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Pioneering R&D in HYCMOS pixel sensors at the advanced 55 nm process, the COFFEE series prototypes are
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currently being developed for the CEPC inner tracker and Upstream Pixel tracker (UP) in the LHCb Upgrade II.
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COFFEE3, the latest prototype with two distinct readout architecture, was design and fabricated in 2025.
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Though featuring a small-scale prototype (3x4 mm?), COFFEE3 is designed to match the final full-scale
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sensor (~2x2 c¢m?), aiming for proof of concept. This poster shows the performance of the preferred
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readout architecture under the high-hit-density environment of LHCb, especially the efficiency loss. In o2 20 400 80

response to the UP's data compression requirements and the readout link's bandwidth limitations, this READ width = 200ns
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poster also shows how simulation can be used to explore and iterate peripheral readout architectures that
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enable rational scheduling of transmission resources.
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SystemC Based Framework using MC Input
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By establishing a behavioral-level model of the pixel
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array and peripheral readout using SystemC, and
inputting MC (Monte Carlo) hit data in the

Input Driver

The READ width affects the hit loss as the simulation results indicate:

Testbench

Behavioral description for circuits

testbench, the advantages of this framework are: (@ The chip efficiency remains near 100% for READ width < 125 ns but exhibits a significant decrease for READ widths > 125 ns.

(D Using MC data enables the simulation of real (2) For READ width > 125 ns, the efficiency of chipl not only decreases but also exhibits significant variation across different double

experimental environments by capturing hit density columns.

fluctuations in spacetime, which produce the non- _
Chip (:

uniform and bursty data traffic patterns, resulting in detailed and reliable simulation results. _ o _
Chip Efficiency vs. READ Width

Efficiency vs. Double Column

READ Width = 150ns READ Width = 175ns

(2 Compared to RTL-level implementations, behavioral-level models can more rapidly identify transmission READ Width = 125ns
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A Landau distribution between 200 and 1500 ns is used for the TOT time. The Hits/BXID distribution shows

that most values are below 30, but it has a long tail reaching up to 70.
& &P The core of the peripheral readout architecture lies in the data compression format. Aggregating data packets with identical TOA

(Time of Arrival) can achieve approximately 30% bit saving. The key to realizing this lies in a globally shared multi-bank circular buffer.
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Due to the priority queuing scheme, the latency from hit generation to packet arrival at the circular buffer follows a distribution. The
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number of banks, N, in the circular buffer is equal to the range of this latency distribution, expressed in units of main clock cycles.

Most packets arriving in 11-90 cycles, which primarily influenced by the TOT

Latency Distribution (Chip 1, READ Width = 125ns)
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Conclusion
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P Using the framework of SystemC behavioral modeling combined with Monte Carlo data, we simulate and analysis the chip
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Data package aggregation and compression
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performance in the real experimental environments and optimized the peripheral readout architecture to enable rational scheduling

of transmission resources, addressing LHCb UP's data compression format requirements and the bandwidth limitations of the chip's

readout links. The outcomes of this work are intended to identify bottlenecks in on-chip data processing and transmission under the

high hit-density environment, and to further optimize the chip architecture to satisfy the comprehensive performance requirements

of applications.
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