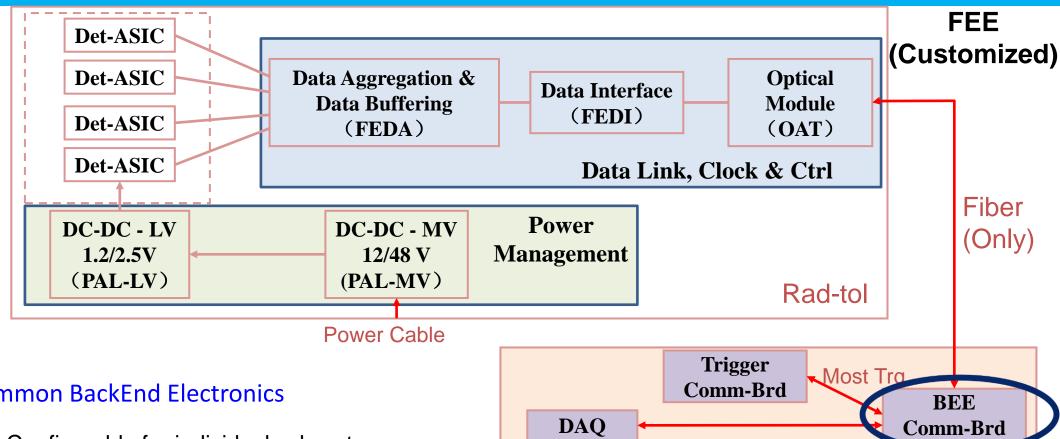


The development of the CEPC common BEE

Jun Hu
On behalf of the CEPC Elec study team



Content

- CEPC common BEE structure
- R&D efforts and results
- Summary

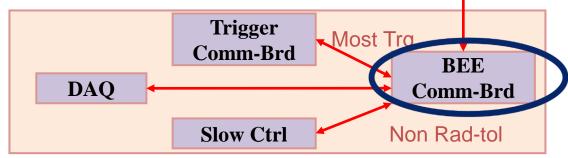
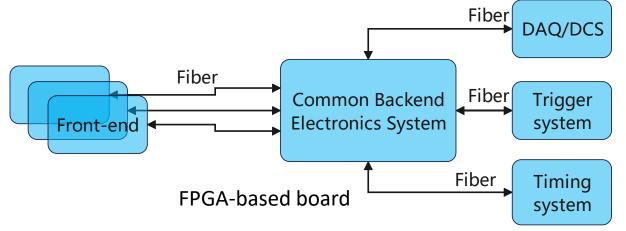
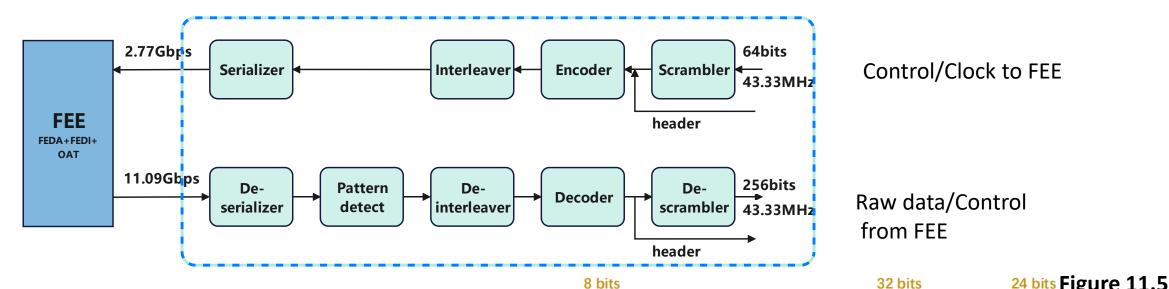

Global framework of the CEPC Elec system

Figure 11.1

Common BackEnd Electronics


- Configurable for individual subsystems
- Serving as a bridge between FEE and TDAQ
- Possible based on xTCA architecutre
- All connections utilize optical fibers.

Common Platform


Common BEE functionality

- Receive raw data streams from FEE
- Control interface with FEE
- Data processing & Hit info generation
- Final trigger decision processing
- Data caching & Packaging
- Data transmission to DAQ
- DCS communication
- Clock synchronization & distribution

Interface with FEE

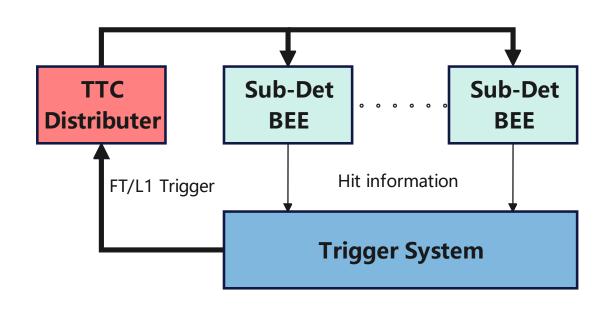
- Adapt to the specific FEE data protocol
 - Compatible with GBT-FPGA protocol, simplifying the development
 - Provides 16 channels to FEE

64 bits Downlink frame data format

256 bits Uplink frame data format

					1 10 4	. –
{H(3),E	BDC(1),H(2),E	BDC(0),H(1),l	Data[31:0]	FEC[23:0]		
2 bits	2 bits	2 bits	10 bits	192 bits	48 bits	
H[1:0]	BDC[1:0]	UDC[1:0]	{8'b0,DownBDC[1:0]}	Data[191:0]	FEC[47:0]	5

BEE boards number


Table 11.13

Detector	Max Data Rate/ Fiber (Gbps)	Fibers/ Module	Fibers	BEEs	Crates
VTX	8	1–2	96	6	1
TPC	0.1	1	496	32	4
ITK-Barrel	2.88	2–3	376	24	2
ITK-EndCap	4.4	2	148	6	1
OTK-Barrel	1.4	1	880	55	4
OTK-EndCap	1.4	1–2	544	34	4
ECAL-Barrel	4.8	2 (4)	960 (1,920)	60 (120)	6 (12)
ECAL-EndCap	4.8	2 (4)	448 (896)	28 (56)	4(8)
HCAL-Barrel	0.14	1	5,568	348	36
HCAL-EndCap	1.75	1	3,072	192	20
Muon-Barrel	0.01	1	24	2	1
Muon-EndCap	0.01	1	16	1	-
Total	-	-	12,628	788	83
(Upgraded)			(14,036)	(876)	(93)

The numbers in brackets correspond to the second operational phase, while the regular numbers refer to the baseline case.

Given the low bandwidth requirements of HCAL-Barrel, and Muon subdetector system, a dedicated low-cost BEE solution can be developed to significantly reduce the hardware costs and power consumption.

Interface with Trigger System

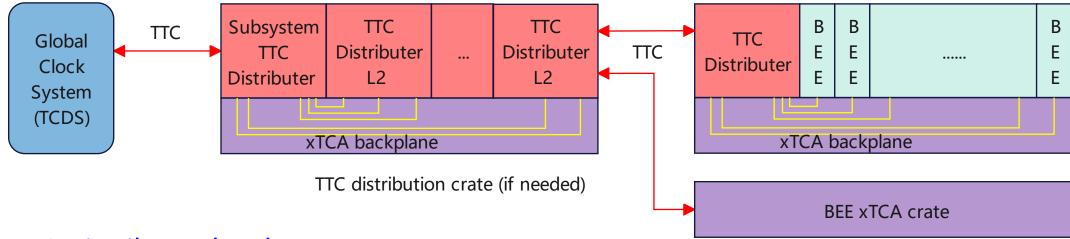
Data caching & packaging

- Large DDR memories buffer are deployed to cache over 1 ms of raw data.
- Upon a trigger decision, BEE identifies and extracts the relevant data from the buffer for packaging and readout.

Data processing (On-demand)

 Advanced algorithms for noise filtering, signal alignment, linearization, data compression, etc.

Hit information generation

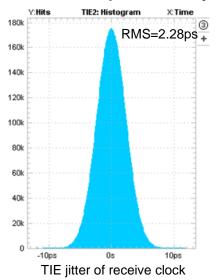

- Feature extraction: Time, Charge,
 Position, Counter, etc.
- Provides a 40Gbps data transmission link to Trigger System

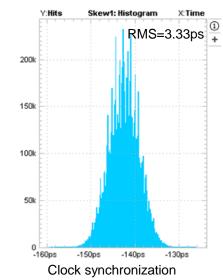
Trigger Decision processing

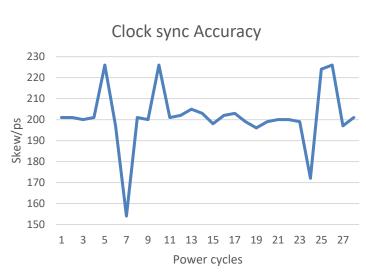
L1A(FT), BC0, and orbit signal

Interface with Timing System

Figure 11.17

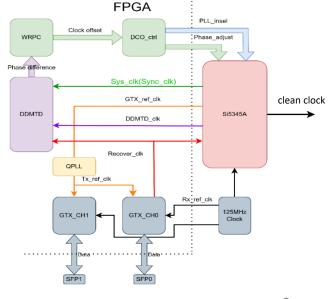



TTC Distributer hardware

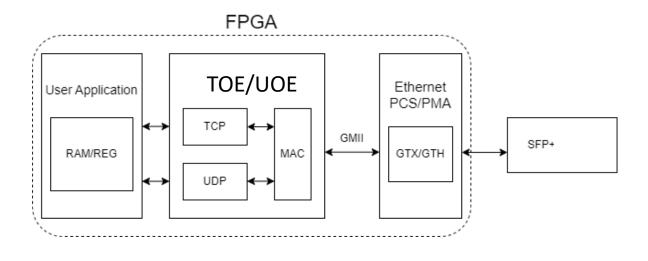

- Distribute Timing, Trigger, Control signals to sub-detector BEE.
- Receive feedback status (e.g., FULL, error) from BEE.
- Two operational modes available:
 - Master: Receive from backplane, distribute via fiber.
 - Slave: Receive via fiber, distribute to backplane.

Clock synchronization module

- System clock is recovered from serial link via BEE's CDR
- New hardware employs Write Rabbit(WR) principle
 - Achieves 3 ps TIE jitter resolution clock
 - Maintains 4 ps clock synchronization stability under temperature variations
 - ~30ps RMS (70ps peak to peak) accuracy across system power cycles



High-precision clock synchronization hardware node



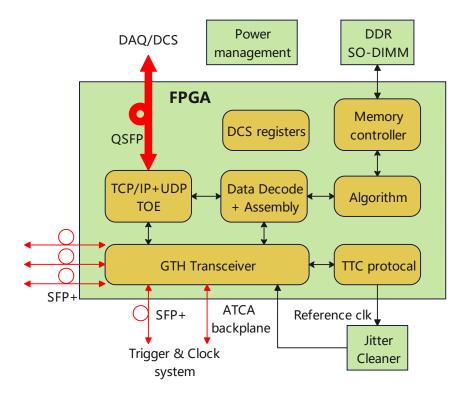
Firmware design

Interface with DAQ/DCS System

Table 12.12

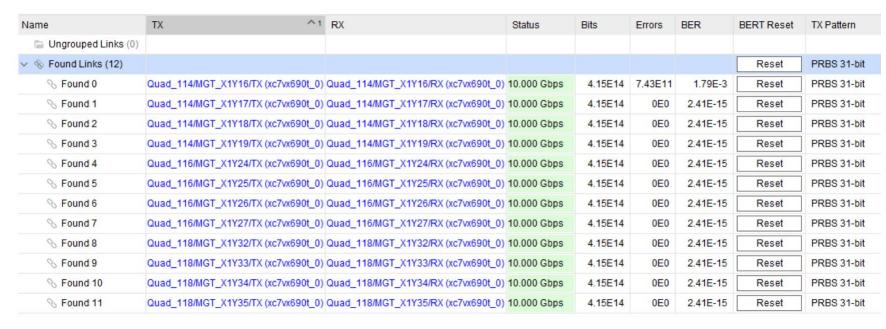
		=		
Detector	Readout Data Rate at Higgs	after L1-Trigger (Gbps) at Low Lumi Z	BEE Board Number	Data rate per BEE board (Gbps) at Low Lumi Z
VTX	1.94	6.14	6	1.02
TPC	26.4	57.1	32	1.78
ITK	0.317	0.756	30	0.0252
OTK_B	0.690	1.62	55	0.0295
OTK_E	0.544	1.15	34	0.0338
ECAL_B	4.13	8.68	60	0.145
ECAL_E	7.10	15.4	28	0.55
HCAL_B	0.0448	0.204	348	< 0.01
HCAL_E	1.54	3.88	192	0.0202
Muon	< 0.1	< 0.1	3	< 0.01
Trigger	-	-	103	-
Sum	42.7 (5.34 GB/s)	95.1 (11.9 GB/s)	891	

Average readout data rate to DAQ at 120 kHz L1 trigger rate for low Z mode


- The BEE and trigger system are designed with an xTCA architecutre, so data readout to DAQ will be implemented using a network-based approach.
- To achieve high performance, a hardware-based TCP Offload Engine (TOE) will be integrated into the FPGA firmware.

BEE R&D hardware/firmware

Figure 11.24


Figure 11.23

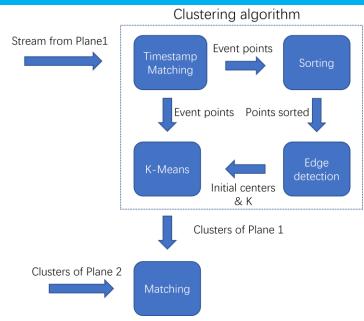
Ziyue Yan. Study on Key Technologies of Readout Electronics for CEPC Vertex Detector Pre-Research. 2024. University of Chinese Academy of Sciences, Doctoral thesis.

- A cost-driven device selection: FPGA XC7VX690T
- Interface: SFP+ X12 + QSFP X3
- Implement real time FPGA based data processing for clustering, hit point searching, and tracking algorithm.

Fiber loopback test

Due to a layout issue in channel 0, 10 Gbps cannot meet the requirement

12 channels loopback test BER at 10 Gbps

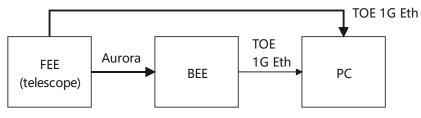


The eye diagram of channel 1 at 10 Gbps rate

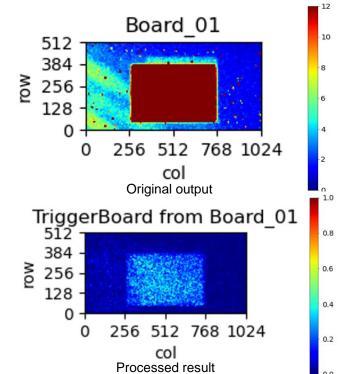
Real-Time data processing algorithm

Algorithm for Vertex prototype

- Timestamp Matching: Identifies the set of points with identical timestamps (from the same event)
- Coordinate Sorting: Sorts the point set within each event based on spatial coordinates
- Cluster Edge Detection: Detects clusters within the sorted data and identifies their boundary points
- K-Means Clustering: Computes centroid coordinates for each cluster using machine learning optimization.
- **Position Matching:** Outputs matching results ("1" or "0") for centroid pairs across upper and lower layer clusters.



Resources	Usage	Available	Utilization %
LUT	40942	433200	9.45
LUTRAM	1018	174200	0.58
FF	42466	866400	4.90
BRAM	860.50	1470	58.54
DSP	26	3600	0.72
10	11	350	3.14
GT	7	48	14.58
BUFG	24	32	75.00
MMCM	5	20	25.00



Test setup in BSRF (Beijing Synchrotron Radiation Facility)

Algorithm results

Focus on the Data Compression Ratio & Track Recognition Accuracy

		Offline	Online	Track	Compressed	Original	Data
NO.	Time/min	Analyzed	Filtered	Recognition	Data	Data volume	Compression
		Tracks	Tracks	Accuracy	Volume/MB	/MB	Ratio
1	125	21206	20403	96.21 %	15.9	5171	325.22
2	152	22503	21749	96.65 %	26.6	8050	302.63
3	125	27524	26449	96.09 %	26.6	6176	232.18
4	124	25987	25279	97.28 %	28	6108	218.14
5	262	26110	25372	97.17 %	31.8	6305	198.27
6	156	23538	22808	96.90 %	53.5	7010	131.03
7	211	34919	33949	97.22 %	37.3	8590	230.29
8	146	25738	24835	96.49 %	39	6780	173.85
9	243	18412	17951	97.50 %	30.5	6226	204.13
10	272	29010	28265	97.43 %	52.2	7265	139.18
11	270	24737	24070	97.30 %	54.2	7590	140.04
Total	2086	279684	271130	96.94 %	395.6	75271	190.27

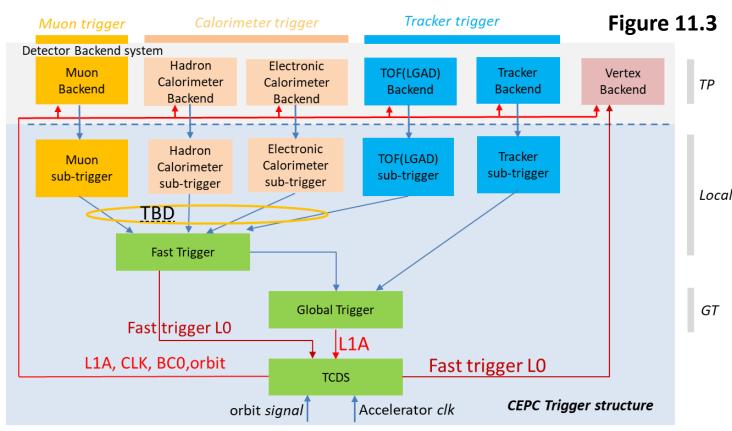

- 11 tests were conducted, lasting 2086 minutes (34.8 hours) in total.
- The overall data compression ratio of 190.3:1.
- The overall average online track recognition accuracy reached 96.9%.

Event selection and noise filtering effectively suppress background.

Summary

- The baseline schemes for Higgs and LowZ modes have been established.
- Some functionalities have been implemented through hardware and firmware development.
 - Preliminary research on signal processing algorithms of FPGA has been conducted for specific sub-detectors.
 - Initial integration and testing with DAQ system have been conducted.

Development of the advanced HighZ mode continues, requiring further architectural refinement and testing.

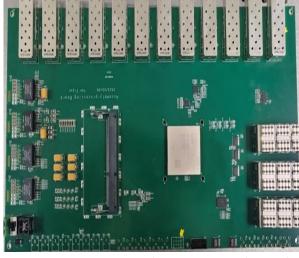


Thank you for your attention!

Backup scheme of the framework

- The proposed framework was based on the estimated background rate of all sub-det.
- Background rate indicated the data link capability can manage the Phase I operation of Higgs & Low LumiZ in the first ten years
 - Shielding optimization ongoing to suppress the background
 - High LumiZ situation is still not fully understood, but in the 2nd ten years
 - Replaceable detectors e.g. VTX, ITK... can be upgraded with new chips with intel-compression and advanced trigger in case
 - Unreplaceable detectors e.g. ECAL, HCAL can be upgraded with more fiber channels

The conventional trigger scheme can serve as a backup plan, with sufficient on-detector data buffering and reasonable trigger latency, the overall data transmission rate can be controlled.


Related to the IDRC recommendation:

R.2&3 (Trigger)

Detailed design on common BEE

Figure 11.58 DDR Power DAQ/DCS SO-DIMM management **FPGA** Memory DCS registers controller QSFP TCP/IP+UDP Data Decode Algorithm TOE + Assembly **GTH Transceiver** TTC protocal **ATCA** SFP+ Reference clk backplane **Jitter**

Figure 11.59

Data aggregation and processing board Prototype for Vertex detector

The back-end Card structure

Trigger & Clock

- Routing data between the optical link of front-end and the highspeed network of DAQ system.
- Connect to TTC and obtain synchronized clock, global control, and fanout high performance clock for front-end.

Cleaner

- Real-time data processing, such as trigger algorithm and data assembly.
- On-board large data storage for buffering.
- Preference for Xilinx Kintex UltraScale series due to its costeffectiveness and availability.

				<u> 19016 11.18</u>		
	KC705 (XC7K325 T- 2FFG900C)	(XCKU040 - 2FFVA115 6E)	VC709 (XC7VX69 0T- 2FFG1761 C)	VCU108 (XCVU095 - 2FFVA210 4E)	XCKU115	
Logic Cells(k)	326	530	693	1,176	1451	
DSP Slices	840	1920	3,600	768	5520	
Memory (Kbits)	16,020	21,100	52,920	60,800	75,900	
Transcei vers	16(12.5Gb /s)	20(16.3G b/s)	80(13.1Gb /s)	32(16.3Gb /s) and 32(30.5Gb /s)	64(16.3Gb /s)	
I/O Pins	500	520	1,000	832	832	
Cost	2748 (650)	3882(150 0)	8094	7770		

Table 11 10

- A cost-driven device selection: FPGA XC7VX690T
- Interface: SFP+ 10Gbps X12 + QSFP 40Gbps X3
- Implement real time FPGA based machine learning for clustering, hit point searching, and tracking algorithms