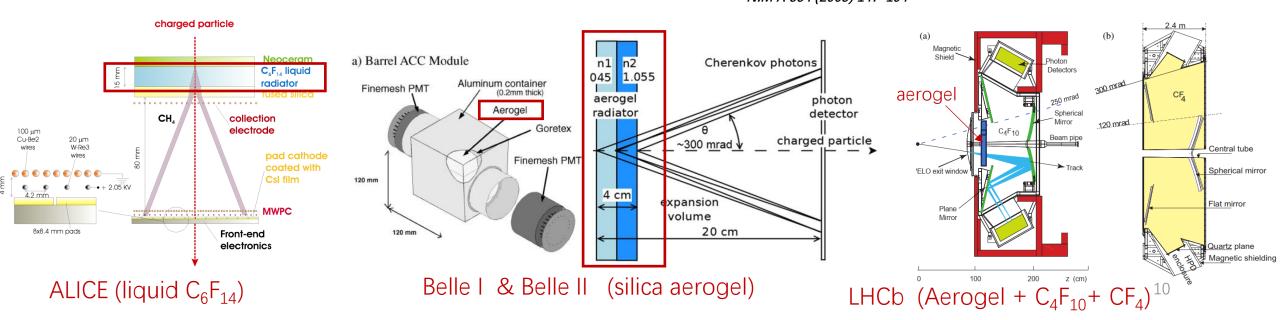

From Jian Wang, mechanics group

Location 1 (between 3rd and 4th endcap ITK)

	Inner diameter	Outer diameter	Total area (two endcaps)	Length (single endcap)
Radiator	33.8 cm	112.4 cm	1.81 m ²	
Photon detector	48.2 cm	112.4 cm	1.62 m ²	44cm

Location 2 (outer of 4th endcap IKT)

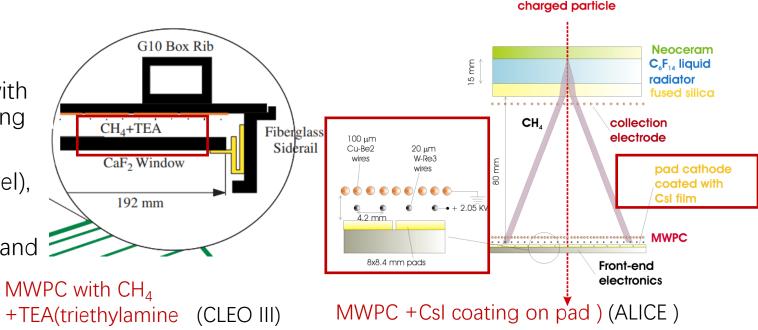


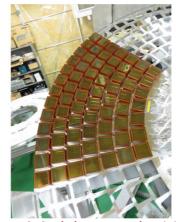

	Inner Diameter	Outer diameter	Total area (two endcaps)	Length (single endcap)
Radiator	47.2 cm	112.4 cm	1.64 m ²	44cm
Photon detector	59.7 cm	112.4 cm	1.43 m ²	

Investigation of technologies used for Cherenkov detector

Radiator

- Solid-state or liquid: LiF, NaF,
 fused Silica, C₆F₁₄(liquid)
- Gaseous: CF₄, C₄F₁₀, C₅F₁₂
- Aerogel (silica aerogel)
- Hybrid: aerogel + gas





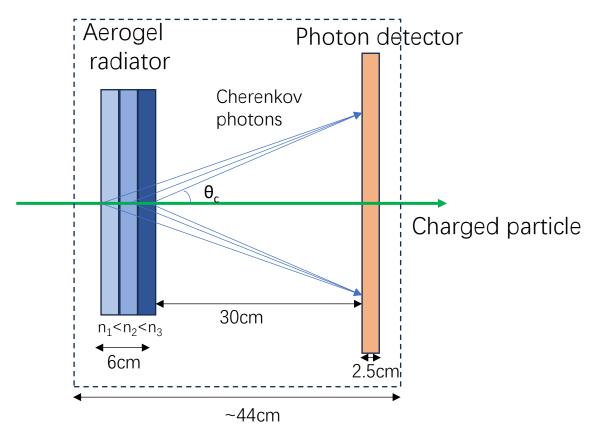
Investigation of technologies used for Cherenkov detector

Photon detector

- Gaseous chamber: TPC-like / MWPC filled with photoionizing gas (TEA) or photocathode coating (CsI)
- PMT: dynode PMT (fine-mesh, metal channel), MCP PMT
- Hybrid detector: HPD(hybrid photon detector) and HAPD(hybrid avalanche photon detector)
 - SiPM (proposed but not yet used)

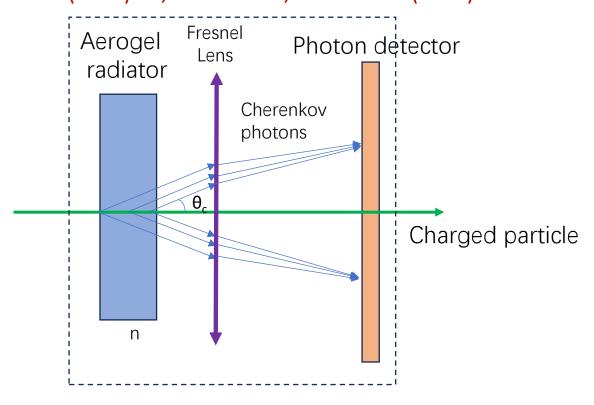
Multi-anode HAPD (Belle II endcap)

MCP PMT (Hamamatsu R10754-07-M16), Belle II barrel(iTOP)


HPD (LHCb RUN1&2)

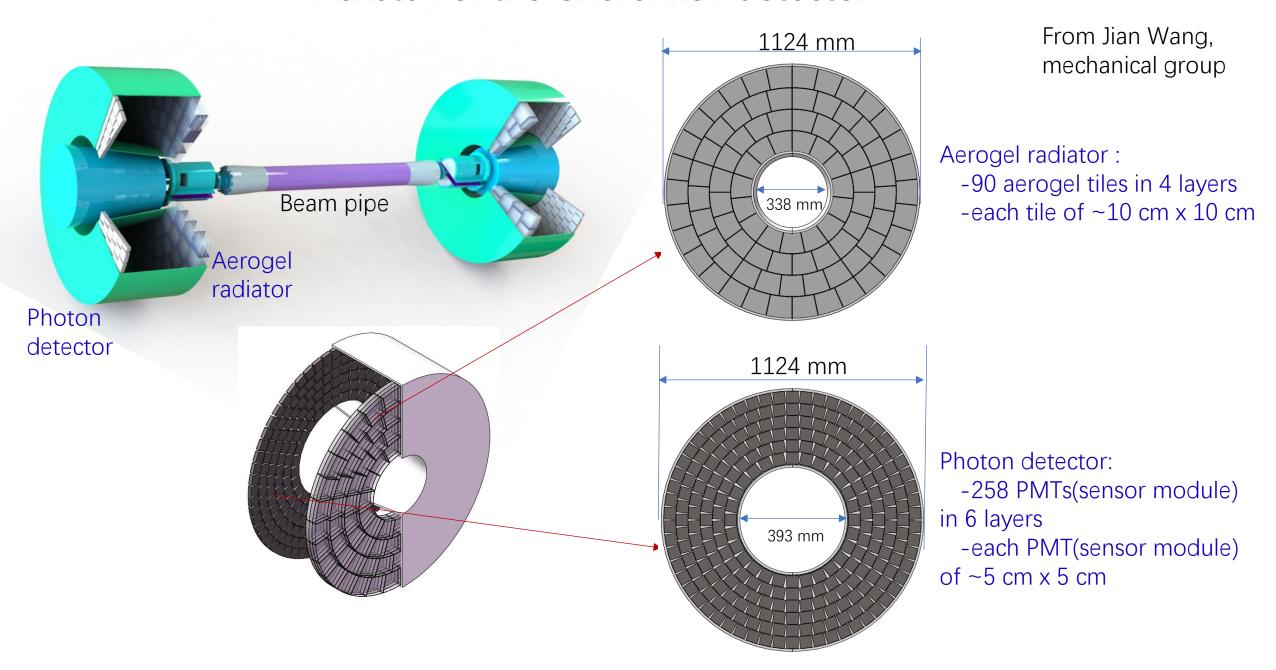
Multi-anode metal-channel dynode PMT (LHCb¹RUN3)

Possible design of CEPC Cherenkov detector


• The proximity focusing method:

Option1:

Multiple layers of aerogel with varying n, overlapped ring for different emission points

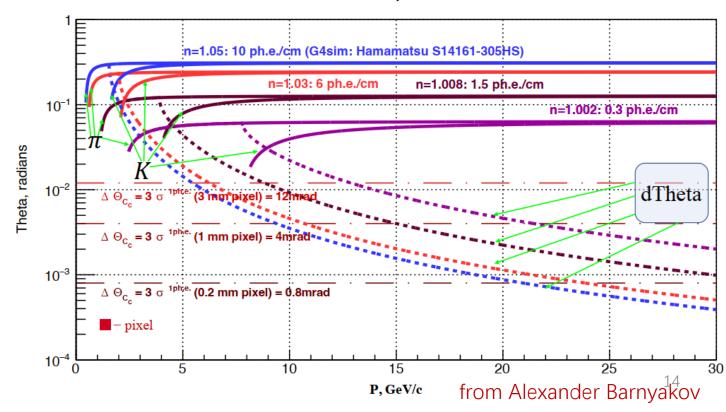

Reference: T.Iijima, NIM A548 (2005) 383; A.Yu.Barnyakov, NIM A553 (2005) 70; D. Sharma, NIM A1061 (2024) 169080

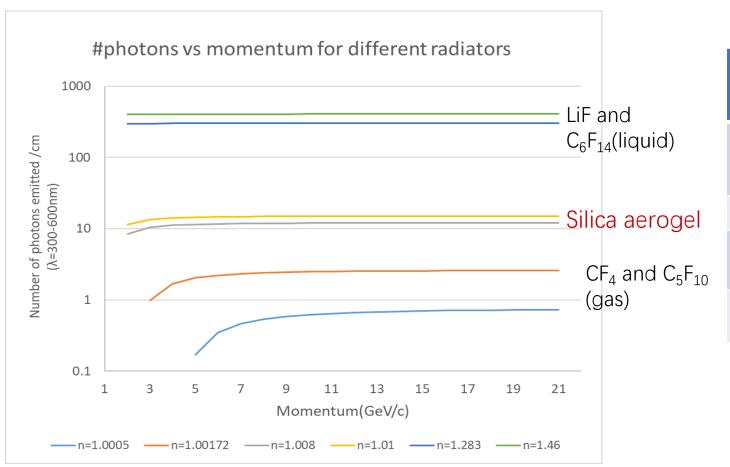
Option 2:

A single layer of aerogel, focused by a Fresnel lens.

A sketch of the Cherenkov detector

Why uses aerogel as the radiator

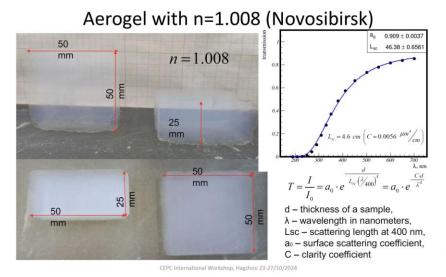

- Generally, to have PID in 3-20 GeV/c range
 - Solid-state/liquid radiators have very large refractive indexes (n >1.2)
 - Gaseous radiators' refractive indexes too small (n<1.001)
 - Aerogels have adjustable n $(1.0x \sim 1.00x)$, so applicable

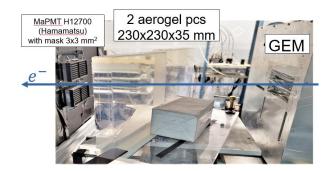

Aerogel from BINP

 π / K separation

Hopefully with aerogel (**n=1.008**), π/K can be separated in 3σ , up to 20GeV/c (σ_{θ}^{1pe} < 4mrad)

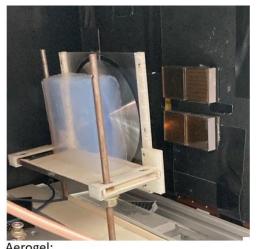
The number of photons emitted from different radiators

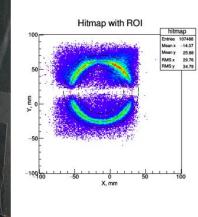


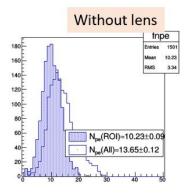

Radiators	Refractive index	Number of photon (p=20GeV, λ= 300-600 nm)
Fused silica, LiF, NaF (solid state)	1.46, 1.392, 1.334	300-400 photons /cm
C ₆ F ₁₄ (liquid)	1.283	~300 photons/cm
C ₅ F ₁₂ , C ₄ F _{10,} CF ₄ , (gaseous)	1.00172, 1.0014, 1.0005,	0.7 – 2.6 photons/cm
Silica Aerogel	1.01 – 1.001 (adjustable)	1.5 -15 photons/cm

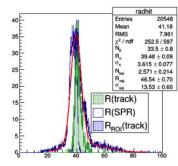
$$rac{dN_{\gamma}}{dE} = \left(rac{lpha}{\hbar c}
ight) Z^2 L \sin^2 heta_C$$
 $pprox 370 \sin^2 heta_c \; ext{(eV}^{-1} \, ext{cm}^{-1})$

Past and ongoing R&Ds on aerogel

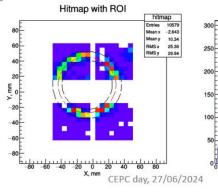

Led by Alexander Barnyakov from BINP

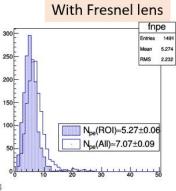


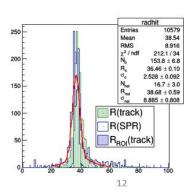



Single photon Cherenkov angle resolution is investigated with relativistic electrons at BINP beam test facilities "Extracted beams of VEPP-4M complex".

Some results of beam tests at the BINP with mRICH design






- n=1.028
- L_{sc}(400nm)=48.2±0.7 mm
- Thickness=40mm

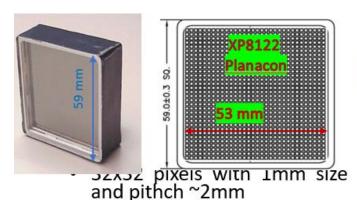
Fresnel lens:

- Acrilic (PMMA)
- L=6"
- Manufacturer: Edmund PMT:
- 4 Hamamatsu H12700
- pixel 6x6 mm

What a photon detector can be used?

General requirements

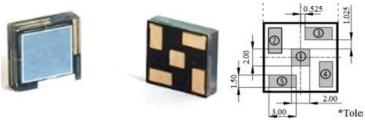
requirements	for what reasons		
single photon detection capability			
low dark noise	very small number of photons from the		
high detection efficiency	radiator		
high magnetic field tolerance	3 Telsa magnetic field		
High radiation tolerance	relatively high beam background in the forward region		
small material budget	inside TPC and ITK		
good time/spatial resolution	help to resolve the Cherenkov ring		
reasonable cost			
low risk on construction and operation	also important issue		


Only qualitative requirements now, to be quantitative after more study

Past and ongoing R&D for photon detector

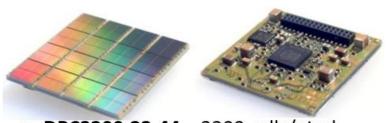
• Investigation of the photon sensor (by Xiaolong, Fudan Uni.)

MCP PMT


Planacone XP8122

- To decreas readout electronics channels it is possible to develop 'spread delay lines' or 'chrge sharing' approaches
- Expected spatial resolution as small as

$$\sigma_x \approx \frac{1}{\sqrt{12}} \approx 0.3 \mu m$$


PSS-SiPM or LG-SiPM

- PSS 11-3030-S (from NDL, China)
- 3x3 or 6x6mm SiPM is read out by 4 digitizers
- Position is reconstructed by charge sharing among 4 pads connected to resistive plane of the SiPM
- Declared resolution for single photon hit is about

 $\sigma_x \approx 200 \mu m$

Digital PC

- DPC3200-22-44 3200 cells/pixel (from Philips)
- Each microcell is connected through controled lattch and could be switched On or Off for readout
- Output data are 'timestamp' of the first fired microcells and total 'number' of fired microcells
- Output data could be changed to 'timestamp' and 'serial number' of fired microcell and then spatial resolution will be determined microcell sizes:

 $\sigma_x \le 50,25,12 \mu m$

Investigation of MCP PMT as photon sensor

For Belle II, barrel RICH (iTOP)

MICROCHANNEL PLATE PHOTOMULTIPLIER TUBE R10754-07-M16.

Effective area:

Anode matrix:

Anode size:

OE: ~20%

HV: 2.7kV

 4×4

23mm x 23mm

5.28mmx5.28mm

TTS (FWHM): 75ps

FEATURES

- Small dead space Fast time response
- High magnetic field immunity
- Long life time

APPLICATIONS

- High energy physics
- Multichannel time resolved fluorescence detection measurement
- Light detection and ranging

GENERAL

	Parameter	Description / Value	Uet
Spectral response		160 to 850	nm
Wavelength of max	rimum response	380	nm
Window material		Synthetic silica	_
Photocathode	Material	Multialkali	_
FIIOtocatriode	Minimum effective area	23 × 23	mm
Dynode	Dynode structure	2 stages Microchannel plate	_
Dyllode	Channel diameter	10	μm
Number of anode p	pixels	16 (4 × 4 matrix)	_
Anode pixel size		5.28 × 5.28	mm
Operating ambient temperature ®		-30 to +45	°C
Storage temperature	re [®]	-30 to +50	°C

MAXIMUM RATINGS (Absolute maximum values)

	Parameter	Value	Unit
Supply voltage	Between anode and cathode	2700	V
Average anode current		2	μА

CHARACTERISTICS (at 25 °C, 2200 V)

	Parameter	Min.	Typ.	Max.	Unit			
Cathode sensitivity	Luminous (2856 K)	80	110	_	μA/lm			
Cathode sensitivity	Blue sensitivity index	_	7.5	_	_			
Anode luminous sen	sitivity	22	110	_	A/lm			
Gain		_	1 × 10 ⁶	_	_			
Dark current (After 3	0 minutes storage in darkness)	_	5	30	nA			
	Rise time	_	195	_	ps			
Time response	Fall time	_	310	_	ps			
Time response	Width	_	400	_	ps			
	T.T.S. (FWHM) ®	_	75	_	ps			

VOLTAGE DISTRIBUTION RATIO AND SUPPLY VOLTAGE

Electrode		K	1st M	CP-in	1st M	CP-out	2nd N	ICP-in	2nd M	CP-out	F	•
Distribution ra	atio		1		5		5		5	3	1	
Cumply voltages 2000 V. K. Cathada, D. Anada												

Subject to local technical requirements and regulations, availability of products included in this promotional material may vary. Please consult with our sales office. Information furnished by HAMAMATSU is believed to be reflable. However, no responsibility is assumed for possible inaccuracies or omissions. Specifications are subject to change without notice. No patent rights are granted to any of the circuits described herein. @2020 Harmamatsu Photonics K.K.

N6021光电倍增管 N6021 MCP-PMT

Application

医学影像/Specialized Medical Imaging Cherenkov - RICH, TOF, TOP, DIRC 高能物理/High Energy Physics

国土安全/Security

Features

High Speed 増益高 High Gain

噪声低 Low Noise

技术参数

Specifications

玻璃材料/Window material	AVG glass					
光电阴极/Photocathode material 双碘/Bialkali						
倍增结构/Multiplier structure	2片微通道板型/2 MCP					
阳极结构/Anode structure	8×8					
N6021	Min.	Тур.	Max.	Unit		

阳极结构/A	node structure	8×8			
	N6021	Min.	Тур.	Max.	Unit
	光谱范围/Spectral response		280-650		nm
阴极拳数 Cathode parameters	量子效率峰值波长/Quantum efficiency peak wavelength		380		nm
明极 争数 xde parai	积分灵敏度/Luminous sensitivity		60		μ A/lm
ameti	量子效率@410nm/QE @410nm		21		%
93	辐射灵敏度/Radiant sensitivity@410nm		72		mA/W
	工作电压/Supply voltage		2000	2500	٧
And	增益/Gain		2 × 10 ⁸		
阳极参数 Anode parameters	暗计数/Dark count rate@0.2pe(单阳极)		500	5000	Hz
amet	能量分辨率/Charge resolution		35		%
3	单光电子谱峰谷比/Peak to valley ratio		3		
	上升时间/Rise time		300		ps
ಫ	脉冲宽度/Pulse width		650		ps
时间参数 ne respor	下降时间/Fall time		800		ps
野国 拳数 Time response	遊越时间弥散/TTS@ σ (SPE)		50		ps
U	遊越时间弥散/TTS@ σ (MPE)		15		ps
工作环境温	BE/Operating ambient temperature		-30~+50		Ť
储藏温度/S	储藏温度/Storage temperature				°C

46MIN

N6021 光电倍增管外型结构

N6021 PMT dimentional outline

"FPMT", NNVT&IHEP

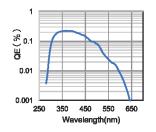
Effective area: 46mm x 46mm Anode matrix:

8 x 8

Anode size:

5.75mmx5.75mm

QE: 21%


 $TTS(\sigma)$:

15ps(MPE) 50ps(SPE)

dark noise rate: 500 Hz/anode

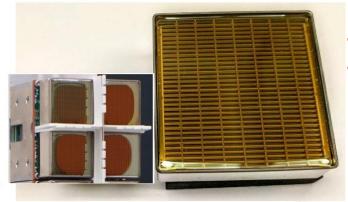
HV: 2 kV

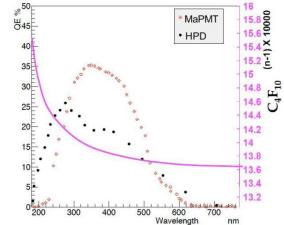
Typical spectral response chara

19

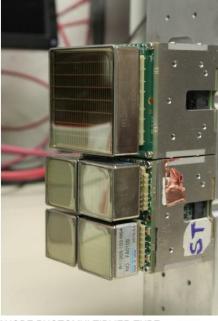
B Transit-time spread (T.T.S.) is the fluctuation in transit time between individual pulse and specified as an FWHM (full width at half maximum) with the incident light having a single photoelectron state. This value includes the jitter of the electronics about 30 ps.

Investigation of Multi-anode Dynode PMT


For LHCb RUN3


Sajan Easo's talk in CEPC workshop in Hangzhou, 2024 Nucl. Inst. Meth. A 876 (2017) 206-208

MultiAnode PhotoMultipliers


(HC

- Hamamatsu MaPMTs
 - 3100 R13742 and 450 R13743, including spares
 - Super-bialkali photocathode
 - UV glass window
 - Minimum gain 1×10⁶ at 1 KV
 - 1:4 pixel gain spread in 1" PMTs, 1:3 pixel gain spread in 2" PMTs
 - Low dark count rate
 - Single photon spectrum well separated from the noise pedestal
- Higher QE of MaPMT in the green
 - Chromatic error reduction
- Sensitive to magnetic fields
 - Shielding applied

- Effective area: 23mm x 23mm (1") or 46mm x 46 mm (2")
- Anode matrix: 8 x 8
- Anode size:
 2.88mm x 2.88mm
 or 5.76mmx5.76mm
- QE: 35%
- High voltage: 1.1 kV

HAMAMATSU

TENTATIVE DATA SHEET

Dec. 2015

MULTIANODE PHOTOMULTIPLIER TUBE

R13742

Exclusive for HPF-BS/ CERN and HPI/ INFN MILANO (for LHCb/RICH)

Super Bialkali Photocathode (SBA), UV Window, 1 Inch Square 8 \times 8 Multianode and Fast Time Response

General

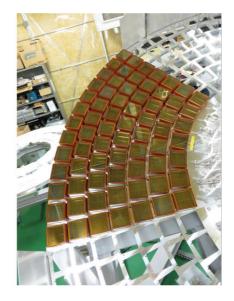
	Parameter	Description	Unit
Spectral Re	esponse Range	185 to 650	nm
Peak Wave	elength	350	nm
Photocatho	ode Material	Bialkali	-
Window	Material	UV Glass	-
Window	Thickness	0.8	mm
Dynode	Structure	Metal Channel Dynode	-
	Number of Stage	12	-
Anode	Number of Pixels	64 (8 x 8 Matrix)	-
Anooe	Pixel Size	2.88 x 2.88	mm
Effective A	rea	23 x 23	mm
Dimension	al Outline (W x D x H)	26.2 x 26.2 x 17.4	mm
Packing Density (Effective Area / External Size)		77	%
Weight		27	g
Operating Ambient Temperature		-30 to +50	deg C
Storage Temperature		-80 to +50	deg C

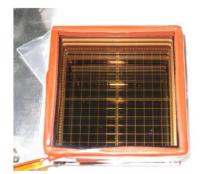
Maximum Ratings (Absolute Maximum Values

Maximum Ratings (Absolute Maximum Values)						
Parameter	Value	Unit				
Supply Voltage (Between Anode and Cathode)	1100	V				
Average Anode Output Current in Total	0.1	mA				

Investigation of HPD and HAPD

 HPD(Hybrid Photon Detector) for LHCb Run1 and Run2


Effective area: 70mm in diameter


PD size: ~2.5mm x 2.5mm

QE: 27%

High voltage: 20 kV

 HAPD(Hybrid Avalanche Photon Detector) for Bellell endcap RICH (customized)

Effective area: 70mm x70mm

APD matrix: 12 x 12

APD size: ~5mm x 5mm

QE: 28%

High voltage: 8.5 kV

PRODUCT VARIATIONS

●R10467U Series

Type No.	Spectral response	Photocathode	Window material	Window type	type Effective area T.T.S.(Transit Time S (FWHM)	
R10467U-06	220 nm to 650 nm	Bialkali	Synthetic silica	Plano-concave	φ6 mm	50 ps
R10467U-07	220 nm to 870 nm	Multialkali	Synthetic silica	Plano-concave	φ6 mm	30 ps
R10467U-40	300 nm to 740 nm	GaAsP	Borosilicate glass	Flat	φ3 mm	90 ps
R10467U-42	300 nm to 840 nm	Extended red-GaAsP	Borosilicate glass	Flat	φ3 mm	130 ps
R10467U-50	380 nm to 900 nm	GaAs	Borosilicate glass	Flat	φ3 mm	130 ps

●R11322U-40

	Type No.	Spectral response	Photocathode	Window material	Window type	Effective area	T.T.S. (Transit Time Spread) *1 (FWHM)	
	R11322U-40	300 nm to 740 nm	GaAsP	Borosilicate glass	Flat	φ5 mm	170 ps	

●R14713U-07

Type No.	Spectral response	Photocathode	Window material	Window type	Effective area	T.T.S. (Transit Time Spread) *1 (FWHM)
R14713U-07	220 nm to 870 nm	Multialkali	Synthetic silica	Plano-concave	φ3 mm	20 ps

●H13223-40

Type No.	Spectral response	Photocathode	Window material	Window type	Effective area	T.T.S. (Transit Time Spread) *1 (FWHM)
H13223-40	300 nm to 740 nm	GaAsP	Borosilicate glass	Flat	φ3 mm	90 ps

^{*1:} At the single photon state and the full illumination on photocathode, specified as FWHM (Full Width at Half Maximum)
These Values include the jitter of the electronics about 30 ps.

Table 1Requirement for the HAPD performance.

Item	Typical	Requirement
QE ($\lambda = 400 \text{ nm}$)	28%	≥24%
Bias Voltage	250-500 V	
High voltage	-8.5 kV	
Dark current (bias)	1-100 pA	<1 µ A / channel
Dark current (HV)		<300 pA
Avalanche gain	40	>30
Bombardment gain	1800	>1500
Number of bad channels		≤10

A preliminary summary of the photon detectors

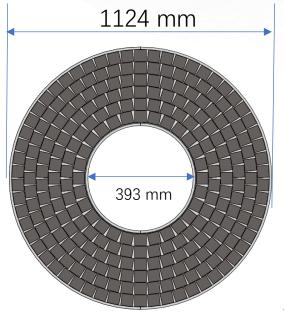
Photon detector types	Quantum efficiency	Spatial resolution	Dark noise rate	Time resolution	Magnetic field tolerance	Radiation tolerance	Material budget	Cost estimation	Risk on construction & operation
Gaseous chamber (MWPC, MPGD)	poor (~28% at VUV region, 160- 170nm)	good (~1-2 mm, charge centroid method)	good (~1 Hz/cm²)	poor (~1-50 ns)	poor (due to charged particles drifting)	good (no silicon)	good (~4% X0)	Good (several 10 RMB/cm²)	poor (complex with gas, high voltage, pho- tocathode)
PMT (dynode or MCP PMT)	medium (~20-35% at 400nm)	medium (~3-5 mm with multi-anode)	good (~5-100 Hz/cm ²)	medium for dynode(~200 -500ps); good for MCP(<50ps)	medium (specially designed dynode or MCP)	good (no silicon)	poor (~10% X0)	poor (~1000 RMB/ cm²)	good (simple for construction and running)
HPD and HAPD	medium (~25-30 % at 400 nm)	medium (~2.8-6 mm with multi-anode)	medium (~2.5-5 KHz/cm ²)	medium (~50-200ps)	medium (with high voltage)	medium (partially silicon)	poor (~10% X0)	poor (~1000 RMB/cm ²)	medium (high voltage 8-20kV needed)
SiPM	good (~45-50% at 400nm)	medium (~3-6 mm depending on the size)	poor (~10 MHz /cm², room temperatur e)	medium (~50-100ps)	good (small thickness)	poor (atom displace- ment)	good if no cooling (~4% X0); poor if with cooling (~10% X0)	medium if no cooling (~100 RMB/ cm²); poor with cooling	good (simple for construction and running)

• No clear conclusion now, need more investigation, with SiPM and MCP PMT more preferred

Summary and Next step

- A Cherenkov detector will be beneficial for CEPC and it's under proposing
- Some consideration/design for the Cherenkov detector have been done but at early stage.
- Many R&Ds on aerogel have been done by BINP group and still ongoing
- Photon detectors are under investigating
- A lot of things (reflection mirror, mechanical supporting, cooling, cabling, readout electronics, etc.) need to be considered
- Also, more study needed for a clear physics motivation and for location decision

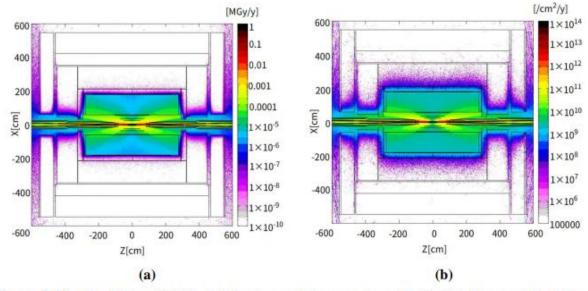

Thanks a lot to Xiaolong, Jianchun and Alexander Barnyakov for the valuable discussion and input!


Thank you for your comments and suggestions, and welcome to join us!

Backup

Preliminary requirements for the photon sensor (SiPM)

- Wavelength: 100 nm 600 nm
- Photon detection efficiency: 50% at 420nm
- Size of single SiPM: 1 mm x 1 mm or 3 mm x 3 mm
- Pixel size: $10 20 \mu m$
- Module size: 3 cm x 3 cm or 5 cm x 5 cm
- Time resolution: 100 ps
- Radiation hardness: 10¹³ N_{eq}/cm²
- Low dark noise (< 100 kHz / mm²)
- Quantity: $0.8 \text{ m}^2 \text{ x } 2 = 1.6 \text{ m}^2$



Beam related background (From ref-TDR of CEPC detector)

Table 3.6: Beam-induced background levels in sub-detectors at Higgs and Low-Lumi-Zoperation modes, including a safety factor of two.

Sub-Detectors	Ave.	Ave. Hit Rate		Max. Hit Rate		Max. Occupancy [%]	
	Higgs	Low-Lumi-Z	Higgs	Low-Lumi-Z	Higgs	Low-Lumi-Z	
VTX [MHz/ cm ²]	0.22	0.52	12	39	2.1×10 ⁻²	1.3×10 ⁻²	
ITK-Barrel [kHz/ cm ²]	0.92	1.7	2.6	6.6	6.4×10^{-3}	1.3×10^{-2}	
TPC [kHz/ cm ²]	2.4	5.2	26	24	0.15	0.14	
OTK-Barrel [kHz/ cm ²]	0.74	1.3	1.2	2.2	4.2×10^{-3}	9.2×10^{-4}	
ECAL-Barrel [MHz/bar]	1.4×10^{-2}	2.2×10^{-2}	1.7	0.66	1.6	0.4	
HCAL-Barrel [kHz/gs cell]	4.6×10^{-3}	8.4×10^{-3}	14	24	8.0×10 ⁻⁴	8.0×10^{-4}	
ITK-Endcap [kHz/ cm ²]	3.0	5.4	24	50	2.4×10 ⁻³	5.0×10 ⁻³	
OTK-Endcap [kHz/ cm ²]	1.9	3.1	8.2	13	7.4×10^{-2}	12×10^{-2}	
ECAL-Endcap [MHz/bar]	0.062	0.10	7.2	13	7.0	1.8	
HCAL-Endcap [kHz/gs cell]	0.24	0.24	640	340	8.0×10^{-2}	6.0×10^{-3}	
MD-Endcap [Hz/ cm ²]	1.4	0.92	2.5	14	0.18	0.05	

Figure 3.12: The TID and NIEL distributions at Higgs mode on the CEPC detector. The highest TID is lower than 1 MGy per year as shown in a.), while the highest level of NIEL is in the order of $10^{13}(1 \text{ MeV} n_{eq})cm^{-2}$ per year as shown in b.).