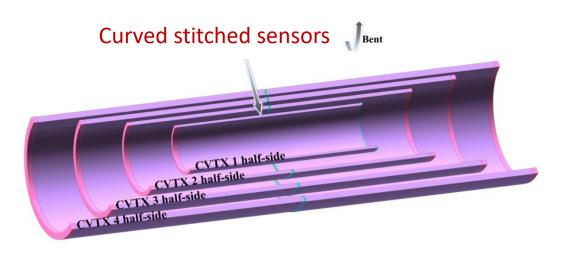


Sensor and electronics design for the Vertex Detector

Ying Zhang
(On behalf of the CEPC vertex detector group)

Content

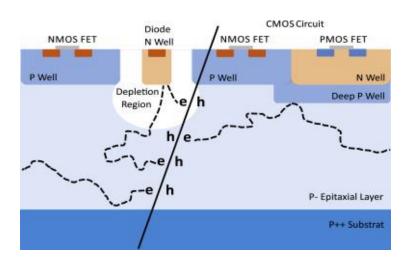

- CEPC Vertex detector requirements
- R&D efforts and results
- Stitched sensor prototype design
- Readout electronics
- Summary

Vertex Requirement

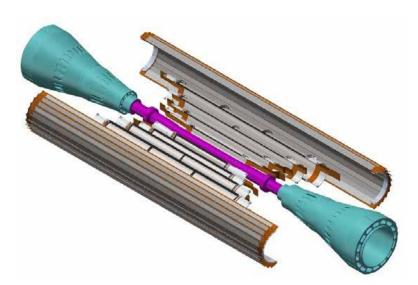
- Inner most layer (b-layer) need to be positioned as close to beam pipe as possible
 - Challenges: Radius (11.1 mm) is smaller compared with ALICE ITS3 (18 mm)
 Requiring wafer-scale stitched Monolithic Active Pixel Sensors (MAPSs)

Table 4.2: Vertex Detector Design Parameters

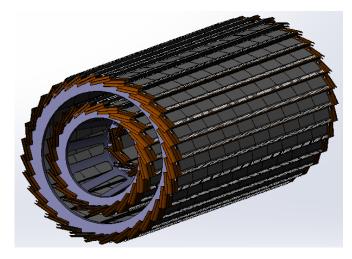
Parameter	Design
Spatial Resolution	~ 5 μm
Detector material budget	$\sim 0.8\%~X_0$
First layer radius	11.1 mm
Power Consumption	< 40 mW/cm ² (air cooling requirement)
Time stamp precision	100 ns
Fluence	$\sim 2 \times 10^{14} \text{ Neq/cm}^2 \text{ (for first 10 years)}$
Operation Temperature	\sim 5 °C to 30 °C
Readout Electronics	Fast, low-noise, low-power
Mechanical Support	Ultralight structures
Angular Coverage	$ \cos\theta < 0.99$



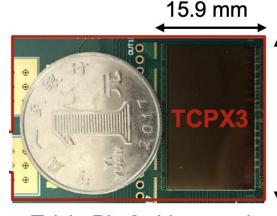
First four semi-cylinder layers for CEPC VTX

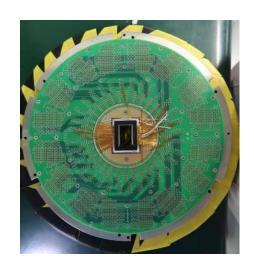

Technology for CEPC Reference TDR

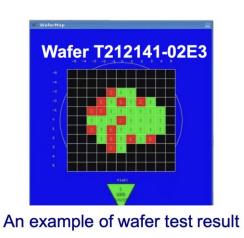
- Vertex detector Technology selection
 - Baseline: based on curved CMOS MAPS (Inspired by ALICE ITS3 design [1])
 - Advantage: 2~3 times smaller material budget compared to alternative (ladder)
 - Alternative: ladder design based on CMOS MAPS


CMOS Monolithic Active Pixel Sensor

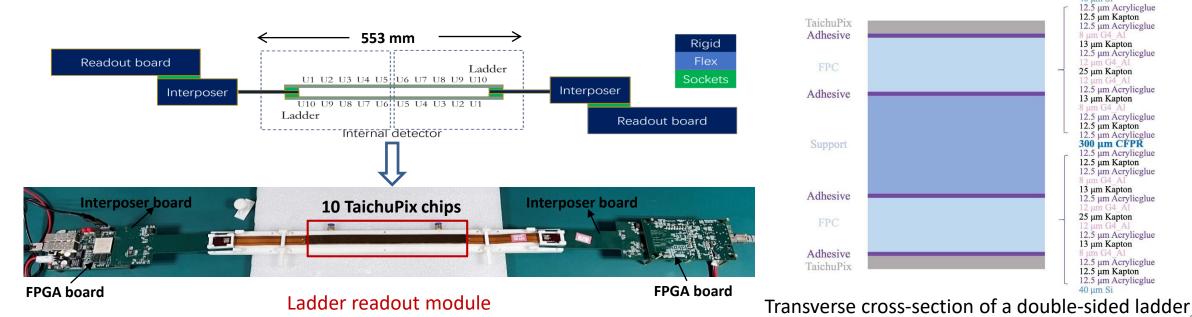
Baseline: curved MAPS


Alternative: ladder based MAPS


R&D efforts: Full-size pixel sensor chip


- Full reticle-size CMOS MAPS developed, 1st engineering run
 - 1024×512 pixel array, Chip Size: 15.9 mm×25.7 mm
 - $-25 \mu m \times 25 \mu m$ pixel size with high spatial resolution < 5 μm (@ detection eff. > 99%)
 - Process: 180 nm CIS process
 - Fast data-driven readout (50 ns/pixel) to cope with all operation modes in CDR
 - Dead time < 500 ns, Max. hit rate 36 MHz/cm²

25.7 mm

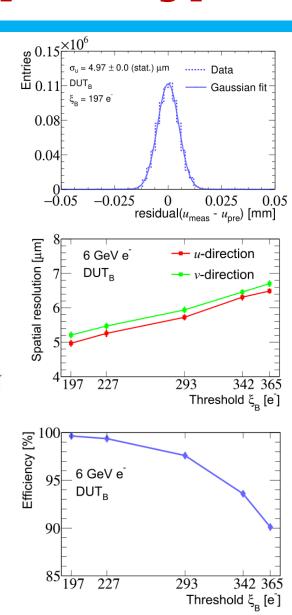


Taichu	Pix-3	chip	VS.	coin
--------	-------	------	-----	------

Status CEPC Final goal
CMOS chip technology Full-size chip with 180 nm CIS 65 nm CIS

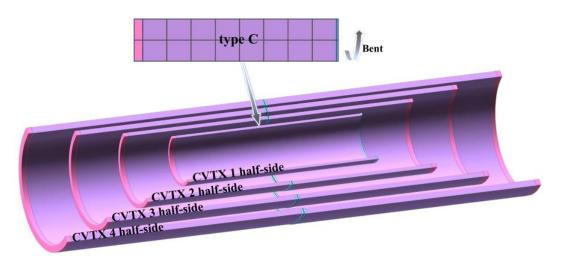
R&D effort: Ladder readout design

- Detector module (ladder) = 10 sensors (on oneside) + support structure + readout board
 - Sensors are wire bonded to the flexible PCB, supported by a carbon fiber support
 - Signal, clock, control, power, ground will be handled by readout board through flexible PCB
- Functionality of a full ladder readout was verified
 - Read out from both ends, with careful design on power placement and low noise

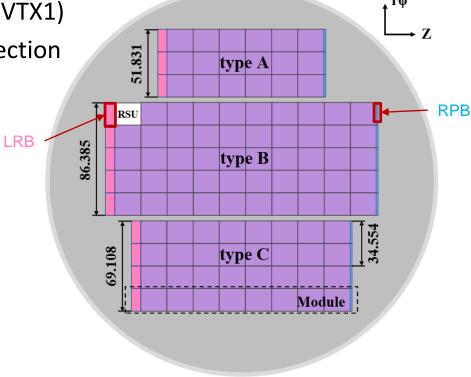

R&D effort: Vertex detector prototype

- 6 double-sided layers assembled on detector prototype
 - 12 flex boards with two TaichuPix-3 chips bonded on each flex
 - Readout boards on one side of the detector
 - Best spatial resolution 4.97 μm @ detection efficiency > 99%

First vertex detector prototype



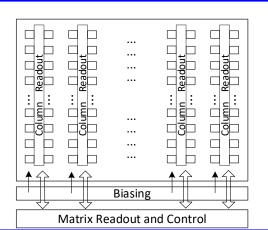
Ref: DOI-10.1109/TNS.2024.3395022


Stitched sensor prototype design

- Requiring wafer-scale bent pixel sensors for inner layers
 - Three types stitched sensors with different sizes on a wafer
 - Sharing same components (RUS, LRB, RPB)
 - One Type C sensor forms a semi-cylindrical for layer1 (CVTX1)

 Two Type A/Type C/Type B sensors oriented along z-direction to form halves for Laye2/Layer3/Layer4

First four semi-cylinder layers for CEPC VTX



Stitching plan for a 300 mm wafer

Stitched sensor prototype design

- Each stitched prototype consists of multiple RSUs (Repeated Sensor Unit),
 1 LRB (Left-end Readout Block) and 1 RPB (Right-end Power Block).
 - An RSU is composed of multiple independent Sensor Blocks, each transmits low-speed serialized data to the left edge of chip.
 - LRB acts as data collector, high-speed data interface and power supply with external.

RPB contains solely power transmission buses **RSU (Repeated Sensor Unit)** Module Sensor Sensor Sensor Block Block Block Block Block Block **SUPPLIES** RSU **RSU RSU RSU RSU RSU RSU** RSU **RSU RSU RSU RSU RSU RSU RSU** RSU Sensor Sensor Sensor Sensor Sensor Block Block Block Schematic floorplan of the sensor for layer1 Block Block

Sensor Block (design derived from TaichuPix3)

Design of the first stitched chip

Layer3

Layer2

Layer1

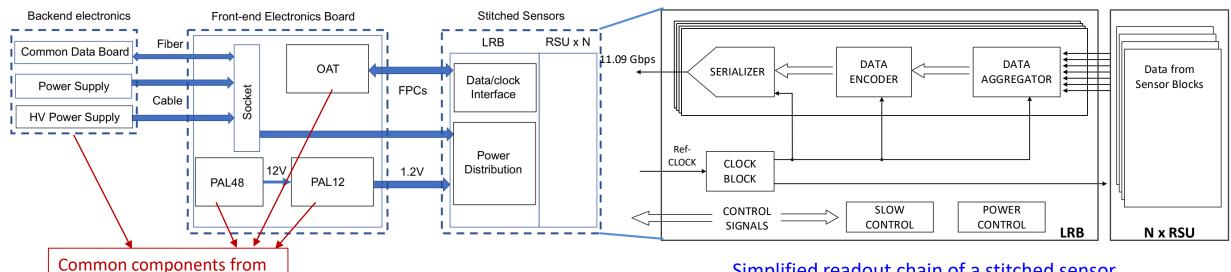
Main goals:

- Feasibility validation of the stitching technology
- Architecture and functionality validation of the main circuits
- Design based on previous R&D prototypes, to keep R&D risks and costs within reasonable bounds.
- Design status
 - Preliminary design of stitching floorplan done
 - Four stitched chips per wafer
 - Preliminary architecture design of the stitched chip finished
 - Chip size, specific RSU floorplan, data transmission scheme ...
 - Detailed circuit design ongoing

Stitching plan for a 200 mm wafer

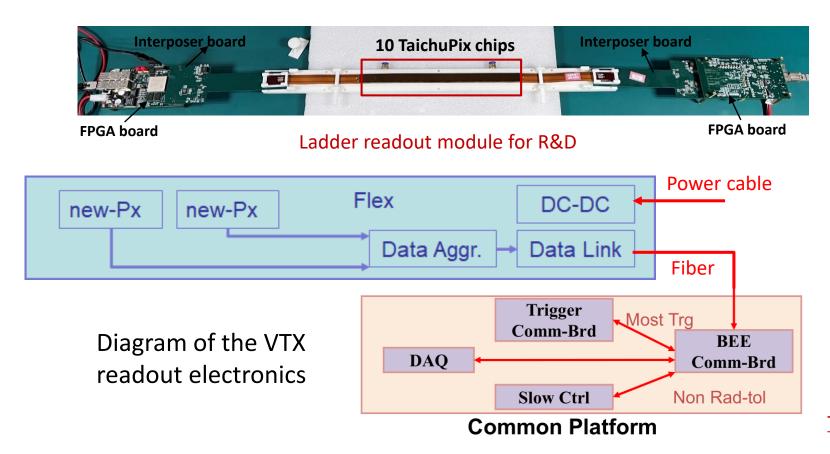
 \emptyset = 200 mm (8") silicon wafer

RSU



Readout electronics

- Stitched sensors wire-bonded on FPCs to connect to Front-end Electronics Board (FEE)
 - LRB of stitched sensors aggregates data of RSUs, distributes clock and control signals, and handles local power distribution
- FEE boards include optical transceivers and power regulators


readout electronic system

- OAT (Optical Array Transceiver) converts electrical signals into optical signals and transmits them over fibers to Back-End Electronics (BEE)
- Power management: two-stage DC-DC conversion scheme (two Power-at-Load (PAL) modules)

Readout electronics

- Outer layer (L5-L6): flexible PCB (also used in alternative layout)
 - Preliminary ladder readout module verified in previous R&D
 - Customized rad-tolerant ASICs will be used for data link and DC-DC converter

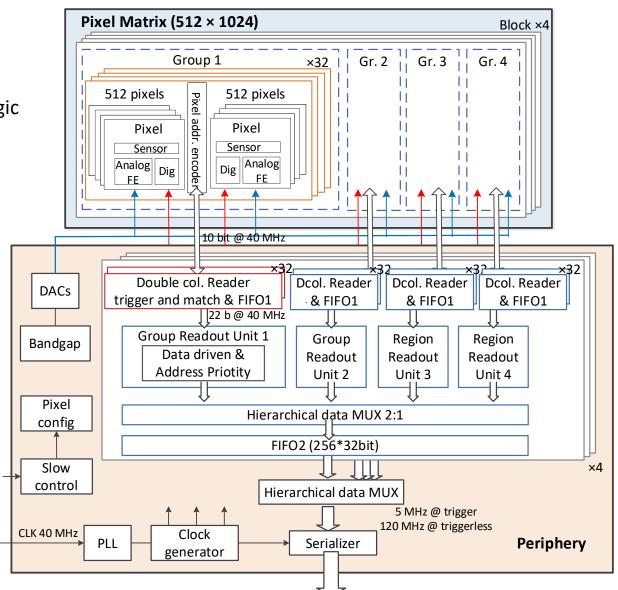
Background data rate and cabling on data

	Higgs	Low-Lumi Z
Background hit rate (MHz/cm²)	6.4	15
Data rate/Link (Gbps)	20	47
Fiber channels to BEE		96
BEEs		6
Crates		1

Talk on BEE: 5:10 PM, 8th Nov., Jun Hu

Summary

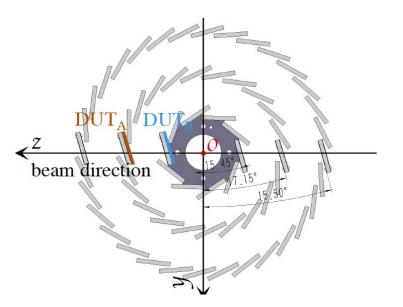
- CEPC vertex detector requires wafer-scale monolithic pixel sensors for the inner four layers
 - First stitched chip based on 180 nm process under designing
 - Feasibility validation of the stitching technology
 - Architecture and functionality validation of the main circuits
 - Next generation stitched chip expected to transition to 65/55 nm
- Customized front-end electronics (FEE) for VTX
 - For Layer1-4, FEE boards contain optical transceivers and power regulators
 - For Layer5-6, ladder readout will be built based on the previous R&D
- Back-end electronics (BEE) of VTX based on the common platform
 - Common platform for all sub-detector system

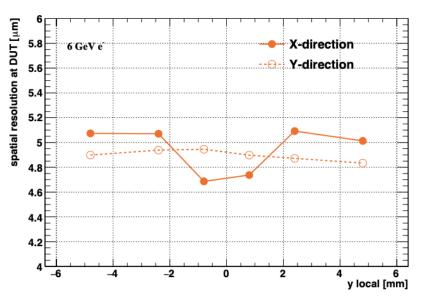


Thank you for your attention!

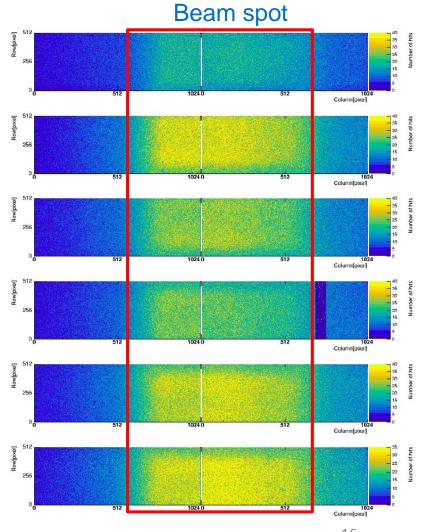
TaichuPix architecture

- Pixel 25 μm × 25 μm
 - Continuously active front-end, in-pixel discrimination
 - Fast-readout digital, with masking & testing config. logic
- Column-drain readout for pixel matrix
 - Priority based data-driven readout
 - Readout time: 50 ns for each pixel
- 2-level FIFO architecture
 - L1 FIFO: de-randomize the injecting charge
 - L2 FIFO: match the in/out data rate
 - between core and interface
- Trigger-less & Trigger mode compatible
 - Trigger-less: 3.84 Gbps data interface
 - Trigger: data coincidence by time stamp only matched event will be readout
- Features standalone operation
 - On-chip bias generation, LDO, slow control, etc



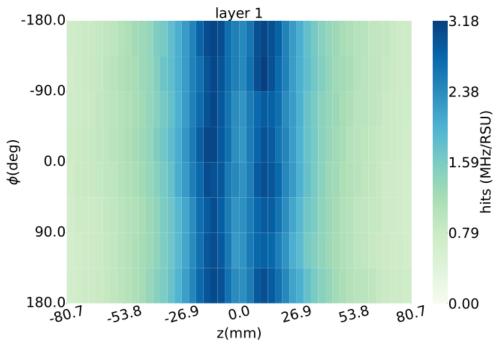

15

R&D efforts and results: vertex detector prototype beam test


Hit maps of multiple layers of vertex detector

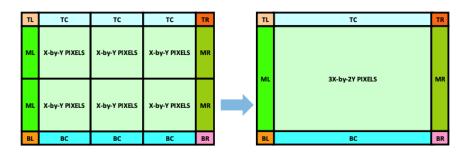
Spatial resolution ~5 µm Efficiency >99%

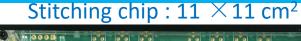
	Status	CEPC Final goal
Spatial resolution	4.9 μm	3-5 μm


Background estimation

- Background rate are simulated
 - The data rate at low-lumi Z pole is about ~Gbps level in b-layer

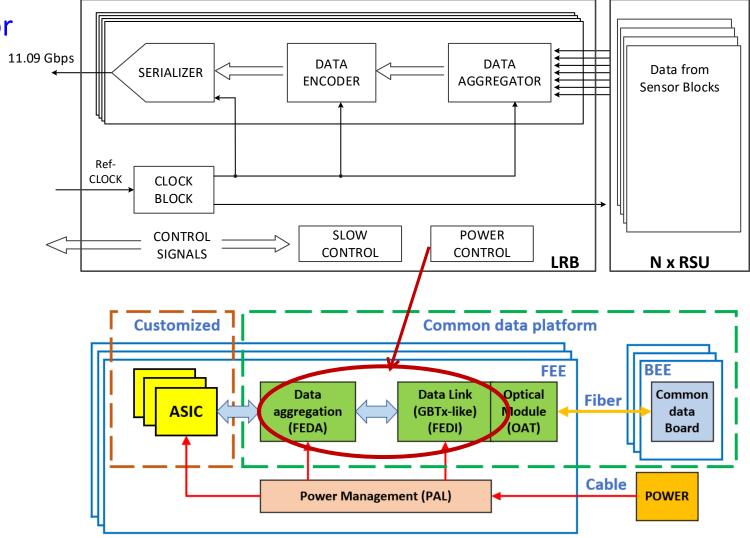
Background rate for Higgs and low-lumi Z runs


Layer	Ave. Hit Rate (MHz/cm²)	Max. Hit Rate (MHz/cm ²)	Ave. Data Rate (Mbps/cm²)	Max. Data Rate (Mbps/cm²)
	Hi	ggs mode: Bunch Spaci	ing: 277 ns, 63% Gap	
1	6.2	12	760	1500
2	0.84	1.6	87	160
3	0.17	0.36	19	38
4	0.067	0.16	8.4	19
5	0.017	0.037	2.1	4.2
6	0.013	0.026	1.6	3.7
	Low-lur	ninosity Z mode: Bunc	h Spacing: 69 ns, 17% (Gap
1	15	39	2700	8100
2	1.7	2.6	240	400
3	0.72	1.2	110	240
4	0.43	0.94	70	210
5	0.10	0.19	14	31
6	0.078	0.15	11	23


Hit rate map for 1st layer @ low-lumi Z run

R&D efforts and results: R&D for curved MAPS

- Stitching chip design (by ShanDong U.)
 - 350 nm CIS technology Xfabs
 - Wafer level size after stitching ~11 ×11 cm²
 - reticle size 2 ×2 cm²
 - 2D stitching
 - Engineering run, chip under testing



Key technology	Status	CEPC Final goal
Stitching	11*11cm stitched chip with Xfab 350 nm CIS	65 nm CIS stitched sensor

Data Transmission Structure

LRB in stitched sensor

