
Fast Simulation of the CEPC Long-Bar Crystal
Electromagnetic Calorimeter

Li Zhihao 1 2 Lin Tao 1 2 Li Weidong 1 2

1Institute of High Energy Physics 2University of Chinese Academy of Sciences

Introduction

CEPC pursues staged Higgs, Z, and top programs that demand

extremely high electroweak precision and sensitivity to rare

decays, driving unprecedented detector-model fidelity and

simulated data volumes.[1]

ECAL The long-bar crystal ECAL forms an interleaved

three-dimensional mesh that delivers about 3% energy

resolution with fine imaging. [1]

Simulation Framework The simulation workflow includes

physics event generation, Geant4 based detector simulation,

and digitization. The framework adopts a Gaudi-based modular

architecture that integrates Geant4 . It is designed with

pluggability, allowing the fast-simulation (FastSim) module to

be selectively activatedwhen specific particles enter the ECAL.
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Figure 1. Overview of the CEPC Full Simulation Workflow.
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Figure 2. Architecture of the CEPC Simulation Framework and Fast Simulation

Integration Points.

Figure 3. Geometry of the CEPC long-bar crystal ECAL Barrel.

Computing Bottlenecks

Classical Computing Resource Bottleneck: The CEPC

full-simulation program is expected to produce about 1011

events per year, yielding 284 PB of full-simulation data and

consuming roughly 1570 kHS23-yr of CPU computing time

annually.[1]

Geant4 and ECAL Simulation Bottlenecks For e+e− → qq̄ at
240 GeV the Geant4 step dominates 46.4% of the wall time;

ECAL barrel and endcaps alone consume 34.4% and 13.8% of

the total simulation budget, respectively.

Digitization and Optical Photon Challenge Digitization

currently relies on semi-empirical parameterizations that

already take 25% of the workflow; introducing optical photon

tracking based on Geant4 would be prohibitive, so

Opticks-based ground truth is needed for training alternative

models.[2, 4]

Run stage MC events
CPU time
(kHS23-yr)

MC data
(PB)

Higgs 2.0 × 109
105 4.00

Low Z 1.4 × 1011
1465 280.00

Table 1. Projected CEPC annual simulation throughput and storage

requirements by run stage.

Figure 4. Breakdown of CPU Time Consumption in CEPC Full Simulation

Figure 5. CEPC Geant4 Subdetector Time Profile for e+e− → qq̄ at 240 GeV
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Figure 6. Workflow of CEPC Fast Simulation and Digitization.

Methodology

Fast Simulation

Geant4 Data (Baseline): Collect hits from full DD4hep [6]
geometry and Geant4 physics, including ID, position, energy,

and time.

Voxelization: Convert hits into a 15 × 15 × 18 energy grid and
map between global and local coordinates.

Dataset: Combine voxel energies and conditions with

normalized phase-space coverage.

Model: Generate p(V |c) under inductive priors (non-negativity,
energy conservation, symmetry); export via ONNX [5].

Evaluation: Validate consistency (energy spectra, profiles,

EMD, closure) and usability via end-to-end reconstruction.
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Figure 7. Fast-simulation data preparation pipeline from Geant4 hits to

evaluation metrics.

Figure 8. Generative-model shower samples contrasted with reference voxelized

energy deposits.

Opticks-Driven Digitization

Opticks Data (High-fidelity optical model): Use Opticks [3] +
ElecSim for per-crystal optical and electronics simulation,
generating dual-end readouts (Q1, T1; Q2, T2) as reference.
Feature engineering: Derive spatio-temporal, geometric, and

electronics features (e.g. crystal length, refractive index, noise

RMS) with symmetry and normalization preprocessing.

Dataset: Pair features X with optical outputs

R = (Q1, T1; Q2, T2); apply stratified sampling over energy,
geometry, and noise conditions.

Model: Train supervised model Ĝφ to approximate GOpticks+elec
using lightweight Transformer or conditional flow networks.

Evaluation: Benchmark against full simulation; check Q, T
resolution, T1−T2 vs. position linearity, energy resolution, and
robustness to noise or drift.
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Figure 9. Opticks-driven digitization pipeline from optical truth to evaluation

metrics.

Research Objectives

Fast ECAL simulation: Develop ML-based fast simulation

reproducing ECAL shower response and morphology with

10–100× speedup.

ML digitization based on Opticks data Build fast digitization

model based on Opticks-generated data which predicting

(Q1,2, T1,2) with < 5% residuals and> 20× acceleration.

CEPCSW integration: Integrate models into CEPCSW via

ONNX Runtime for seamless fast/full mode switching.[5]

Quantum ML exploration: Study quantum ML prototypes for

improved sample efficiency and lower latency.

Research Progress
Completed investigations

Reversible voxelization: Implemented the bidirectional

mapping between DD4hep cellIDs and local (lx, ly, lz) grids
with δφ = δz = 15 mm and parity-aware δr ∈ {15, 15.6} mm.
The logic swaps axes per slayer, wraps modules/staves,
clones GAP hits, and enforces energy-sum conservation so ML

tensors remain losslessly reversible to native hits.

Curriculum photon dataset: Built the γ dataset (module 0,
θ = φ = 90◦

) that mirrors the ECAL incident composition/time

correlations: Ek = 256 · 2k/2 MeV spans 256 MeV–131 GeV
with curriculum counts N(E) = 104

(low-E) down to 103
at the

tail, totaling ∼ 1.21 × 105
samples and packaging inputs

(x0, y0, z0, Einc, θ, φ) with voxelized outputs.
Conditional WGAN-GP baselines: Deployed the

gradient-penalized Wasserstein GAN as the first p(V | c)
generator.

Figure 10. FastSim timing diagnostics: ECAL hit time versus PDGID (left) and

incident energy versus ECAL time (right).

Figure 11. Voxel-level energy spectra from FastSim showers versus Geant4

ground truth for the γ dataset.

Ongoing developments

Unified conditioning & capacity control: Current GAN models

can already align the relative voxel-wise energy distributions,

but are still under active optimization to reproduce absolute

energy distributions and maintain total-energy consistency. We

are preparing CNN and flow-based models with stronger

energy constraints.

Opticks-driven digitization: Opticks GPU photon transport

supplies dual-end Q–T ground truth, and turn it into an
FastDigi ML model.[2, 4]

CEPCSW integration: The FastSim/FastDigi pairs are being

wrapped in ONNX Runtime execution providers so mixed

fast/full pipelines can be profiled inside CEPCSW, targeting

10× ECAL speedup while keeping Higgs recoil mass shifts
below 0.1%.
Quantum-ML prototypes: QGAN/QVAE kernels are under

study on small photon patches to check if hybrid

quantum-classical discriminators can cut the sample count

needed for rare angles without compromising latency.
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