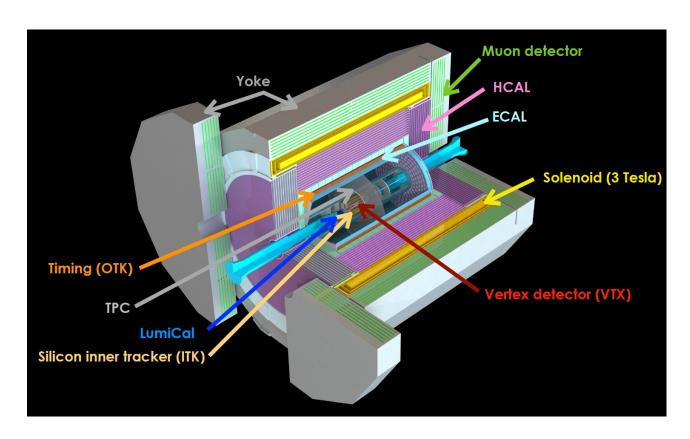


The overall readout electronics for the reference detector at CEPC

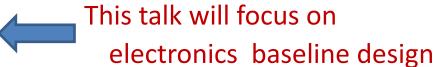
Zheng Wang


On behalf of the CEPC electronics group

Outline

- Requirements for the electronics
- Global framework of the electronics system
- Common electronics design & frontend ASICs
- Research team and working plan
- Summary

The Reference Detector



Sub-system	Technologies
Beam pipe	Beryllium, ϕ 20 mm
LumiCal	Silicon tracker + LYSO crystals
Vertex	Si Pixels: CMOS MAPS+stitching
Inner tracker (ITK)	Si Pixels: CMOS MAPS 55-nm
Gas detector	TPC with high granularity
Outer tracker (OTK)	AC-LGAD → TOF
ECAL	4D transverse crystal bars
HCal	Glass scintillator, SiPM + Fe
Magnet	LTS Solenoid
Muon	Plastic scintillator bars, SiPM <

The electronic system is to readout tens of millions of detector channel in real time.

Requirements for the electronics

CEPC Baseline Operation Scenario							
Operation mode	\sqrt{s} (GeV)	SR power (MW)	\mathcal{L} (10 ³⁴ cm ⁻² s ⁻¹)	$\int \mathcal{L}/\text{year} $ (ab ⁻¹)	Years	Total $\int_{a} \mathcal{L}$ (ab^{-1})	Event yields
H	240	30	5	0.65	15	10	2.0×10^{6}
\boldsymbol{Z}	91	12.1	26(*)	3.2	4	13	5.6×10^{11}
W^+W^-	155-170	30	16	1.2	1	1.2	$1.0 \times 10^7 (\dagger)$

CEPC Upgraded Scenario							
gradient floriest Kratischen er Nazoniante sowensten en en	ika kudu sina at Kasasiasia nya mpina mata ina ka	andra et inn i de l'assenciation à communication de l'assencia de l'assencia de l'assencia de l'assencia de l'a		na ann an an tagh de ann ann an thag an an ann an dean an an dean an a		anisa kanana arawa ani di di dinaka sana mahindi ndi dikata arawa ani	an manifestation commens is a server
Operation mode	\sqrt{s} (GeV)	SR power (MW)	\mathcal{L} (10 ³⁴ cm ⁻² s ⁻¹)	$\int \mathcal{L}/\text{year}$ (ab ⁻¹ , 2 IPs)	Years	Total $\int \mathcal{L}$ (ab ⁻¹ , 2 IPs)	Event yields
H Z W+W-	240 91 155-170	50 50 50	8.3 192(*) 26.7	2.2 50 6.9	10 2 1	21.6 100 6.9	$4.3 \times 10^{6} 4.1 \times 10^{12} 5.5 \times 10^{7}$
$t\bar{t}$	360	50	0.8	0.2	5	1.0	0.6 ×10 ⁶

Future upgrade possibility considered

Critical Input from Sub-Det & MDI

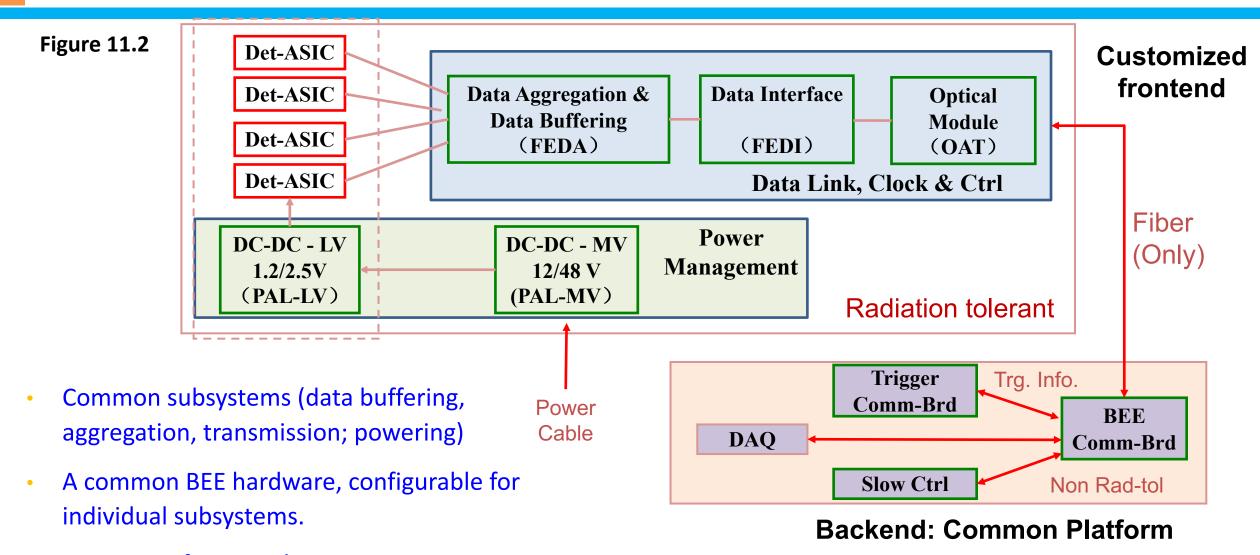
	VTX	ITK	OTK	TPC	ECAL	HCAL	Muon
Chn/ chip	512 × 1024	512 × 128	128	128	4-16 (6	common SiPM	ASIC)
Data Width	32 bit / hit	42 bit / hit	48 bit / hit	48 bit / hit		48 bit / hit	
Cluster size	3 pixel	1.5 pixel	2 strip	N/A		N/A	
Module Size/ Link	32.7 cm ² / stch chip	423.3 cm ² / stave	365.7 cm ² / stave	461 cm ² / module	856 chn w/ 1.5 cm bar	600 GS / Agg Brd	Agg Brd
		Bear	m-induced back	ground rate (N	IHz/cm ²)		
Higgs LowZ	6.4 15.0	3.0×10^{-3} 5.4×10^{-3}	$1.9 \times 10^{-3} \\ 3.1 \times 10^{-3}$	2.4×10^{-3} 5.2×10^{-3}	$6.2 \times 10^{-2} \\ 1.0 \times 10^{-1}$	2.4×10^{-4} 2.4×10^{-4}	$1.4 \times 10^{-6} \\ 9.2 \times 10^{-7}$
			Data rate p	er Link (Mbps))		
Higgs LowZ	2.00×10^4 4.71×10^4	80.0 144	66.7 109	53.1 115	$2.55 \times 10^{3} $ 4.11×10^{3}	6.91 6.91	< 10 < 10

Safety factor of 2 used for background rate estimation from MDI study

Endcap detectors have the highest hit rate, mostly from the beam background

Time window and data rate for TDAQ system

	VTX	ITK	отк	TPC	ECAL	HCAL	Muon	Total
Time windows (ns)	69	69	69	34000	69	1000	69	
50 MW Higgs mode Full Data (Gbps) Data size / bunch (kB) Data size / event (kB)	130	21.2	82.7	26.4	752	26.6	<1	1040
	12.1	1.98	7.71	2.46	70.1	2.48	<0.1	96.9
	12.1	1.98	7.71	303	70.1	9.92	<0.1	405
12.1 MW Z mode Full Data (Gbps) Data size / bunch (kB) Data size / event (kB)	307	37.8	139	57.1	1202	27.2	<1	1771
	3.20	0.394	1.45	0.595	12.5	0.283	<0.1	18.4
	6.40	0.788	2.90	293	25.0	4.53	<0.1	333



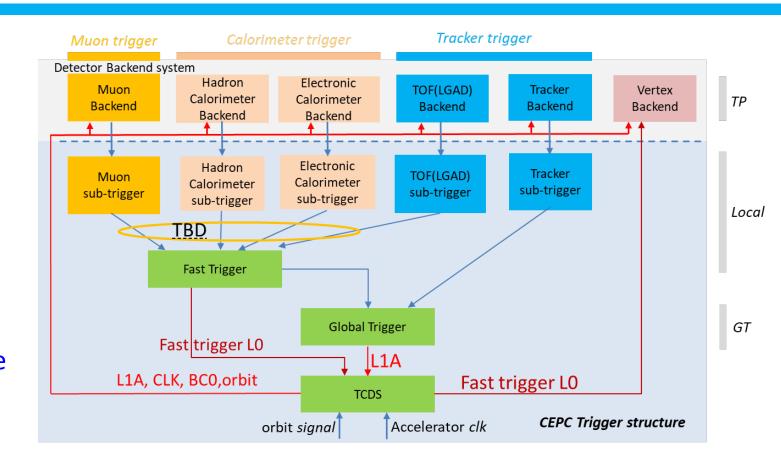
Do we need hardware trigger?

Two main frameworks for the electronics-TDAQ can be simply categorized as full data transmission (FEE-Triggerless readout) & readout with hardware trigger.

	Full data transmission	Hardware Trigger
Where to acquire trigger info	On BEE	On FEE
Trigger latency tolerance	Medium-to-long	Short
Compatibility on Trigger Strategy	Hardware / software	Hardware only
FEE-ASIC complexity on Trigger	Simple	Complex on algorithm
Upgrade possibility on new trigger	High	Limited
FEE data throughput	Large	Small
Maturity	Mature but relatively new	Very mature
Resources needed for calculation	High	Low
Representative experiments	CMS, LHCb,	ATLAS, BELLE2, BESIII,

Global framework of the CEPC Electronics

TDAQ interface is only on BEE


Backup scheme of the framework

The proposed framework was based on the estimated background rate of all sub-det.

Background rate indicated the data link capability can manage the Phase I operation of Higgs & LowLumiZ for first ten years.

For high LumiZ, the detector will upgrade

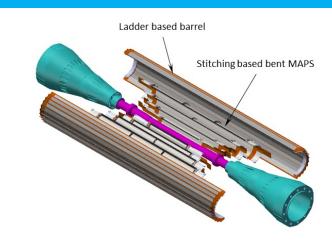
- VTX, ITK.. (replaceable) can be upgraded with new chips
- ECAL, HCAL (unreplaceable) will have more fiber channels

The hardware trigger scheme can serve as a backup plan, with sufficient on-detector data buffering and reasonable trigger latency.

Key Electronics Components

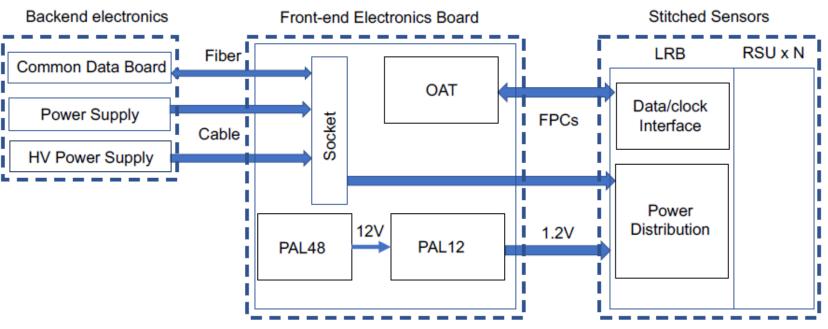
Frontend ASICs for sub-detectors

Common Data Link

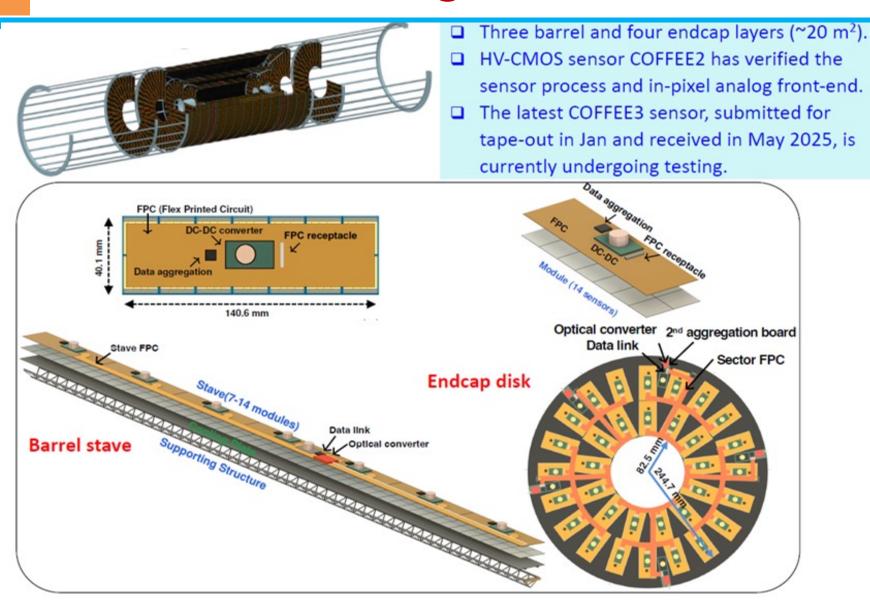

Common Powering

Common Backend Electronics

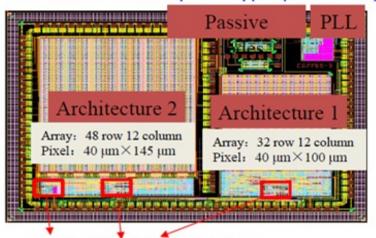
Alternative Scheme based on Wireless Communication


Vertex Detector Baseline layout

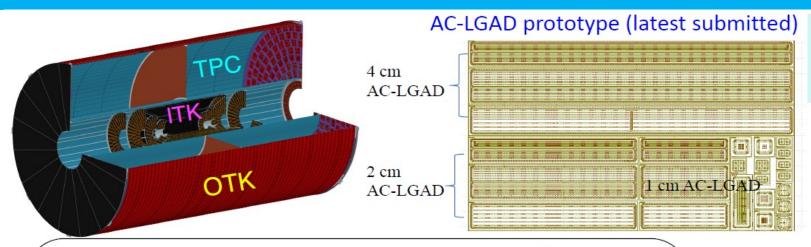
- Baseline :4 single layer of bent MAPS + 1 double layer ladders
- Inner layer: Use single bent MAPS for Inner layer (~ 0.15 m²)
 - Low material budget 0.06%X₀ per layer
 - Different rotation angle in each layer to reduce dead area
- Outer layer: Double layer Ladder (~0.28% X₀ per layer)



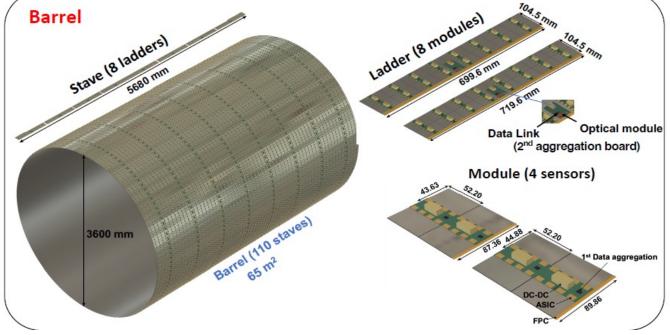
Long barrel layout covering $\cos \theta < 0.991$

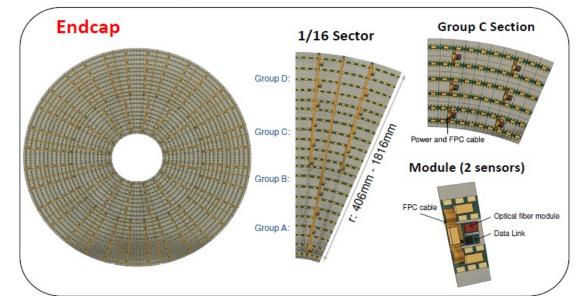

CVTX/ PVTX X	radius mm	length mm
CVTX 1	11.1	161.4
CVTX 2	16.6	242.2
CVTX 3	22.1	323.0
CVTX 4	27.6	403.8
PVTX 5	39.5	682.0
PVTX 6	47.9	682.0

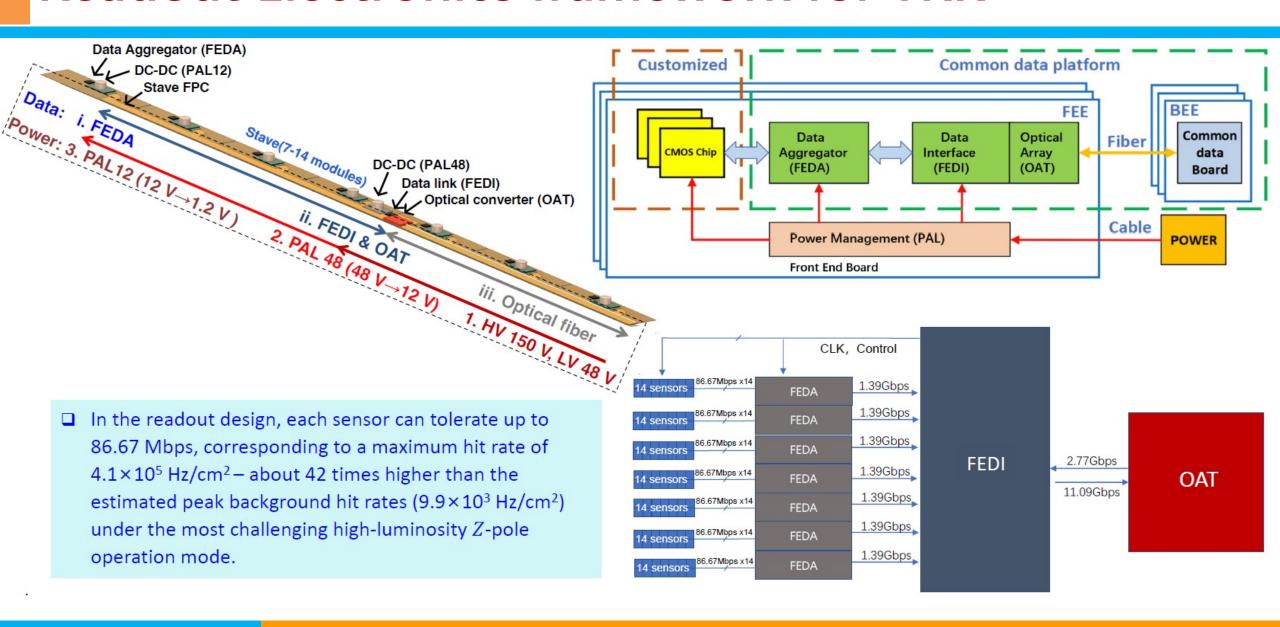
ITK Design with HV-CMOS Pixels


HV-CMOS sensor prototype (COFFEE3)

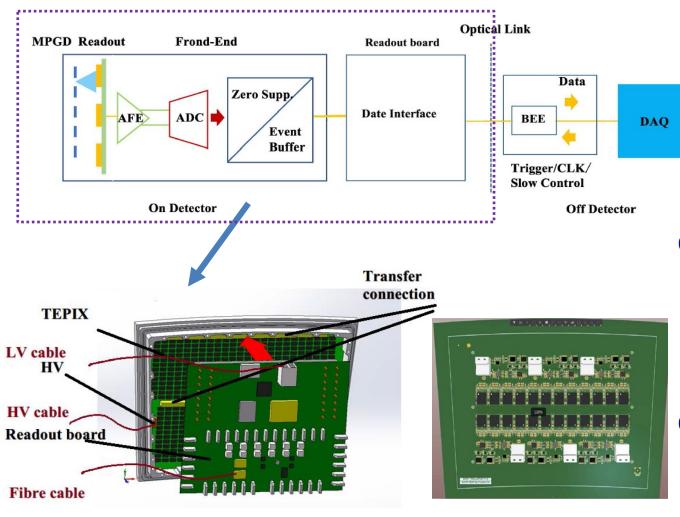
DLL LVDS driver/receiver

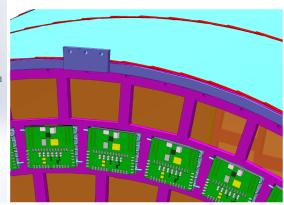

HV-CMOS sensor specification for ITK				
Sensor size	$2 \text{ cm} \times 2 \text{ cm}$			
Sensor thickness	150 μm			
Array size	512 × 128			
Pixel size	$34~\mu\text{m}\times150~\mu\text{m}$			
Spatial resolution	$8 \mu m \times 40 \mu m$			
Timing resolution	3-5 ns			
Power	200 mW/cm ²			
Process node	55 nm			


OTK Design Based on AC-LGAD Strip Sensor

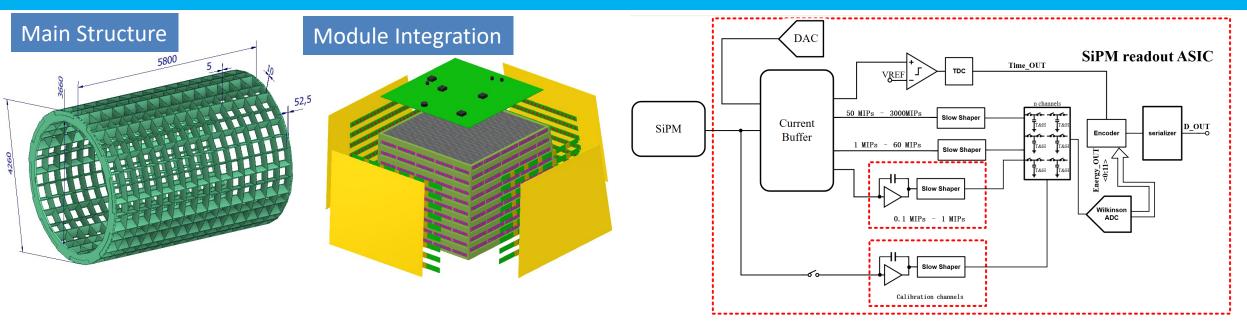

- \square One barrel layer and one endcap layer (~85 m²).
- The latest LGAD sensor was submitted for tapeout in March and waiting for the return.

LGAD sensor specification for OTK				
Sensor size (3-4.5) cm \times (3-5) cm				
Strip pitch ~100 μm				
Spatial resolution	10 μm			
Timing resolution	50 ps			
Power	300 mW/cm ²			




Readout Electronics framework for TRK

TPC electronics

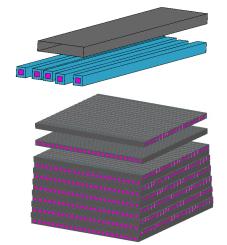

On detector: readout modules

- Double-mesh Micromegas with high granularity readout (500μm × 500μm pad size)
- FEE board: a readout ASIC chip array. Interposer connection between pads and ASIC chis
- Readout board: data interface and data concentrator

Off detector:

- High-speed optical links
- Off-detector BEE
- Data Acquisition (DAQ) system

ECAL electronics



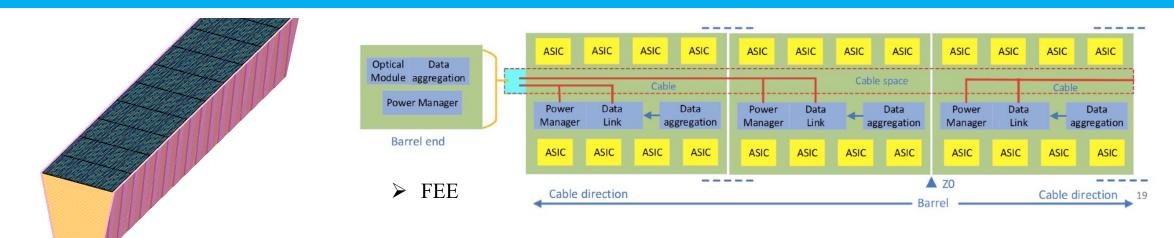
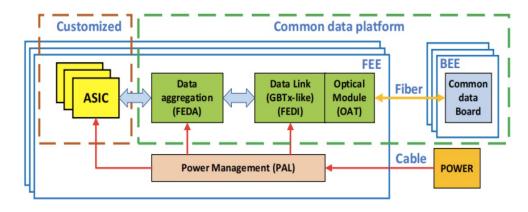

Table 11.2: Requirements of ECAL/HCAL SiPM for electronics

Table 11.2: Requirements of ECAL/HCAL SiPM for electronics					
Parameters	Requirement of ECAL	Requirement of HCAL			
Charge Dynamic Range	0.128 pC~3.84 nC	0.8~800pC			
	$(0.1 \sim 3000 \text{MIPs} @ 100 \text{ p.e./MIP})$	$(0.1 \sim 100 \text{MIPs} @ 100 \text{ p.e./MIP})$			
Timing Measured Range	TBD from electronics	TBD from electronics			
Charge Resolution	30% @ 0.1 MIP, 10% @ 1.0 MIP, 1% @	10% of 1.0 MIP, i.e. 10 p.e.			
	100 MIPs				
Timing Resolution	200 ps @ 1 MIP, 100 ps @ 12 MIPs				
Integral Non-linearity	Better than SiPM's				
SiPM Capacitance	$\leq 50 \text{ pF}$	$\leq 100 \text{ pF}$			
SiPM Gain	8×10^{4}	$\geq 5 \times 10^5$			
Average Event Rate/channel	13 kHz	Lower than ECAL's			
Max Event Rate/channel	230kHz	Lower than ECAL's			
Typical Signal Rising Edge	40ns				
Typical Signal Width	$\geq 1 \mu s$ (BGO decay time is 300ns)	$\geq 1 \mu s$ (Glass decay time is longer than			
		300ns)			
Other Requirement	SiPM bias voltage fine tuning 0.5V				

Table 11.3: Specifications of the SIPAC ASIC

Table 11.5: Specifications of the SIFAC ASIC				
Characteristics	Value			
Charge Dynamic Range	0.128 pC~3.84 nC			
Charge resolution	30%@0.128pC, 10%@1.28pC, 1%@128pC			
	1%@100 MIPS			
Time resolution(RMS)	200 ps @1.28pC, 100 ps @12.8pC			
Detector Capacitance	$\leq 100 \; \mathrm{pF}$			
Max signal rate/channel	500 kHz/ch			
ADC	10-bit			
TDC resolution	8-bit			
TDC bin width	100 ps			
Power consumption	15mW/channel			
Num. of channels	4			

HCAL electronics



Front-End boards in HCAL cell Box

- thickness limited: 3.2mm = PCB 1.2mm + ASIC 2mm
- SiPMs, ASICs and Data Aggregation
- PCB dimensions: flexible in different positions

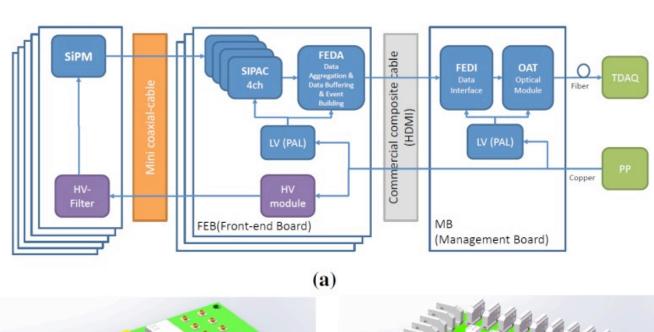
SiPM-readout ASIC

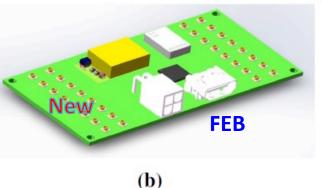
- customized for CEPC calorimeter system
- functionality: energy and time measurements
- power consumption: 15mW/ch
- Aggregation board at the end of barrel, cable connection

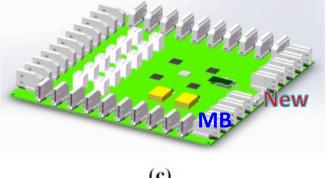
Energy Measurement: ASIC for ECAL & HCAL

Data transmission: common

Trigger mode: FEE triggerless readout

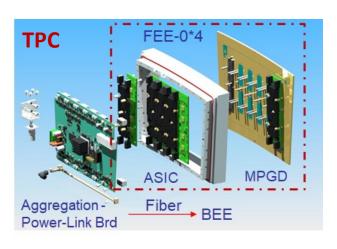

Muon electronics

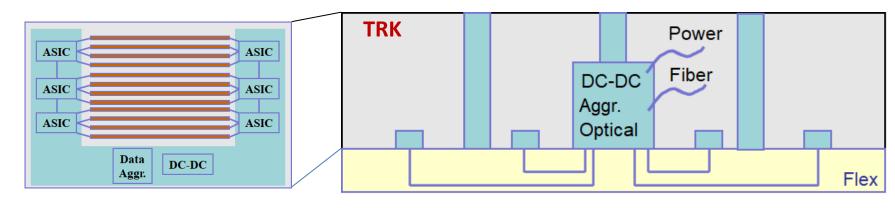

According to the R&D results and required performance: $N_{pe} > 200$, $\sigma_T < 0.5 ns$

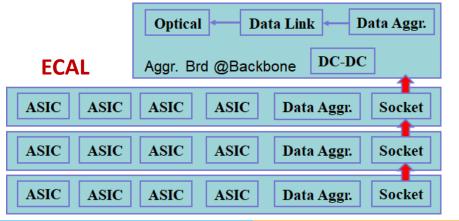

Use the same chip designed for calorimeter, but customize the FEB based on ASIC according to the constraints in detector modules.

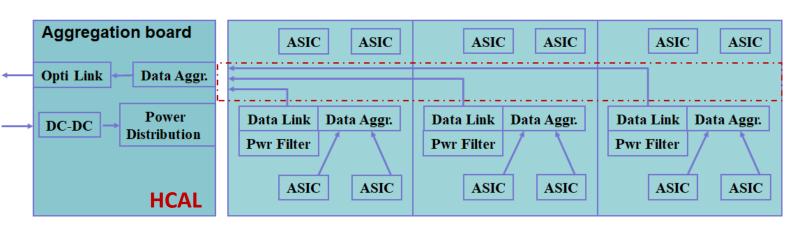
Three stages for readout

- SiPM tile: SiPM on PCB
- FEB: Front-End Electronics Board, 32 channel, mini HV generator integrated.
- MB: Management Board, central node for multiple functions.

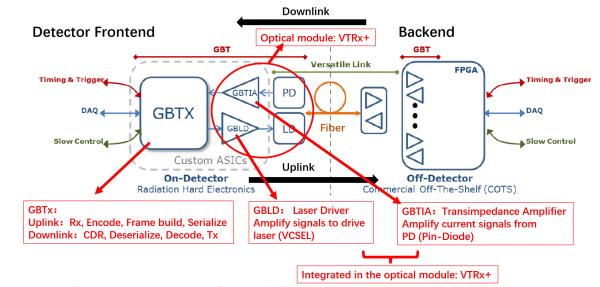





An overview of the sub-detector electronics

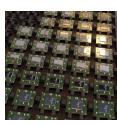


All sub-det readout electronics were proposed based on this unified framework, maximizing common design, easy for production and maintenance.

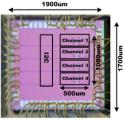

Technical Survey on Data Transmission

GBT Project:

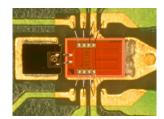
- The IpGBT & VTRx chip series, developed by CERN, are widely used by LHC.
- Core components:
 - GBTx: Bidirectional Serdes ASIC
 - GBLD: Laser driver
 - GBTIA: Transimpedance amplifier
 - Customized Optical Module
- However the base clock frequency of CEPC
 43.3MHz is not compatible with IpGBT
 system


Our choice:

- Build a GBT-like universal bidirectional data transmission system
- Take the IpGBT as a reference, the protocol can be a minimum & necessary set for the readout, clocking & control



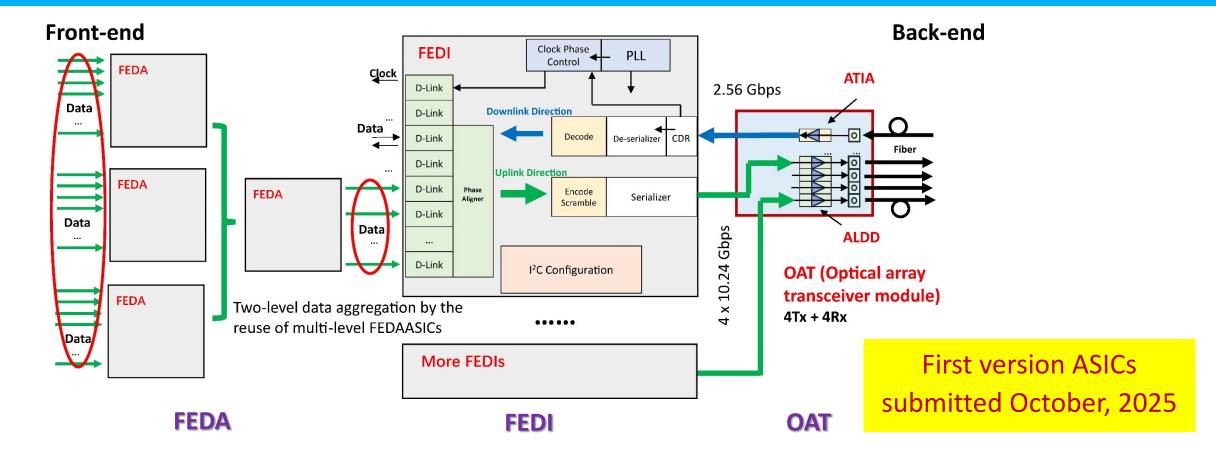
GBT Architecture Developed by CERN


Ref. P. Moreira, The GBT Project, 2007

IpGBTx Uplink: 10.24Gbps Downlink: 2.56 Gbps

GBLD (LDQ10) 10.24 Gbps x 4ch

GBTIA 2.56 Gbps

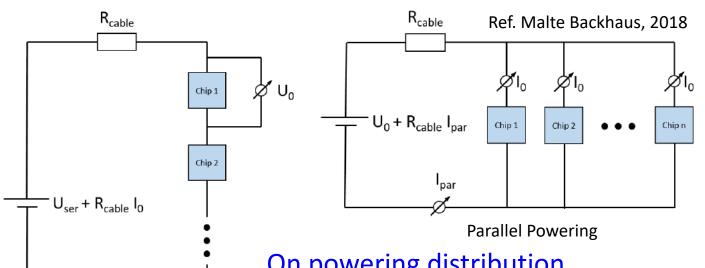


VTRx+ 4Tx + 1Rx Array Optical Module

GBT Series ASICs and optical module

Ref. P. Moreira, GBT Chipset Status and Production Plans, 2013

Detailed design on Data Transmission Structure



Pre-Aggregation ASIC (FEDA): Intend to fit with different front-end detector (different data rates/channels)

GBTx-like Data Link ASIC (FEDI): Bidirectional serdes ASIC including ser/des, PLL, CDR, code/decode ...

Array Laser Driver ASIC (ALDD) + TIA ASIC (ATIA) + Customized Optical module (OAT)

Technology Survey and Scheme on Powering

	Serial Power	Parallel Power
Material	Much less	
Cabling	Much less	
Installation	Much easier	
Maturity	New	Very mature
System Reliability	Potential issue	Very robust

On powering distribution

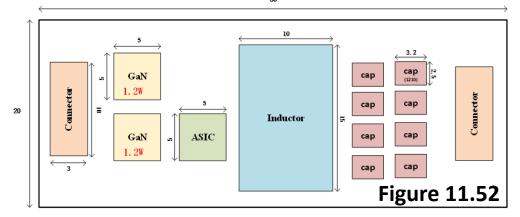
- Serial Powering is superior in many aspects (material, cabling and installation…) than Parallel Powering, especially on VTX & TRK
- It is also a hot area with a lot of focused R&D
- However, due to the common substrate at negative voltage for the stitching sensor in VTX, serial powering is not feasible

Our choice

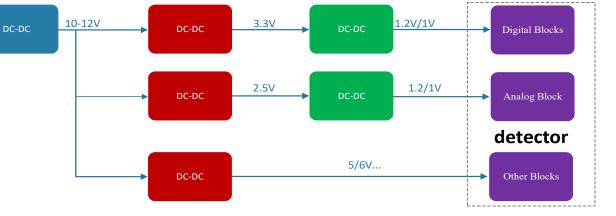
 As a general platform, we chose (conventional) Parallel Powering as the baseline scheme, while to keep pace on R&D of Serial Powering as the backup scheme

Serial Powering

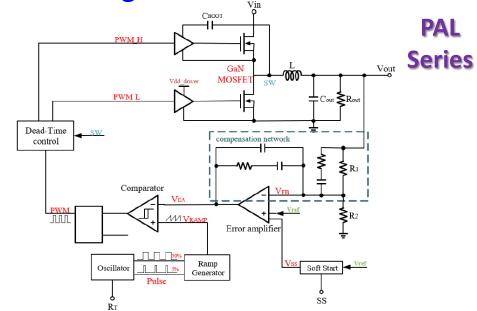
Chip n

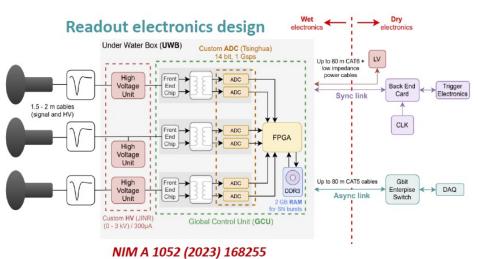

R&D efforts preliminary design on powering

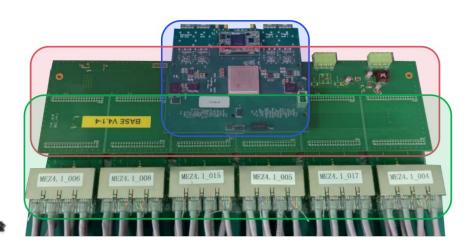
48V



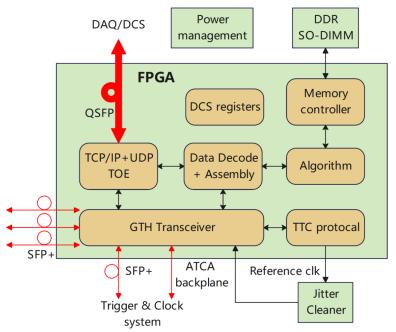
Preliminary rad-tol, of COTS GaN verified

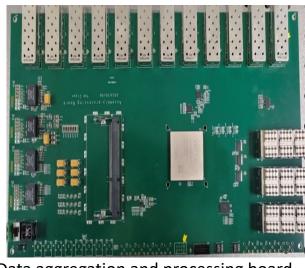

100V


	Nominal	Range
Input V	48V	36V-48V
Output V	1.2V	1.2V、3.3V
Output Current	10A	
Output ripple	10mVpp	
Efficiency	85%	80%-85%-80% (light-nom -heavy)
Dimension	50mmX20mmX6.7mm	Including cooling & shielding
TID	5 Mrad (Si)	
Magnet	3 T	


Proposed design of BUCK DC-DC convertor

Related R&D and experience on BEE



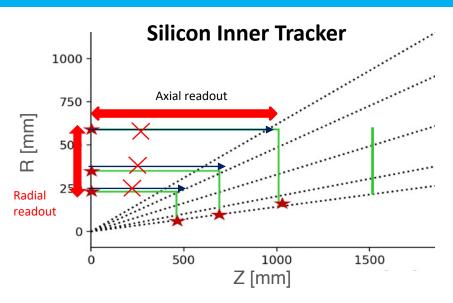

The back-end box for the JUNO experiment

- located between trigger system and front-end electronics,
- Collects the incoming trigger request for trigger system,
- Fanout the synchronized clock and the trigger decisions to front-end electronics.

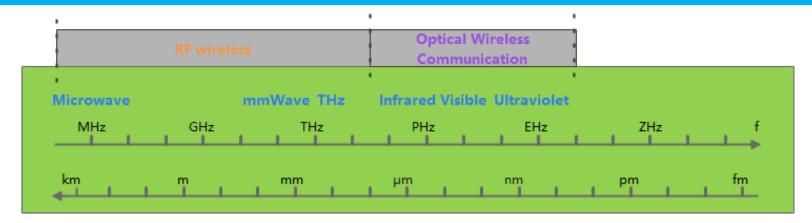
- Red box: The base board provides the power supply,
- Blue box: Trigger and Time Interface Mezzanine (TTIM) with WR node,
- Green box: The extenders interface with ethernet cables coming from underwater front-end boxes.

Detailed design on common BEE

Data aggregation and processing board Prototype for Vertex detector

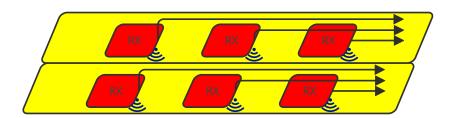

The back-end Card structure

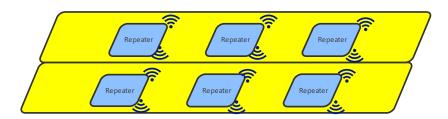
- Routing data from front-end optical link to highspeed network to DAQ.
- receives clock, global control from TTC, and synchronized and fanout to front-end.
- Real-time data processing, such as trigger algorithm and data assembly.
- On-board storage for data buffering.
- Xilinx Kintex UltraScale series preferable, cost-effective/availability.


	KC705 (XC7K325 T- 2FFG900C)	KCU105 (XCKU040 - 2FFVA115 6E)	VC709 (XC7VX69 0T- 2FFG1761 C)	VCU108 (XCVU095 - 2FFVA210 4E)	XCKU115
Logic Cells(k)	326	530	693	1,176	1451
DSP Slices	840	1920	3,600	768	5520
Memory (Kbits)	16,020	21,100	52,920	60,800	75,900
Transcei vers	16(12.5Gb /s)	20(16.3G b/s)	80(13.1Gb /s)	32(16.3Gb /s) and 32(30.5Gb /s)	64(16.3Gb /s)
I/O Pins	500	520	1,000	832	832
Cost	2748 (650)	3882(150 0)	8094	7770	

- Interface: SFP+ 10 Gbps × 12 + QSFP 40 Gbps × 3
- FPGA based machine learning for clustering, hit point searching, and tracking algorithms

Alternative scheme based on wireless communication


- Radial readout with mm-wave
 - 12-24 cm distance
 - Data rate : < 30Mbps
- Axial readout to endcap
 - Only at the outermost layer or dedicated aggregation layer.




- WiFi (2.4GHz, 5GHz)
 - large antenna volume, high power consumption, narrow frequency band, and high interference
- Millimeter Wave (24GHz, 45GHz, 60GHz, 77GHz)
- Optical wireless communication (OWC) / Free Space Optical (FSO)

Wireless communication based readout scheme was proposed to mitigate the cabling problem, as a backup scheme.

Recent progress on mm-wave transmission

Multi-channel Millimeter-Wave transmission prototype

Dummy Flex with MMW

- Single-channel MMW RX/TX verified
 - Max distance: 1.25Gbps @ 67.5cm
 - Max line rate: 6.6Gbps @ 22.5cm
- Multi-channel Millimeter-Wave transmission prototype in development
 - Millimeter-wave modules mass produced and tested
 - TX/RX flex PCBs and adapter boards produced, assembly in progress
 - FPGA data source board produced and tested
 - Repeater design: double-sided PCB, in progress
 - Focus: Multi-channel crosstalk validation

MMW transmission module

FPGA data source board

Electronics interface to the counting room

	Data Link, I	Fibers &	BEE		On-detector LV, HV & cables						
Detector	Max Data Rate/ Fiber (Gbps)	Fibers/ Module	Fibers	BEEs	Crates	Detector	Power Channels (Composite Ca-	Total LV Power	LV Crates	Max. HV	HV Crates
VTX	8	1–2	96	6	1		bles)	(kW)		(V)	
TPC	0.1	1	496	32	4	VTX	96	0.45	2	-10	1
ITK-Barrel	2.88	2–3	376	24	2	TPC	496	16	6	-500	4
ITK-EndCap	4.4	2	148	6	1	ITK-Barrel	128	26.6	6	300	2
OTK-Barrel	1.4	1	880	55	4	ITK-EndCap	74	13.8	4	300	2
OTK-EndCap	1.4	1–2	544	34	4	OTK-Barrel	880	195	42	500	4
ECAL-Barrel	4.8	2 (4)	960 (1,920)	60 (120)	6 (12)	OTK-EndCap	288	60	14	500	2
ECAL-EndCap	4.8	2 (4)	448 (896)	28 (56)	4(8)	ECAL-Barrel	480	17.5	5	60	4
HCAL-Barrel	0.14	1	5,568	348	36	ECAL-EndCap	224	9.5	4	60	2
HCAL-EndCap	1.75	1	3,072	192	20	HCAL-Barrel	5,568	66.1	58	60	26
Muon-Barrel	0.01	1	24	2	1	HCAL-EndCap	3,072	41.3	32	60	14
Muon-EndCap	0.01	1	16	1	-	Muon-Barrel	24	0.76	1	60	1
Total	-	-	12,628	788	83	Muon-EndCap	16	0.45	1	60	-
(Upgraded)			(14,036)	(876)	(93)	Total	11,346	447.46	175	-	62

■ Fibers : 12,628

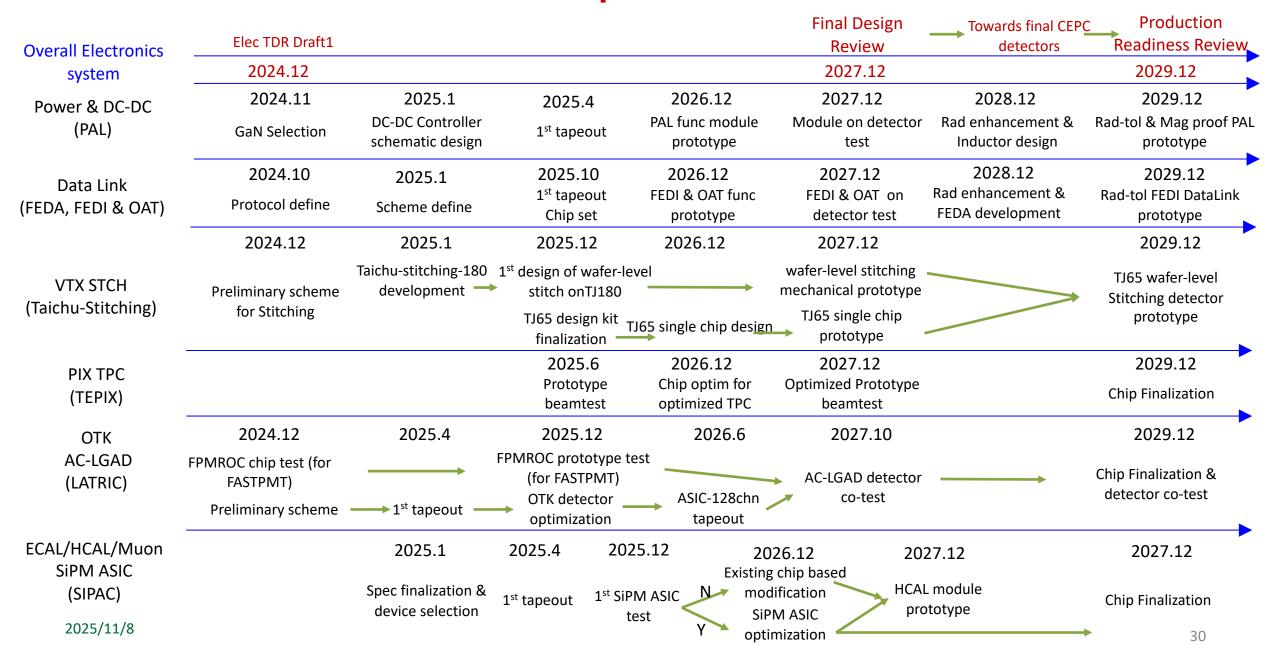
■ Power cables: 11,346

■ Total power consumption: 450 kW

Research team

- Electronics working group was founded: IHEP + universities, ~50 staffs (not full time) + 60 posdoc/student. We are looking for more collaborators.
- IHEP joined DRD7 collaboration in July 2025.





- Overall electronics and BEE: IHEP(5)
- Sub-detector readout electronics: IHEP(11), Tsinghua(5), CCNU(3), NPU(7), SDU(4), NJU(3)
- Data link: CCNU(3), IHEP(3), USTC(2), NPU(4)
- Powering: NPU(3), IHEP(2), USTC(2)

ASIC development & teams

Chip	Application	Functional	Foundry & technology	Similar chips	Leading person	Development team	Staff	Students
Taichu	VTX	VTX-Stitching	Towerjazz 180nm / 65nm	MOSAIX	Wei Wei (IHEP)	NPU, CCNU, SDU, NJU	10	8
TEPIX	TPC	Pixel TPC	TSMC 180nm (SMIC 55nm)	Timepix3/4	Zhi Deng (THU)	IHEP	1	4
COFFEE	ITK	HVCMOS	SMIC 55nm HV	MightyPix	Yiming Li (IHEP)	ZJU, NPU, DMU, SDU, NJU	8	12
LATRIC	ОТК	LGAD-TOF	SMIC 55nm	ALTIROC	Xiongbo Yan (IHEP)	CCNU, WTU, HPU	9	10
SIPAC	SiPM ASIC	ECAL, HCAL, Muon	SMIC 55nm	HGCROC, SPIROC	Huaishen Li (IHEP)	CCNU, NPU	5	6
FEDI	Common Elec	Data Link	SMIC 55nm	lpGBT	Di Guo (CCNU)	IHEP, NPU, USTC, WTU, HPU	9	16
OAT	Common Elec	Optical	SMIC 55nm	VTRx+	Di Guo (CCNU)	IPAS, IHEP	3	3
FEDA	Common Elec	Data Aggregation	SMIC 55nm	lpGBT	Di Guo (CCNU)	IHEP, NPU	2	4
PAL	Common Elec	DC-DC	SMIC 180nm HV	bPolx	Jia Wang (NPU)	IHEP, USTC, TECHORILUX	7	3

ASIC Development Schedule

Working plan

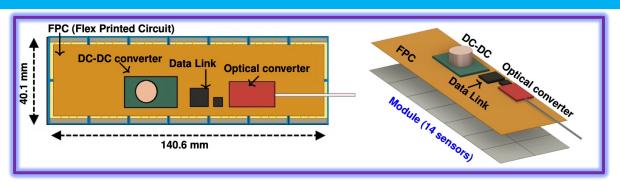
- Most chips' development followed the schedule.
- Toward end of 2025:
 - Submitted October MPW tapeout
 - 1st full chip tapeout for FEDI, core chip of the data interface
 - 2nd ver chips fixed bugs founded
 - Thorough test after chips come back.
- Longer term:
 - develop with detector group for the first prototypes, with available sister chips or newly developed chips.

Summary

- The CEPC Reference TDR electronics design has been completed, incorporating full data transmission and a backend trigger scheme while preserving the potential for future upgrades.
- ASIC development is progressing with a dedicated team; the first version of the ASIC designs have been submitted, and fully functional chips are expected within 2–4 years.
- Collaborations are very welcome.

Thank you for your attention!

Backups

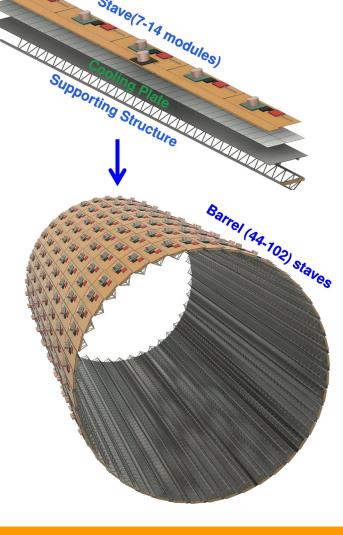

Manpower for electronics system

	Overall	BEE	VTX	TPC	ITK+OTK (LATRIC)	CAL (SiPM)	Muon	Data Link	Power	Wireless
Staff	5	1	10	1	9	5	1	9	7	4
Postdoc + Student	0	3	8	4	10	6	0	16	3	5
Total Sum	5	4	18	5	19	11	1	25	10	9

The headcounts are not to the FTE

Some staffs are shared by multiple projects, while postdocs / students are dedicated to the projects

ITK Barrel Design with HV-CMOS Pixels



- HV-CMOS pixel sensor:
- **Figure 5.37**
- Sensor size: 20 mm × 20 mm
- Pixel size: $34 \mu m \times 150 \mu m$ (spatial resolution: $8 \mu m \times 40 \mu m$)
- Module:
 - 14 sensors (2 rows × 7 columns)
 - Module dimensions: 140.6 mm × 40.1 mm
- Stave length: 986.6 mm (ITKB1), 1,409.6 mm (ITKB2), and 1973.2 mm (ITKB3)
- Barrel radii: 235 mm (ITKB1), 345 mm (ITKB2), and 555.6 mm (ITKB3)

The designed 3 ITK barrel layers has a total surface area of 13.3 m², including 33,264 sensor chips, with a power consumption of ~26.6 kW.

5.3.2.1 ITK barrel design

Summary of FEE power

	Vertex	Pix(ITKB)	Strip (ITKE)	ОТКВ	OTKE	TPC	ECAL-B	ECAL-E	HCAL-B	HCAL-E	Muon	
Channels per chip	512*1024 Pixelized	512*128	1024		128	128	8~16 @common SiPM ASIC					
Technology	65nm CIS	55nm HVCMOS	55nm HVCMOS	55n	55nm CMOS 65 CMOS			55nm CMOS (or 180 CMOS?)				
Power Supply Voltage (for DC-DC) (V)	1.2	1.2	1.2		1.2		1.2 (or 1.8?)					
Power@chi p	40mW/cm ² 200mW/chi p	200mW/cm 800mW/chi p	200mW/cm 800mW/chi p		mW/chn 6W/chip	280µW/chn 35mW/chip 100mW/cm	15mW/chn 240mW/chip					
Max chips@mod ule	29	14	14	22	22	1115	64	120	8	92	167	
Power@mo dule (W)	5.8	11.2	11.2	27.6	27.6	32.2	30	30	9	11	4.7	

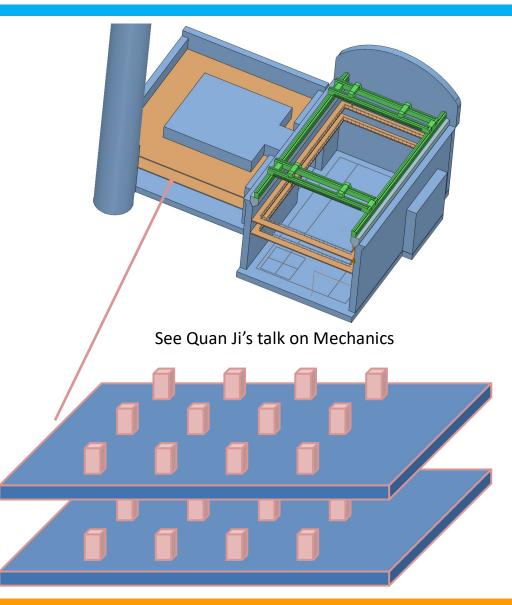
The Counting room

Minimum crates from current MDI

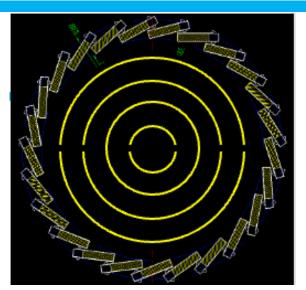
107 data crates, 227 power crates, 78 Det-HV crates, 20
 Trigger crates

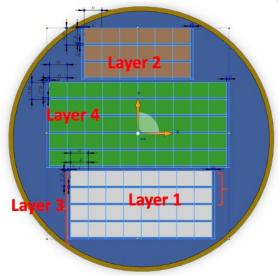
Minimum racks from current MDI

- 37 data racks, 24 power racks, 23 Det-HV racks, 10 trigger racks (94 in total)
- More 2 racks for AC-DC power for all the above racks
- 96 racks in total


Racks Size: $0.5m \times 0.5m$

Side clearance 1.5m for heat, face clearance 2m for cabling & heat


 Very rough estimation: 20% more power will be consumed due to the crate efficiency


Total room: $500m^2 \times 2floor = 25m \times 20m \times 2floor$

- $-10 \times 10 \times 2 = 200$ racks capacity
- Necessary redundancy for future upgrade

VTX-Data Link

From Zhijun

4	А	Γ	В		С	D	Е	F
1	Layer		Hit density (Hits/cm2/BX)	B	(Rate (Hz)	Hit density (kHits/cm2/s)	Safe factor	Cluster size
2	VTX-1 (Higgs)		0.65		1.34E+06	870	1.5	3
3	VTX-2 (Higgs)		0.43			580	1.5	
4	VTX-3 (Higgs)		0.09			116	1.5	
	VTX-4 (Higgs)		0.08			110	1.5	
6	VTX-5 (Higgs)		0.05			70	1.5	
7	VTX-6(Higgs)		0.05			68	1.5	

VTX scheme: Inner 4 layers stitching, with 1 typical double-sided ladder (layer 5&6)

Bkgrd rate @50MW @Higgs with safety factor 1.5

Assume RSU@stitching = ladder chip = 1024*512 matrix, then data rate for the innermost layer for a "chip" is 2Gbps, other layers according the bkgrd ratio

Inner 2 layers needs 2 fiber chns for each row, due to the high data rate

possible to merge into less optical MTX interfaces

In total 88 fibers = 6 BEE Brd = 1 Data Crate

Layer	Comment	Data Rate/chip	Chips/Row	Data rate/row	Rows	Links@10Gbps
1	Stitching	2Gbps	8	16G	2*2=4	2*4=8 (2 fiber chns)
2	Stitching	1.3Gbps	12	15.6G	3*2=6	2*6=12 (2 fiber chns)
3	Stitching	0.27Gbps	16	4.3G	4*2=8	1*8=8
4	Stitching	0.25Gbps	20	5G	5*2=10	1*10=10
5	Ladder-side0	0.16Gbps	29	4.64G	25	1*25=25
6	Ladder-side1	0.16Gbps	29	4.64G	25	1*25=25