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Small-angle Bhabha scattering (SABS) is the 

best calculated QED process as a reference channel 

for achieving ultra-high-precision luminosity 

measurements at electron-positron colliders. The 

event topology for detecting a pair of back-to-back 

scattered electron and positron has well defined 

detector acceptance, with precisely calculated cross-

section. The “Circular Electron Positron Collider” 

(CEPC) is proposed to operate as a Higgs factory 

with s = 240 GeV  to deliver 1.2 × 106 Higgs 

boson events. It will also be running at Z-pole 

energy to produce 7 × 1011 Z boson events. The 

systematic uncertainties on luminosity must be 

contained to 10−4 to meet the stringent demands on 

Standard Model measurements. In this study, we 

have employed the BHLUMI event generator to 

evaluate detection of Bhabha scattering final state 

particles within the geometric acceptance of the 

LumiCal. The analysis focuses on characterizing the 

kinematics distributions of electrons and radiative 

photons for luminosity measurements.

Abstract

Next, we will focus on the Radiative SABS event.

When estimating cross section information, we 

also employed an alternative Monte Carlo event 

generator ReneSANCe[3]. The total cross section 

results from both methods differ only slightly, but 

they diverge in their description of radiative photons, 

as shown in Figure 3. As shown in Figure 3b, 

BHLUMI permits multi-photon generation, whereas 

ReneSANCe allows at most a single photon to be 

produced. This discrepancy also leads to 

inconsistencies in the behavior of high transverse 

momentum electrons between them (in Figure 3c).

Introduction

By integrating the design parameters of the 

LumiCal with the BHLUMI simulation framework, 

we accurately predict the cross-section information 

of Small-angle Bhabha Scattering events under the 

CEPC operation plan. Concurrently, addressing 

discrepancies in modeling radiative SABS processes 

with different generators, we preliminarily evaluate 

the measurability of radiative photon events. 

Furthermore, we propose an iterative optimization 

strategy for program parameters and detector 

calibration to enhance measurement precision. This 

work demonstrates that radiative SABS detection 

will ​​set a new benchmark for precision luminosity 

monitoring​​ at CEPC while ​​advancing quantum 

electrodynamics (QED) validation through high-

field electromagnetic interaction measurements​​.

Conclusions

The design of the LumiCal is ​​dedicated to ultra-

precise forward-angle measurements​​ with ​​sub-

millimeter spatial resolution​​, targeting the detection 

of ​​Bhabha scattering events​​ in the ​​forward region​​. 

And currently, the only Monte Carlo tool with well-

predicted behavior near the z-pole for SABS events 

is BHLUMI[1], developed based on the LEP 

experiment. It is solely based on QED principles 

and has a theoretical uncertainty of around 0.037% 

(refer to Table 2 in [2]). Therefore, BHLUMI is our 

preferred choice for predicting the physical 

outcomes obtained from the  LumiCal.

The poster is structured as follows. In the section 

"SABS cross sections" , we compared the numerical 

results obtained for different LumiCal acceptance 

ranges and also examined the angular distribution of 

electrons. In the section “Radiative SABS”, we 

analyzed the proportion of radiative SABS events 

and the behavior of radiated photons, aiming to 

control the errors inherent in QED theory itself 

through NLO measurements, thereby further 

enhancing the precision of CEPC luminosity 

measurements.

Radiative SABS

Figure 5. The distribution of photons for the 

single-photon events at z = 1000 mm (left) and

the distribution of photons for the double-photon 

events at z = 1000 mm (right).

To better understand the radiative BhaBha 

process, we utilized BHLUMI to analyze the rate of 

multiphoton events at different working energy 

points for CEPC with the mentioned  LumiCal 

structure. 

At the same time, we require that the photon's 

energy 𝐸𝛾 > 0.1 GeV and the angle between the 

photon and the adjacent electron 𝜃e±𝛾 > 5 mrad. 

The corresponding results are shown in Table 4 and 

Figure 5. Figure 5 illustrates the distribution of 

photons to ensure the accuracy of the cross section.

As can be seen, the cross section of the radiative 

SABS event is quite small within the luminosity 

monitoring range of the LumiCal. However, due to 

the extended operation of  CEPC at z-pole, this 

presents a potential opportunity for NLO 

measurements.
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Figure 1. The geometry of LumiCal.
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CMS generated 

Th1, Th2(mrad)

𝒆−. 𝒐𝒓. 𝒆+ 𝒕𝒐 𝒑𝒊𝒑𝒆 
𝒄𝒆𝒏𝒕𝒆𝒓𝒔 (𝒎𝒎)

Single 𝒆− in 

(mm)

Both 𝒆−. 𝒂𝒏𝒅𝒆+ in 

(mm)

𝜎 (𝑛𝑏) 10 to 80

1206.67

10 < 𝑟, 𝑦 < 80
1279.09

20 < 𝑟
299.21

. 𝑎𝑛𝑑. 𝑦 > 20
141.52

20 < 𝑟
286.90

. 𝑎𝑛𝑑. 𝑦 > 20
135.25

𝜎 (𝑛𝑏) 10 to 80

1206.67

10 < 𝑟, 𝑦 < 80
1279.09

25 < 𝑟
184.40

. 𝑎𝑛𝑑. 𝑦 > 25
84.64

25 < 𝑟
176.19

. 𝑎𝑛𝑑. 𝑦 > 25
80.52

𝜎 (𝑛𝑏) 10 to 120

1216.68

10 < 𝑟, 𝑦 < 120
1288.97

25 < 𝑟
195.90

. 𝑎𝑛𝑑. 𝑦 > 25
94.14

25 < 𝑟
187.75

. 𝑎𝑛𝑑. 𝑦 > 25
89.95

Table 1. The cross section at s = 91 GeV.

CMS generated 

Th1, Th2(mrad)

𝒆−. 𝒐𝒓. 𝒆+ 𝒕𝒐 𝒑𝒊𝒑𝒆 
𝒄𝒆𝒏𝒕𝒆𝒓𝒔 (𝒎𝒎)

Single 𝒆− in 

(mm)

Both 𝒆−. 𝒂𝒏𝒅𝒆+ in 

(mm)

𝜎 (𝑛𝑏) 10 to 80

390.94

10 < 𝑟, 𝑦 < 80
416.14

20 < 𝑟
97.21

. 𝑎𝑛𝑑. 𝑦 > 20
46.07

20 < 𝑟
92.96

. 𝑎𝑛𝑑. 𝑦 > 20
43.90

𝜎 (𝑛𝑏) 10 to 80

390.94

10 < 𝑟, 𝑦 < 80
416.14

25 < 𝑟
59.93

. 𝑎𝑛𝑑. 𝑦 > 25
27.56

25 < 𝑟
57.14

. 𝑎𝑛𝑑. 𝑦 > 25
26.14

𝜎 (𝑛𝑏) 10 to 120

395.03

10 < 𝑟, 𝑦 < 120
420.23

25 < 𝑟
63.83

. 𝑎𝑛𝑑. 𝑦 > 25
30.70

25 < 𝑟
61.02

. 𝑎𝑛𝑑. 𝑦 > 25
29.23

CMS generated 

Th1, Th2(mrad)

𝒆−. 𝒐𝒓. 𝒆+ 𝒕𝒐 𝒑𝒊𝒑𝒆 
𝒄𝒆𝒏𝒕𝒆𝒓𝒔 (𝒎𝒎)

Single 𝒆− in 

(mm)

Both 𝒆−. 𝒂𝒏𝒅𝒆+ in 

(mm)

𝜎 (𝑛𝑏) 10 to 80

174.33

10 < 𝑟, 𝑦 < 80
186.10

20 < 𝑟
43.48

. 𝑎𝑛𝑑. 𝑦 > 20
20.58

20 < 𝑟
41.49

. 𝑎𝑛𝑑. 𝑦 > 20
19.56

𝜎 (𝑛𝑏) 10 to 80

174.33

10 < 𝑟, 𝑦 < 80
186.10

25 < 𝑟
26.81

. 𝑎𝑛𝑑. 𝑦 > 25
12.31

25 < 𝑟
25.50

. 𝑎𝑛𝑑. 𝑦 > 25
11.65

𝜎 (𝑛𝑏) 10 to 120

175.99

10 < 𝑟, 𝑦 < 120
187.75

25 < 𝑟
28.51

. 𝑎𝑛𝑑. 𝑦 > 25
13.72

25 < 𝑟
27.21

. 𝑎𝑛𝑑. 𝑦 > 25
13.03

CMS

(GeV)

Both 𝒆−. 𝒂𝒏𝒅𝒆+ in 

(mm)

ONE 

PHOTON

TWO

PHOTON

NONE

𝜎 (𝑛𝑏) 92.3 20 < 𝑟
278.31

. 𝑎𝑛𝑑. 𝑦 > 20
131.11

7.97

(6.08%)

0.22

(0.17%)

122.91

(93.75%)

𝜎 (𝑛𝑏) 160 20 < 𝑟
92.96

. 𝑎𝑛𝑑. 𝑦 > 20
43.90

2.88

(6.56%)

0.09

(0.21%)

40.93

(93.23%)

𝜎 (𝑛𝑏) 240 20 < 𝑟
41.49

. 𝑎𝑛𝑑. 𝑦 > 20
19.56

1.35

(6.91%)

0.04

(0.20%)

18.17

(92.89%)

SABS cross sections

We generated 107 SABS events using BHLUMI, 

distributed across the ranges of 10–80 mrad and 10–

120 mrad according to the CEPC operation plan.

Considering the 33 mrad cross-angle, Table 1, 2, 

and 3 present the corresponding cross section 

information at z = 1000 mm.  Here, r represents the 

distance from the beam pipe for boosted particles, 

and y denotes the y-coordinate of particles when the 

z-axis coordinate is set to 1000 mm.

To ensure the accuracy of the cross section 

information, we also examined the distribution of 

electrons, as shown in Figure 2.

Table 2. The cross section at s = 160 GeV.

Table 3. The cross section at s = 240 GeV.

Figure 2. (a) The distribution of scattered electrons. 

(b) The back-to-back angles between e+ and e− for both 

the generated and boosted events.

Figure 3.  (a) Variation of the cross section with s.

(b) The distribution of the radiative photon number . 

(c) The angular distribution of positrons.

Given the practical constraints of the detector, we 

focus solely on the two photons with the highest 

energy. The corresponding angular distributions of 

photons relative to electrons are shown in Figure 4.

Figure 4. The angle between the photon and the 

adjacent positron  𝜃e+𝛾 𝑣𝑠 the energy of photon 𝐸𝛾.

Table 4. The cross sections and event rates for 

single and double photon radiation at different s.
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