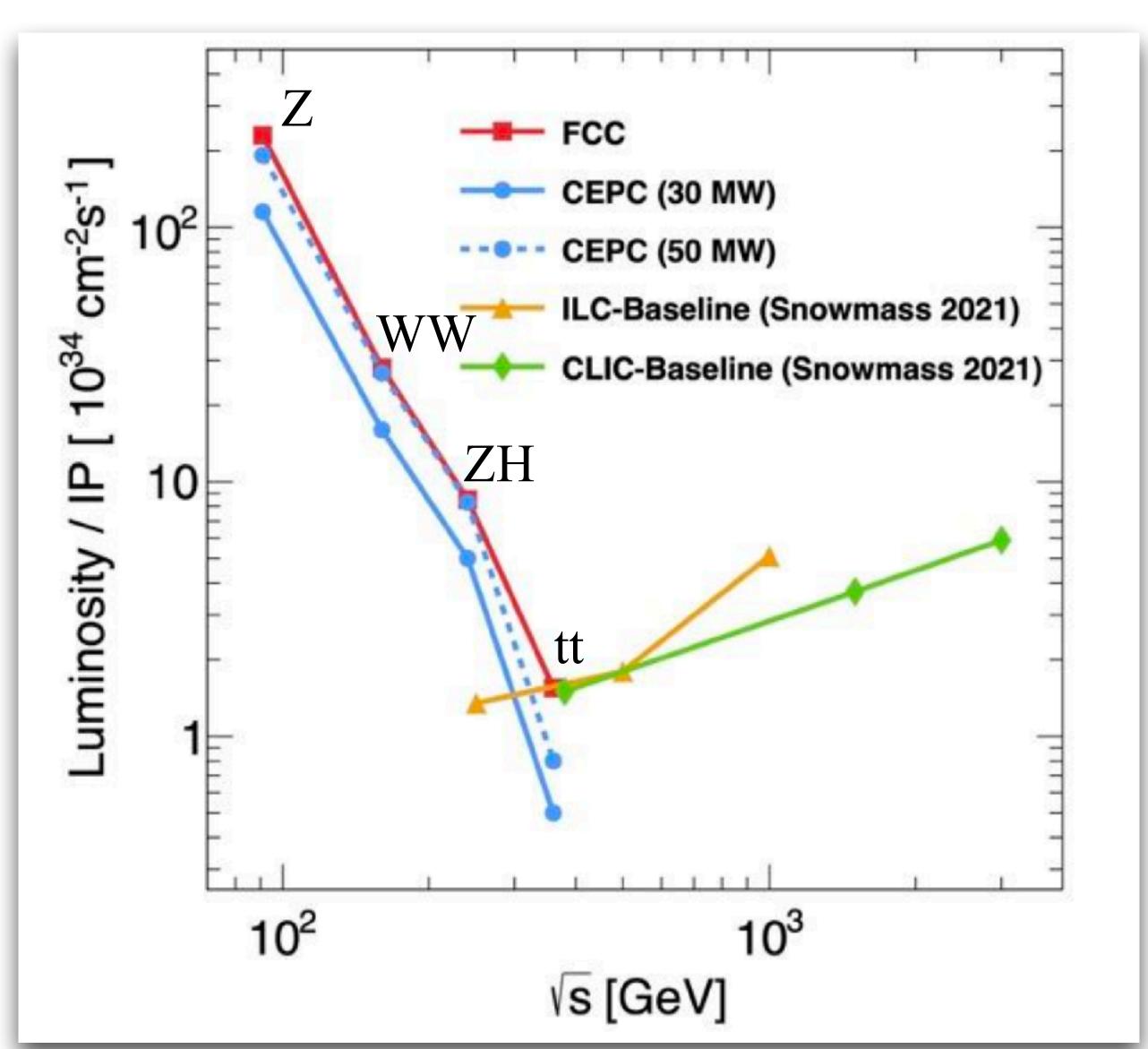


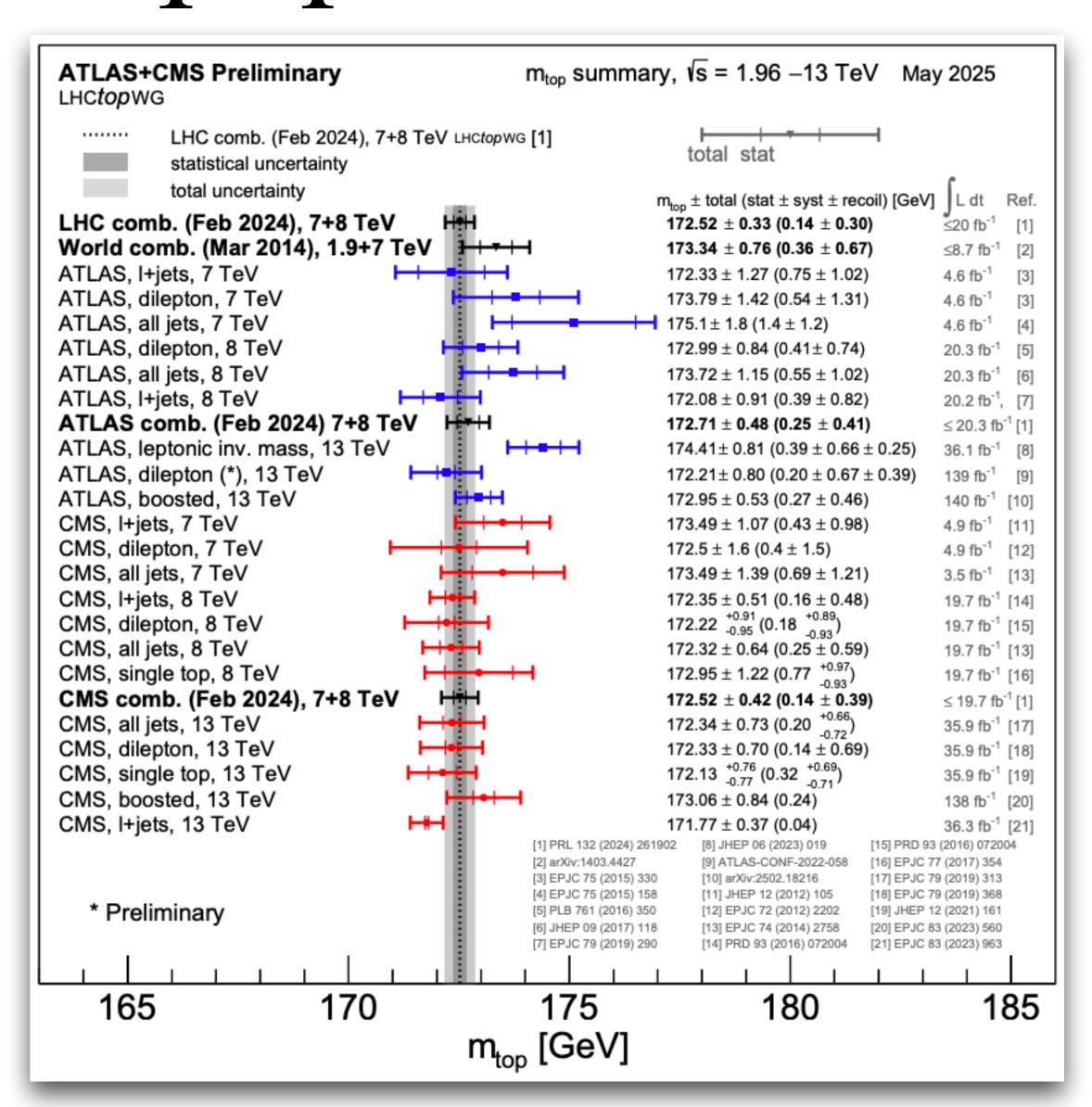
The top mass at the $t\bar{t}$ threshold with

The 2025 International Workshop on the High Energy Circular Electron Positron Collider


孙小虎 Xiaohu SUN (Peking University) on behalf of the team Nov 8th, 2025

Reference: Eur. Phys. J. C (2023) 83:269, arXiv:2207.12177, RefTDR new in 2025

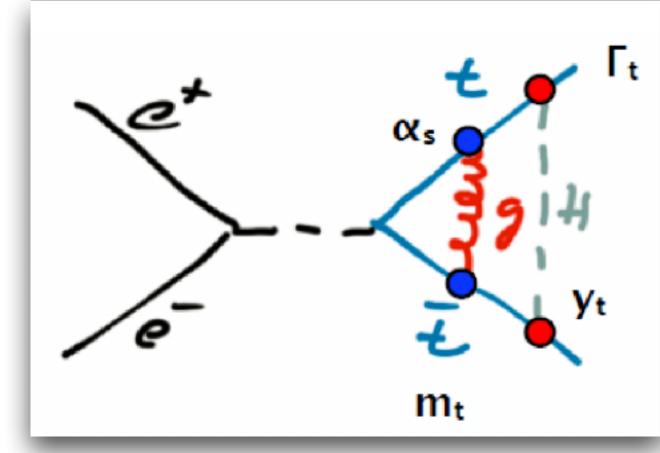
Xiaohu SUN

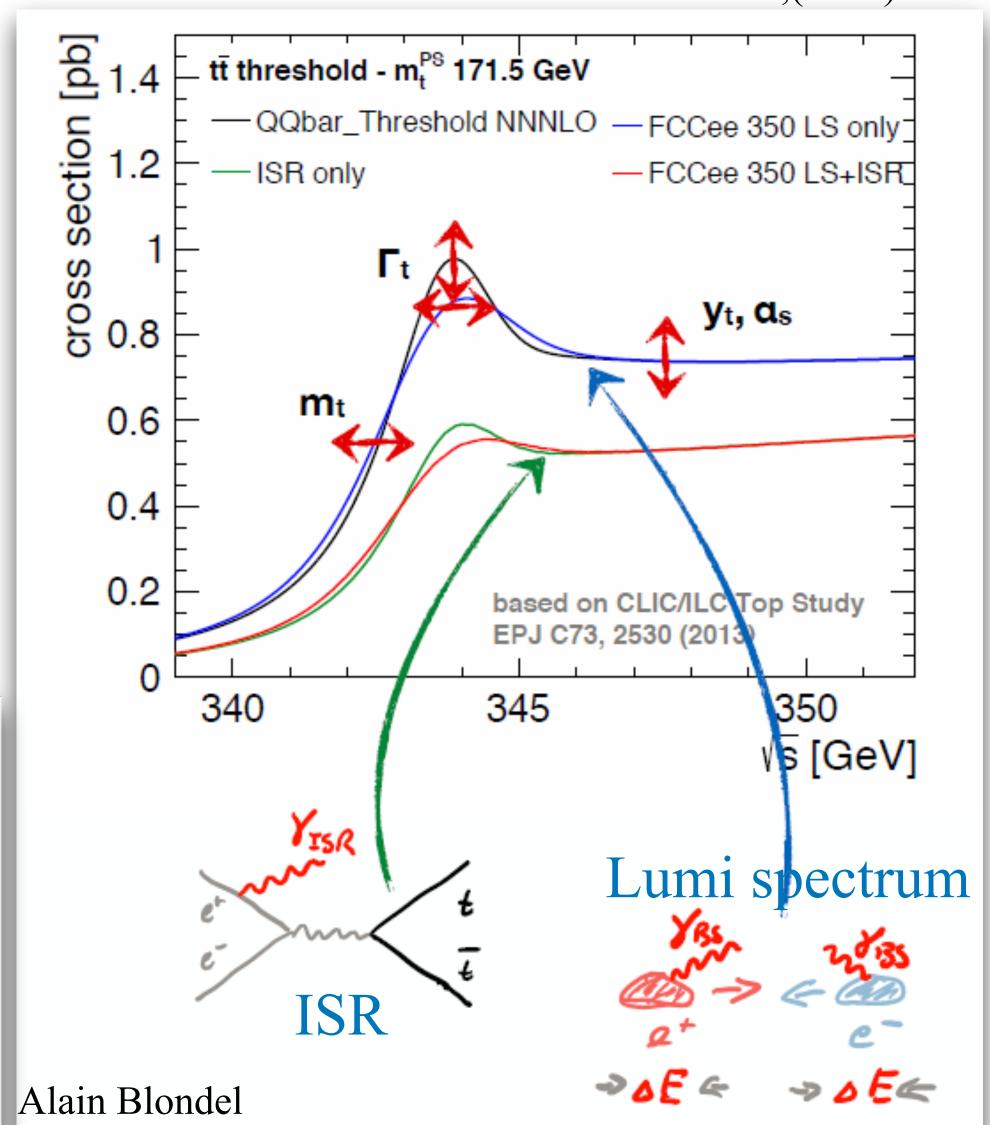

Introduction

- CEPC will be a versatile machine with many opportunities
 - Higgs factory @~240 GeV
 - Diboson factory @~160 GeV
 - Z factory @~90 GeV
- @~360 GeV it can also be a playground for
 - Top quark precision measurements
 - Higgs complementary measurements
 - BSM searches
- Plan to have 6×10^5 top pairs with 5 years' data taking

Xiaohu SUN

Top quark mass measurements

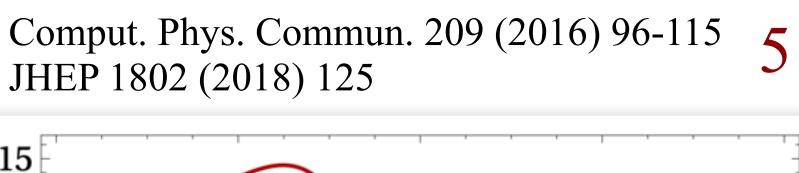

- The top "pole" mass is measured using reconstructed top mass spectrum at hadron colliders
 - Affected by MET (the neutrino), jet energy scale/resolution, btagging etc.
 - Limited by non-perturbative QCD effects
- LHC reached a level of uncertainties of ~300 MeV dominated by systematic uncertainties
- Very challenging to further improve the precision due to dominant systematic uncertainties at hadron colliders

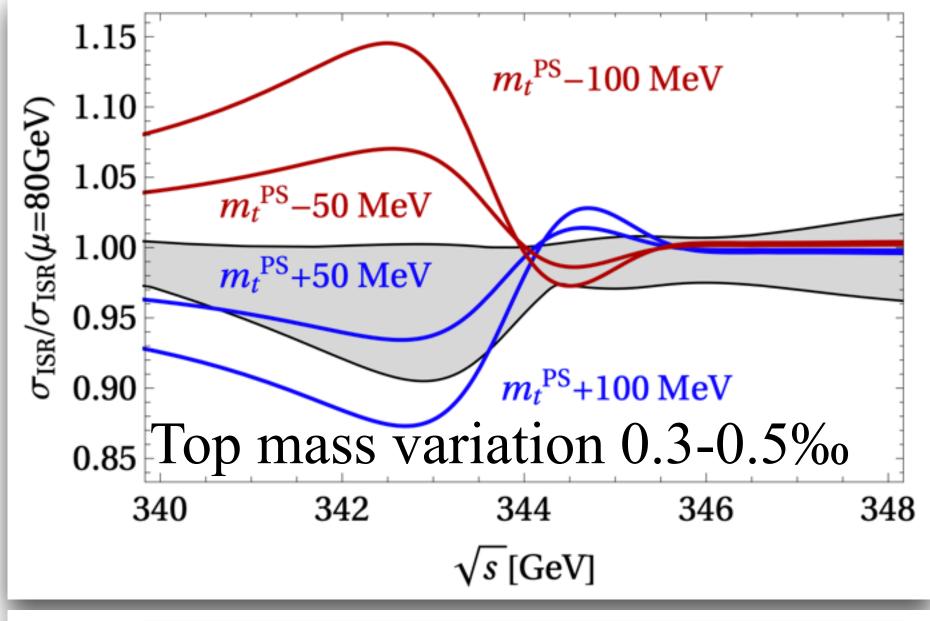

 $t\bar{t}$ threshold @ CEPC

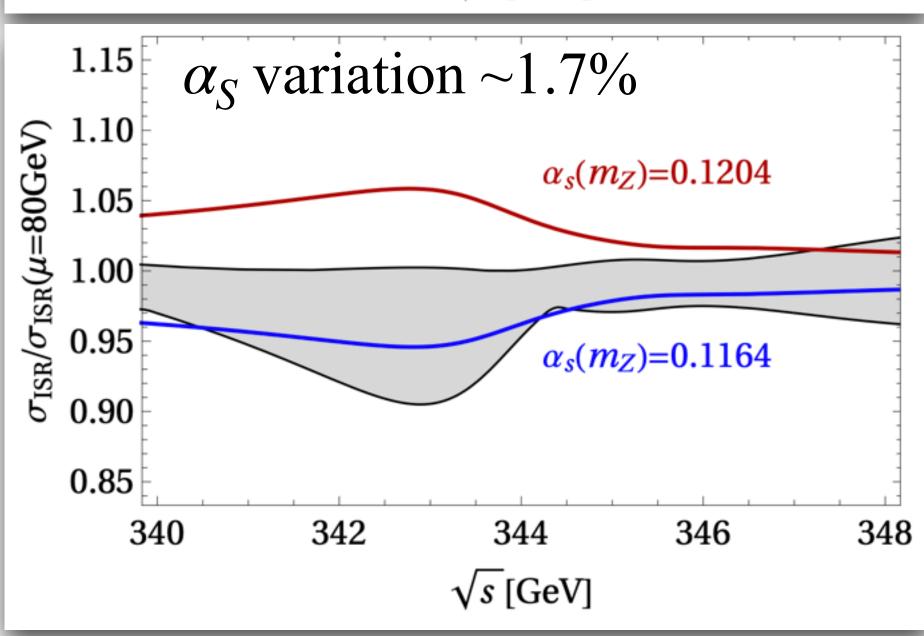
Xiaohu SUN

EPJC 73,(2013)2530

- ee-colliders provide not only the top reconstruction method but also the tt threshold scan
- The scan is made against \sqrt{s} and crosssection serves as the direct observable
- This brings measurements of top mass and a couple of other parameters
 - Top width
 - Top Yukawa coupling
 - \bullet α_S

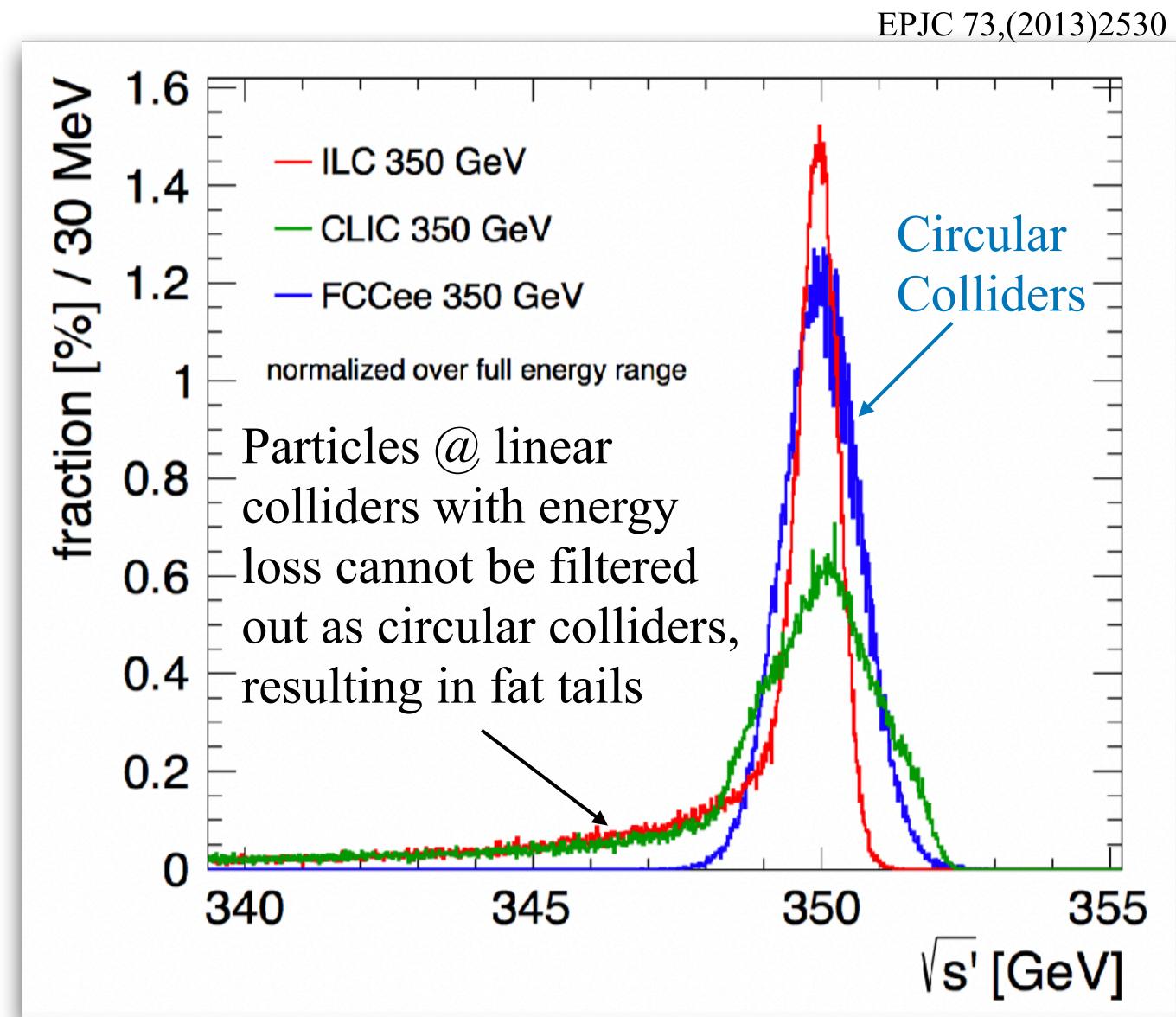


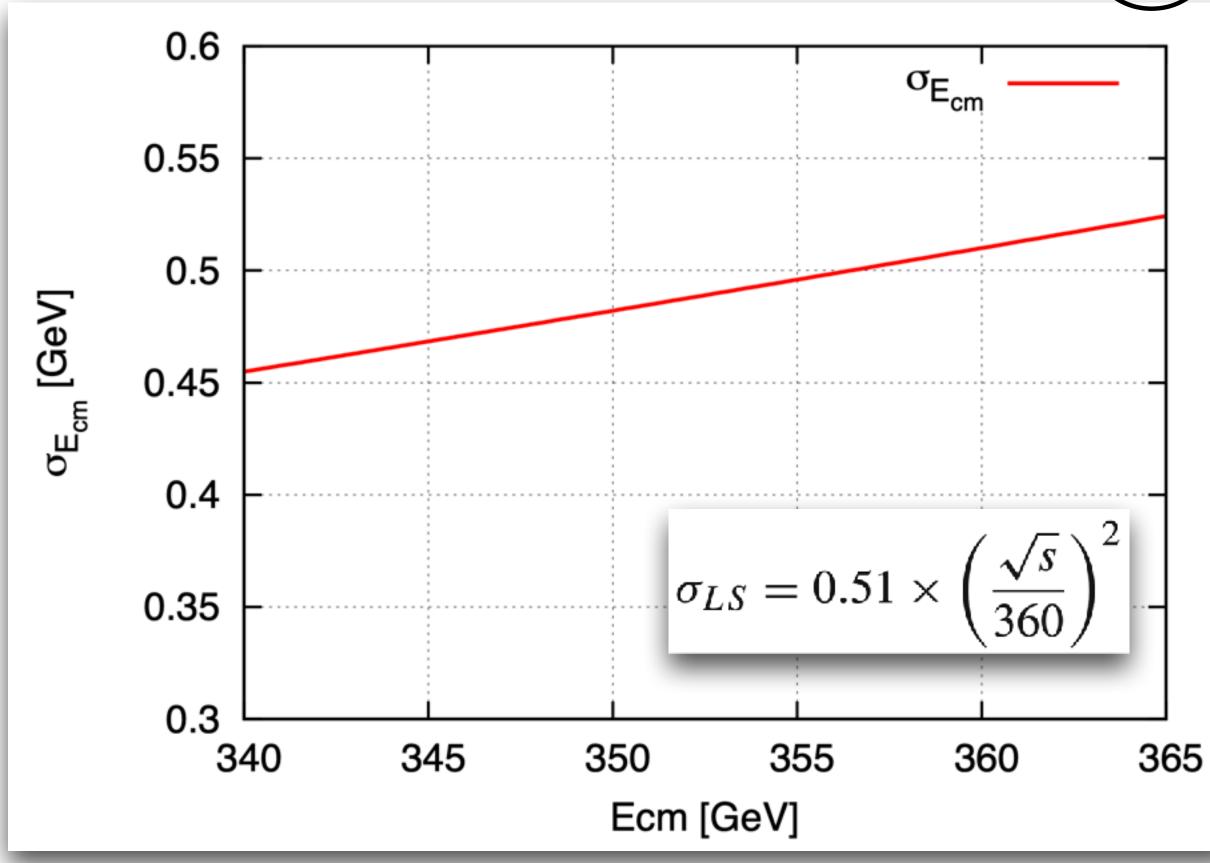

Our setup

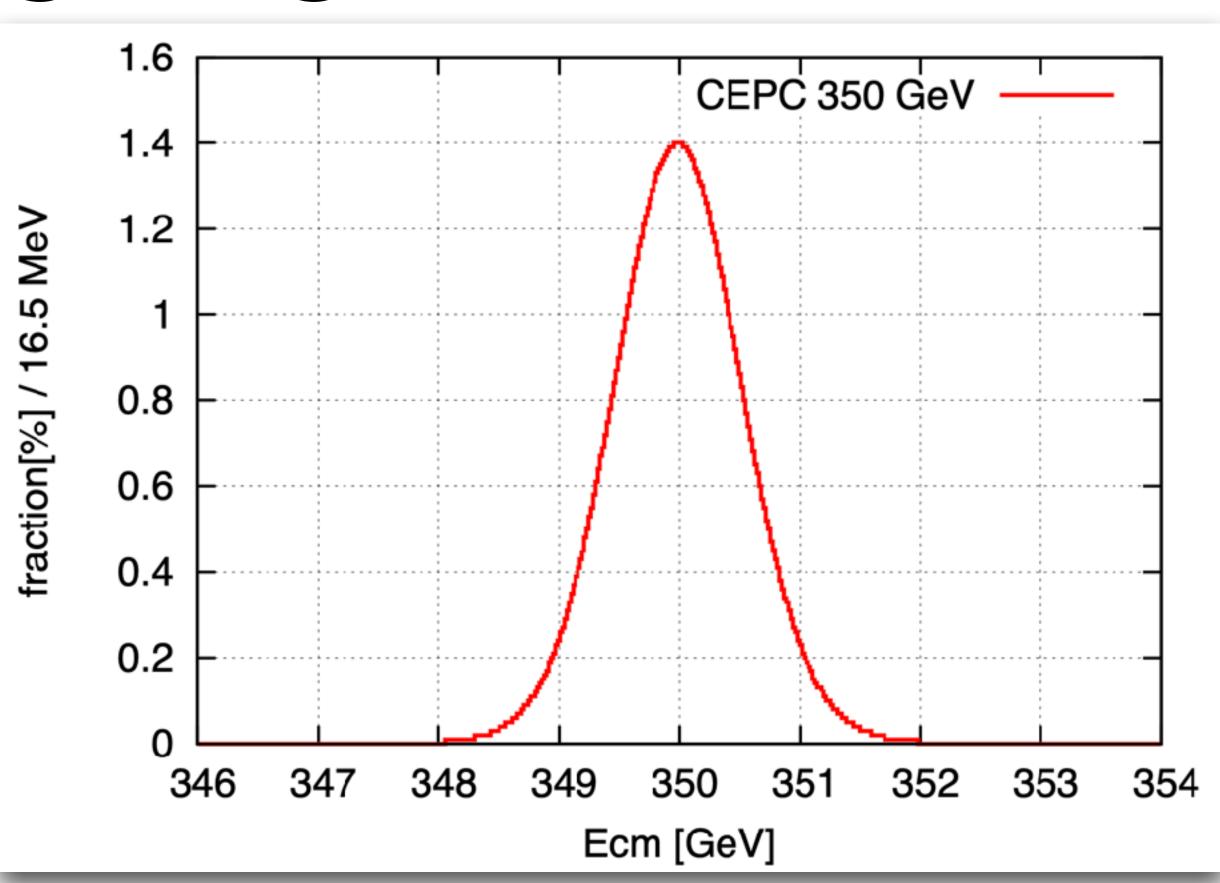

- Use the package "QQbar threshold" to calculate cross-section near threshold in ee-colliders at N³LO in resummed non-relativistic perturbation theory
 - Coulomb interactions between the quark and the antiquark leading to a strong enhancement of the cross section is included
 - The PS (Potential-Subtracted) Shift (PSS) mass scheme is applied

$$m_t^{PS} = 171.5 \,\text{GeV}, \qquad \alpha_s(m_Z) = 0.1184$$

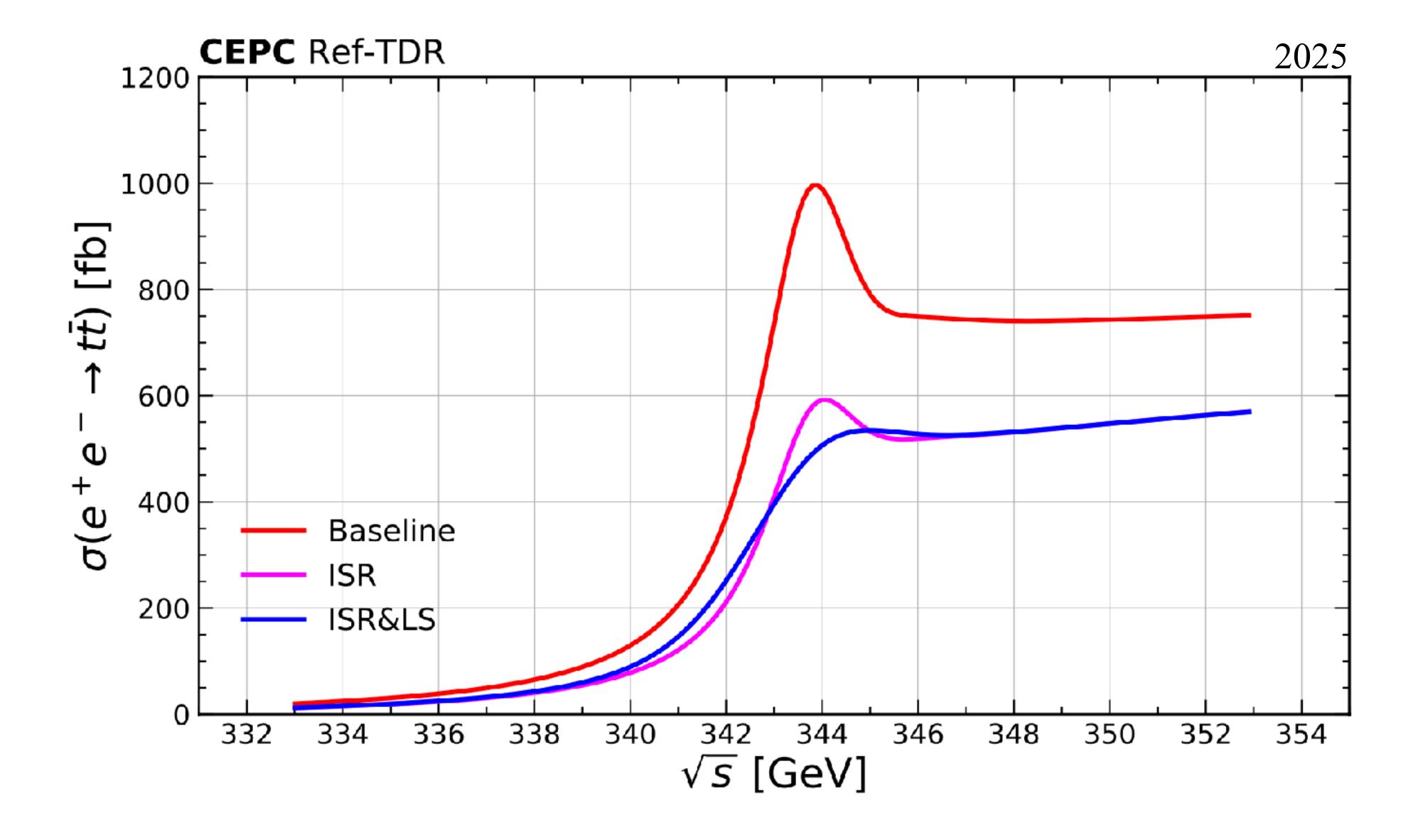
- ISR effects are also included in the package
- We integrate luminosity spectrum (LS) by a Gaussian function with the CEPC expected beam energy spread (~500 MeV) as a function of \sqrt{s}

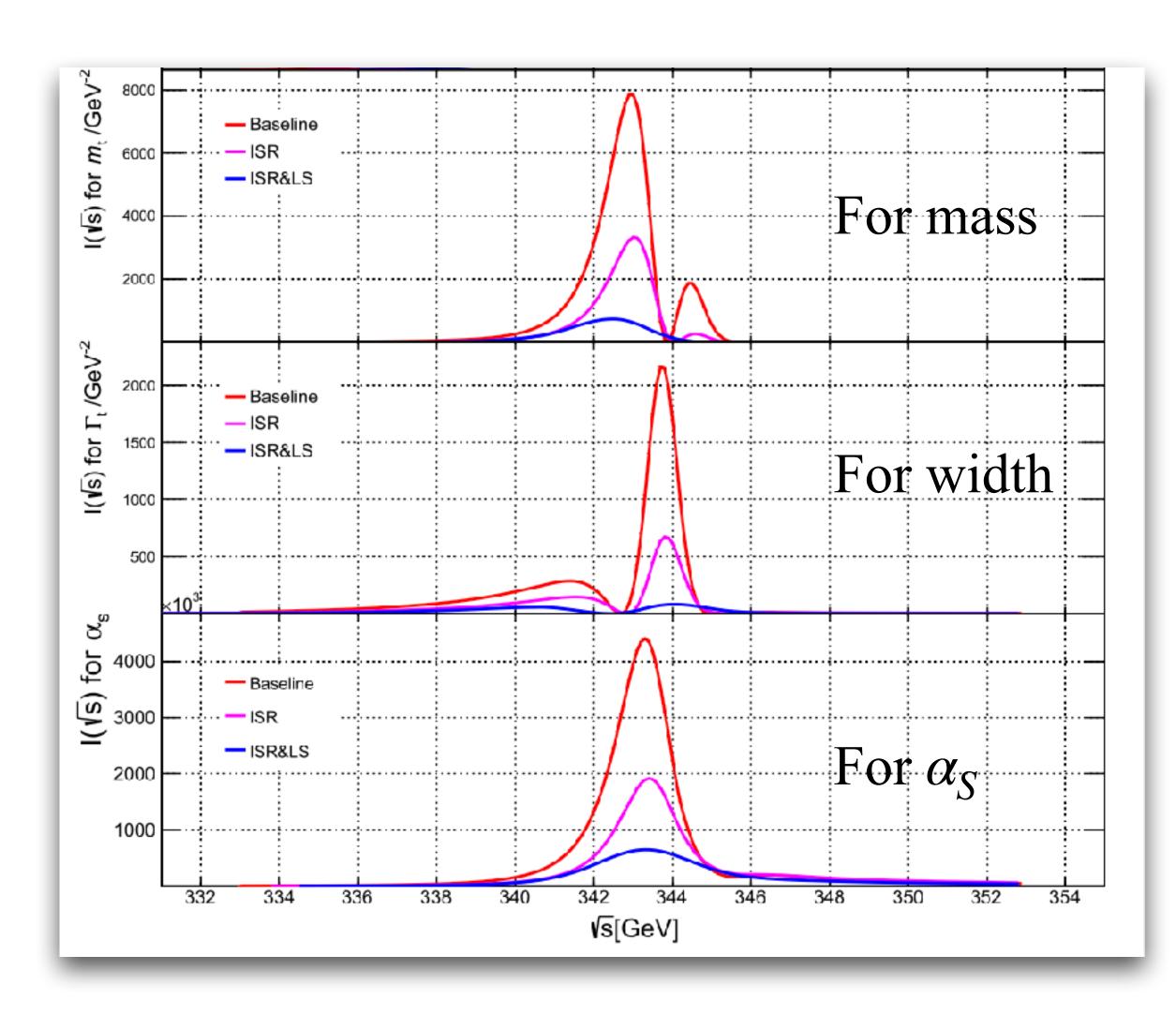



LS in linear/circular colliders


• The luminosity spectrum at linear colliders is obviously worse than circular colliders given that the particles with energy loss are not removed by the bending magnets

• This can substantially change the cross-section curve at around the tt threshold


LS (a) CEPC



- The beam energy resolution increases as a function of \sqrt{s}
- The luminosity spectrum is shown for $\sqrt{s} = 350$ GeV with a width of ~480 MeV
- Similar to the FCC-ee scenario

XS at the tt threshold with CEPC

Choice of CME

- Around the $t\bar{t}$ threshold, we need to identify the energy point(s) that contain(s) the most sensitivity
- Construct Fisher information to test the energy point(s)

$$I(\sqrt{s}) = \int \left(\frac{\partial log(G(\sigma|\sigma_0(\sqrt{s},\theta),\sqrt{\sigma_0(\sqrt{s},\theta)}))}{\partial \theta} \right)^2 \times G(\sigma|\sigma_0(\sqrt{s},\theta),\sqrt{\sigma_0(\sqrt{s},\theta)}) d\sigma.$$

• Larger amplitudes implies richer information and higher sensitivities

Uncertainties: statistics

Source	m_{top} precision (MeV)		
	-	Conservative	
Statistical	7	7	
Theory	8	24	
Quick scan	2	2	
$lpha_{ m S}$	3	16	
Top width	5	5	
Experimental efficiency	4	9	
Background	1	3	
Beam energy	2	2	
Luminosity spectrum	3	6	
Total (without theory)	11	21	
Total	14	32	

- Statistical uncertainties are calculated under the total luminosity of $100 \, fb^{-1}$
- All luminosity is allocated on one single energy point, i.e. the optimal energy point that can be inferred by Fisher information
- This ends up with a statistical error of 7 MeV, compared to 21 MeV from CLIC where the luminosity is distributed for 10 energy points evenly

Uncertainties: theory

Source	m_{top} precision (MeV)		
	-	Conservative	
Statistical	7	7	
Theory	8	24	
Quick scan	2	2	
$lpha_{ m S}$	3	16	
Top width	5	5	
Experimental efficiency	4	9	
Background	1	3	
Beam energy	2	2	
Luminosity spectrum	3	6	
Total (without theory)	11	21	
Total	14	32	

- Theoretical uncertainty on the cross section calculation is assumed as
 - 3% based on the current calculations on the market
 - 1% that might be achieved by the time of future ee colliders, optimistically

• This ends up with theoretical uncertainties of 8 (24) MeV, leading the contribution among all systematics

Uncertainties: α_S and width

Source	m_{top} precision (MeV)		
	_	Conservative	
Statistical	7	7	
Theory	8	24	
Quick scan	2	2	
$lpha_{ m S}$	3	16	
Top width	5	5	
Experimental efficiency	4	9	
Background	1	3	
Beam energy	2	2	
Luminosity spectrum	3	6	
Total (without theory)	11	21	
Total	14	32	

- α_S and width are the inputs for this 1D top mass measurement
- α_S uncertainty is taken as 0.0001 (projection from Z boson observables) and 0.0007 (world summary in 2012), while width is varied by 0.14 GeV (CMS constraint 2014)
- α_S uncertainty leads to 3 or 16 MeV on top mass, the latter of which is comparable to CLIC
- Width uncertainty results in 5
 MeV on top mass

Uncertainties: experimental efficiency

Source	m_{top} precision (MeV)		
	-	Conservative	
Statistical	7	7	
Theory	8	24	
Quick scan	2	2	
$\alpha_{ m S}$	3	16	
Top width	5	5	
Experimental efficiency	4	9	
Background	1	3	
Beam energy	2	2	
Luminosity spectrum	3	6	
Total (without theory)	11	21	
Total	14	32	

• Experimental efficiency of the future detectors is yet to know

• Assume possible scenarios of uncertainties 0.5% and 1% that impacts signal rates directly

• This leads to top mass uncertainties of 4 and 9 MeV, respectively

Uncertainties: background

Source	m _{top} precision (MeV)		
	-	Conservative	
Statistical	7	7	
Theory	8	24	
Quick scan	2	2	
$lpha_{ m S}$	3	16	
Top width	5	5	
Experimental efficiency	4	9	
Background	1	3	
Beam energy	2	2	
Luminosity spectrum	3	6	
Total (without theory)	11	21	
Total	14	32	

- Background contribution is much less than signal. But their uncertainties could affect the measurement
- Assuming background uncertainties of 1% and 5% will give 1 and 3 MeV on top mass measurement
 - Compared to CLIC that has 18 MeV uncertainty of top mass from 5% background variations, given the low level of background

Uncertainties: luminosity spectrum

Source	m _{top} precision (MeV)		
	_	Conservative	
Statistical	7	7	
Theory	8	24	
Quick scan	2	2 16	
$lpha_{ m S}$	3		
Top width	5	5	
Experimental efficiency	4	9	
Background	1	3	
Beam energy	2	2	
Luminosity spectrum	3	6	
Total (without theory)	11	21	
Total	14	32	

• LS is varied for 10% and 20% that result in uncertainties of 3 and 6 MeV on top mass

 This is very different than CLIC (75 MeV from 20% LS uncertainty), given the different controls of the luminosity spectrum in circular and linear colliders

16

Uncertainties: luminosity spectrum

Source	m_{top} precision (MeV)		
	•	Conservative	
Statistical	7	7	
Theory	8	24	
Quick scan	2	2	
$lpha_{ m S}$	3	16	
Top width	5	5	
Experimental efficiency	4	9	
Background	1	3	
Beam energy	2	2	
Luminosity spectrum	3	6	
Total (without theory)	11	21	
Total	14	32	

- Additionally, we evaluate the prospect of reducing CEPC LS by -20% and -50% of the current LS
 - These reduce the top mass error less than 10% with respect to the one obtained using the nominal LS
 - The CEPC LS seems
 already excellent for this
 measurement, and large
 improvements of LS would
 not sizably improve top
 mass precision

Uncertainties: total

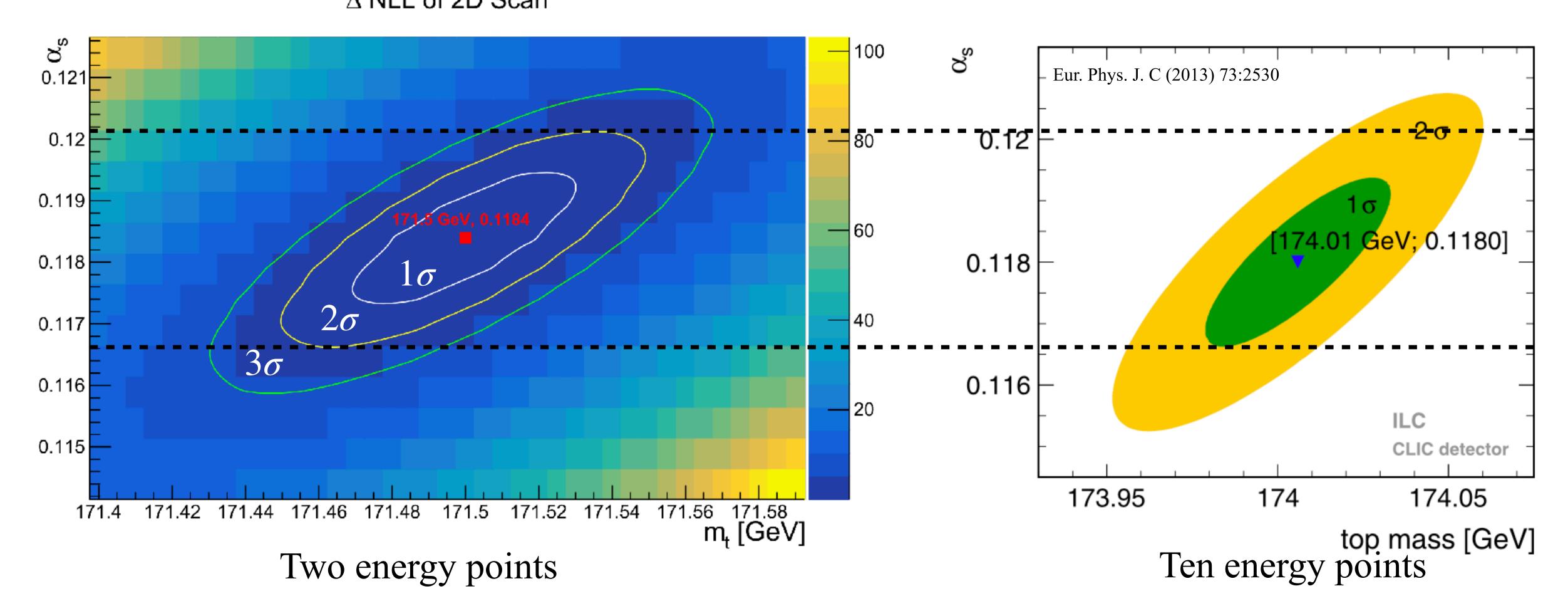
Source	m_{top} precision (MeV)		
	_	Conservative	
Statistical	7	7	
Theory	8	24	
Quick scan	2	2	
$lpha_{ m S}$	3	16	
Top width	5	5	
Experimental efficiency	4	9	
Background	1	3	
Beam energy	2	2	
Luminosity spectrum	3	6	
Total (without theory)	11	21	
Total	14	32	

• CEPC is expected to measure the top quark mass with the total uncertainties of 14 and 32 MeV (dominated by the theory/ α_S efficiency), considering two different scenarios

 Compared to ~100 MeV of top mass uncertainty from CLIC (dominated by the LS uncertainty) • Besides top mass, width and α_S are also of great interests

- We try to extract two parameters at one time with 2D scans
 - Besides the optimal energy point for top mass, one additional energy point is needed

• The energy point that is optimal to top mass will always be included, while the additional energy point to level up the sensitivity for the second parameter to measure will be located


• Statistical-only studies are performed

2D scans for m_{top} vs α_S

19

• A quick comparison to CLIC

 Δ NLL of 2D Scan

Summary

20

• Great opportunities for top mass, width, α_S measurements with CEPC at the $t\bar{t}$ threshold using the threshold scan method

- Top mass can be measured with a precision ~1 order of magnitude better than hadron colliders at the moment
 - The error including systematic uncertainties is 14 MeV (32 MeV) optimistically (conservatively)

Backup

- Aiming at measuring one parameter at a time (1D), given limited total luminosity:
 - Only colliding at one optimal energy point would give the best sensitivity
 - This is tested with many different scenarios: one vs multiples energy points, un-even luminosity allocation etc.

• The precision of statistical-only one-parameter measurement using one optimal energy point @CEPC is calculated

\sqrt{s} (GeV)	Δm_{top}	$\Delta \Gamma_{top}$	$\Delta \alpha_S$	
342.75	9 MeV	343 MeV	0.00041	
344.00	> 50 MeV	26 MeV	0.00047	1
343.50	15 MeV	40 MeV	0.00040	
	GeV, 344.00 GeV a		optimal	

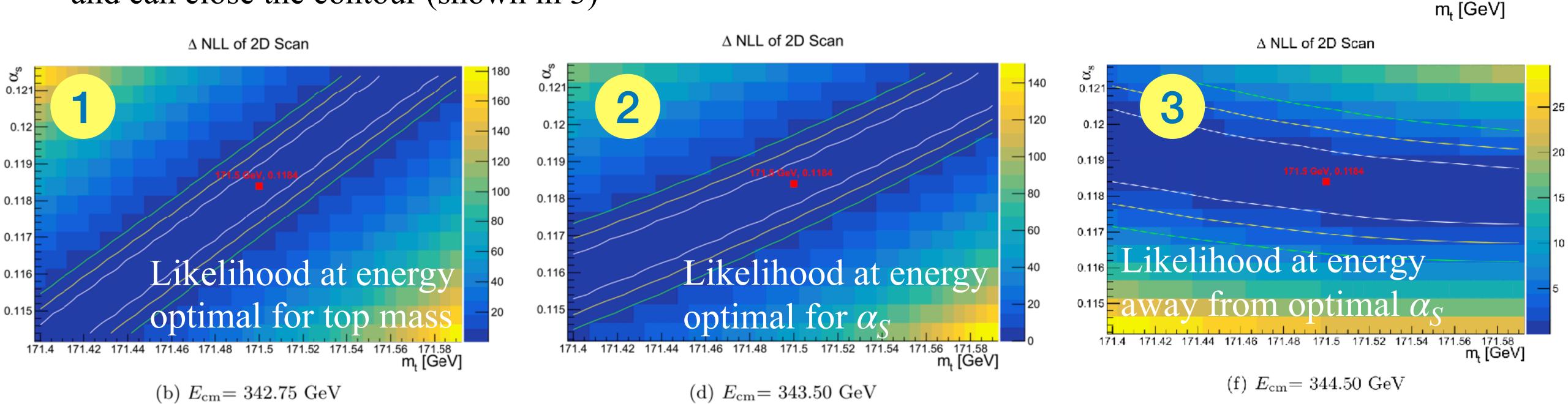
All are statsonly here

energy points for top quark mass, width and α_S , respectively

0.12

0.119

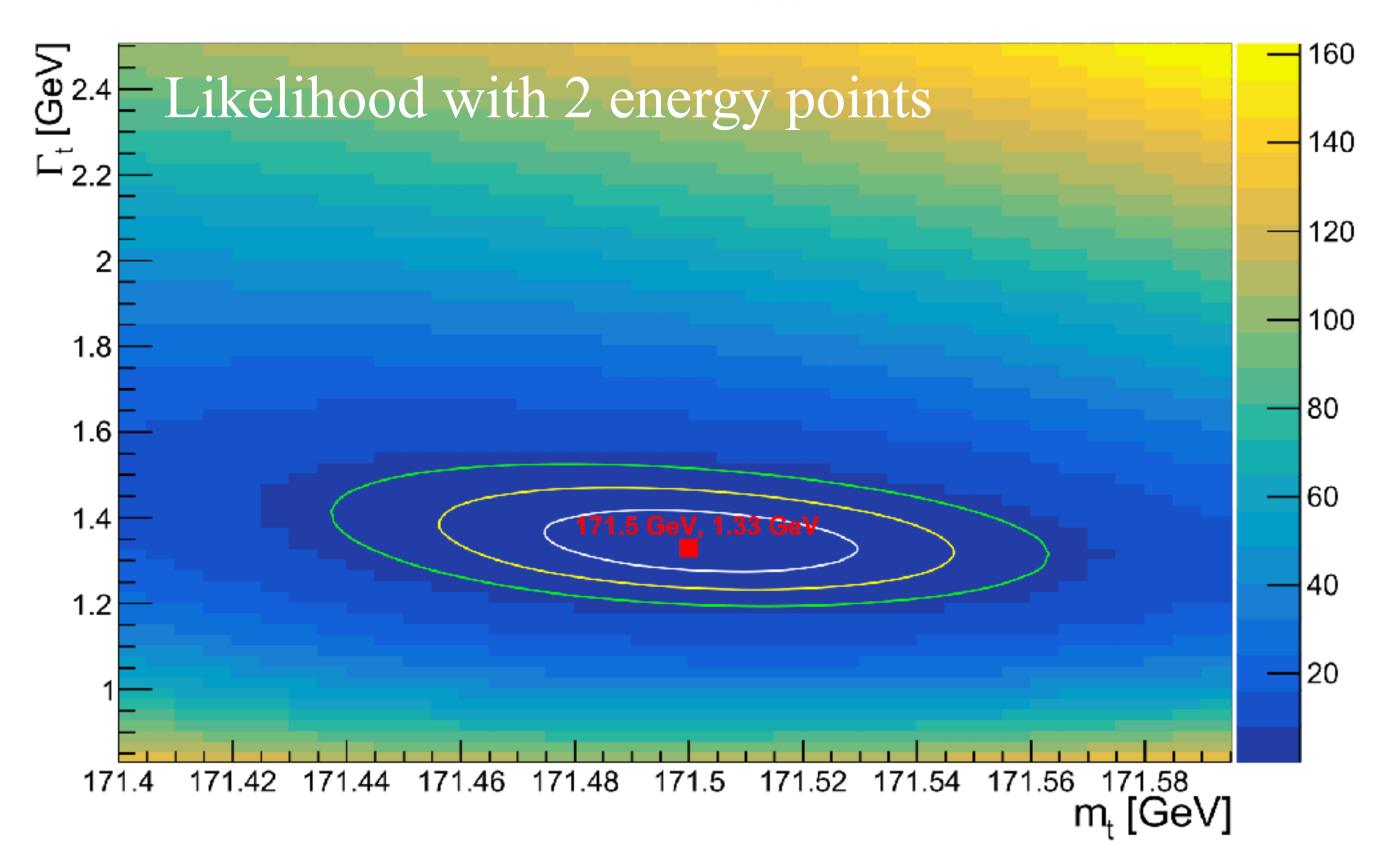
0.118


0.117

0.116

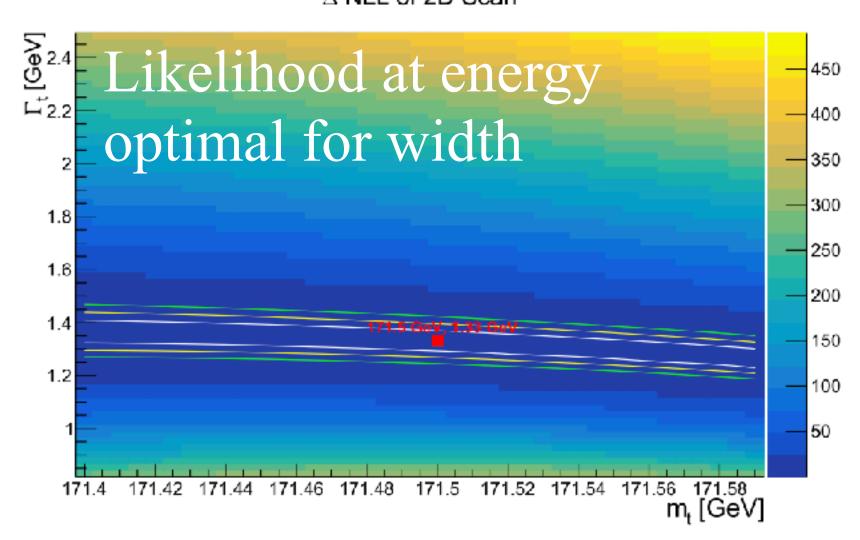
Likelihood with 2 energy points

2D scans for m_{top} vs α_S

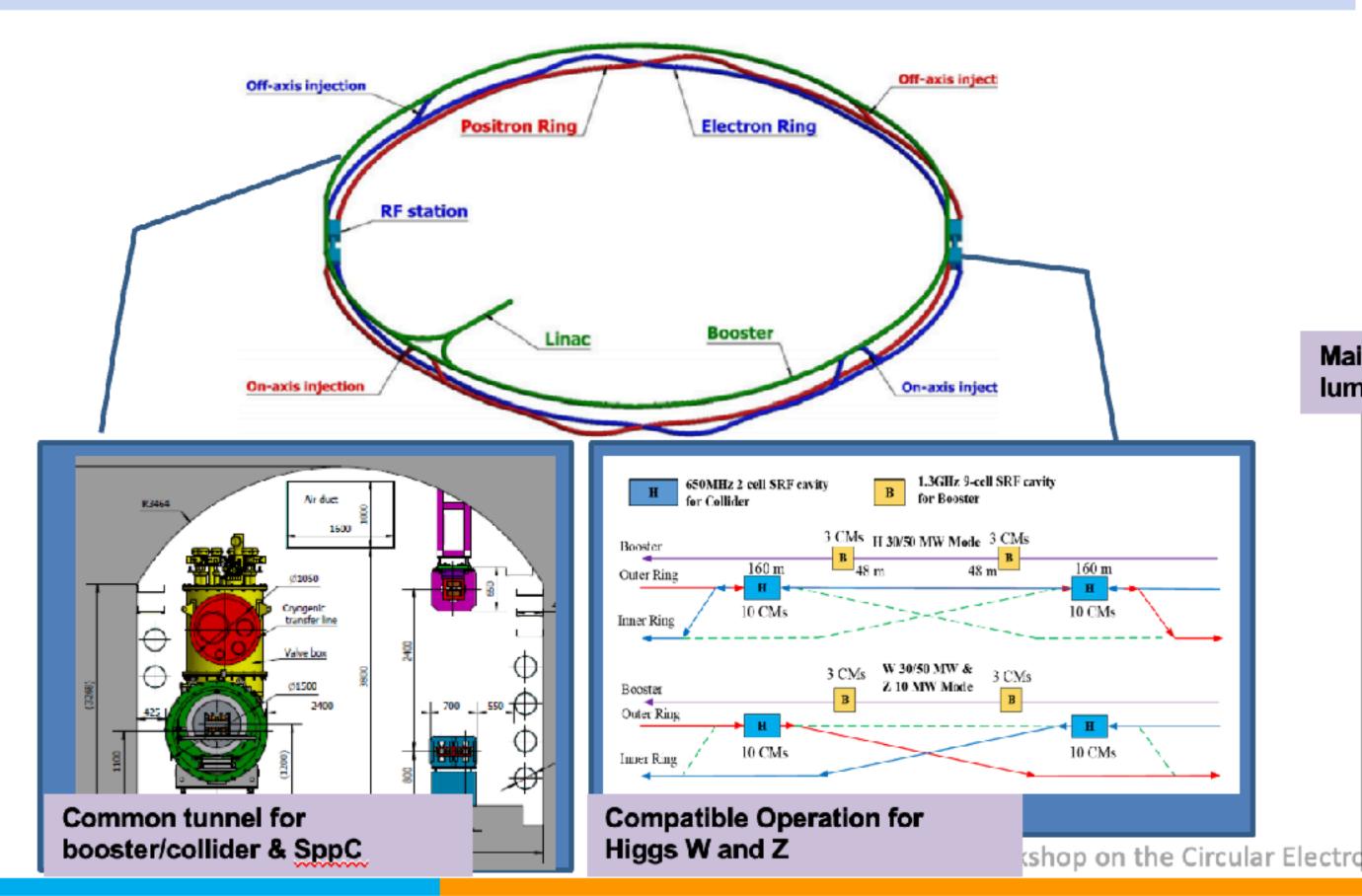

- Ideally taking the two optimal energy points for top mass and α_S would give the best precision on both, but these two energy points are too close, resulting in the same constraint pattern (shown in 1 & 2)
- To close the constraint contour, an energy point away from optimal for α_S is taken. This introduces a different correlation and can close the contour (shown in 3)

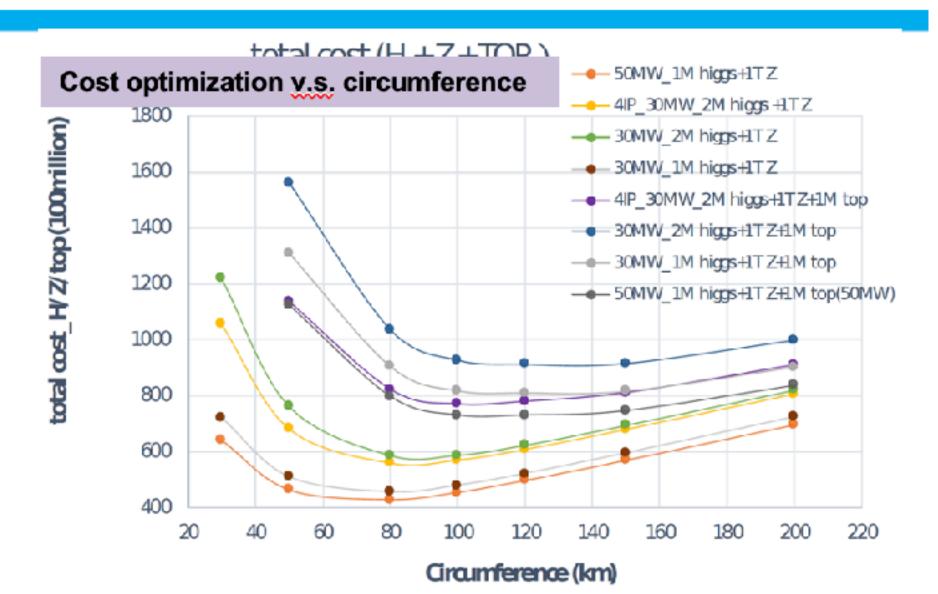
2D scans for m_{top} vs width

- The choice for width is simpler, as its optimal energy point is away from the one for top mass and they have different constraint pattern
- A closed contour can be achieved


△ NLL of 2D Scan

(d) $E_{\rm cm} = 342.75 \; {\rm GeV}$


Δ NLL of 2D Scan



(f) $E_{\rm cm} = 344.00 \; {\rm GeV}$

Yuhui Li@CEPC UK workshop 2023 Design of experimental facility

- Circular collider: Higher luminosity than a linear collider
- 100km circumference: Optimum total cost, good also for SppC
- Shared tunnel: Accommodate CEPC booster &collider and SppC
- Switchable operation: Higgs, W/Z, top

D. Wang et al 2022 JINST 17 P10018

in Parameters: High				
ninosity as a Higgs Factory	Higgs	W	Z	ttbar
Number of IPs			2	
Circumference [km]		10	0.00	
SR power per beam [MW]			50	
Energy [GeV]	120	80	45.5	180
Bunch number	415	2161	19918	59
Emittance (εx/εy) [nm/pm]	0.64/1.3	0.87/1.7	0.27/1.4	1.4/4.7
Beam size at IP (σx/σy) [um/nm]	15/36	13/42	6/35	39/113
Bunch length (SR/total) [mm]	2.3/3.9	2.5/4.9	2.5/8.7	2.2/2.9
Beam-beam parameters (ξx/ξy)	0.015/0.11	0.012/0.113	0.004/0.127	0.071/0.1
RF frequency [MHz]		(550	
Luminosity per	0.2	27	102	0.92
[IP[10 ³⁴ /cm ² /s]	8.3	27	192	0.83

CEPC TDR Parameters (upgrade)

	Higgs	Z	W	t₹	
Number of IPs	2				
Circumference (km)	100.0				
SR power per beam (MW)		50			
Half crossing angle at IP (mrad)		16.5			
Bending radius (km)		10.7			
Energy (GeV)	120	45.5	80	180	
Energy loss per turn (GeV)	1.8	0.037	0.357	9.1	
Damping time $\tau_v/\tau_v/\tau_z$ (ms)	44.6/44.6/22.3	816/816/408	150/150/75	13.2/13.2/6.6	
Piwinski angle	4.88	29.52	5.98	1.23	
Bunch number	446	13104	2162	58	
Bunch spacing (ns)	355 (53% gap)	23 (10% gap)	154	2714 (53% gap)	
Bunch population (10 ¹¹)	1.3	2.14	1.35	2.0	
Beam current (mA)	27.8	1340.9	140.2	5.5	
Momentum compaction (10-5)	0.71	1.43 0.13/0.9 0.27/1.4	1.43	0.71	
Beta functions at IP β_x^*/β_y^* (m/mm)	0.3/1		0.21/1 0.87/1.7	1.04/2.7	
Emittance $\varepsilon_{y}/\varepsilon_{y}$ (nm/pm)	0.64/1.3			1.4/4.7	
Betatron tune v_x/v_y	445/445	266/267	266/266	445/445	
Beam size at IP σ_x/σ_v (um/nm)	14/36	6/35	13/42	39/113	
Bunch length (natural/total) (mm)	2.3/4.1	2.7/10.6	2.5/4.9	2.2/2.9	
Energy spread (natural/total) (%)	0.10/0.17	0.04/0.15	0.07/0.14	0.15/0.20	
Energy acceptance (DA/RF) (%)	1.6/2.2	1.3/1.5	1.2/2.5	2.0/2.6	
Beam-beam parameters ξ_x/ξ_v	0.015/0.11	0.0045/0.13	0.012/0.113	0.071/0.1	
RF voltage (GV)	2.2	0.1	0.7	10	
RF frequency (MHz)	650				
Longitudinal tune ν_s	0.049	0.032	0.062	0.078	
Beam lifetime (Bhabha/beamstrahlung) (min)	39/40	86/400	60/700	81/23	
Beam lifetime (min)	20	71	55	18	
Hourglass Factor	0.9	0.97	0.9	0.89	
Luminosity per IP (1034 cm-2 s-1)	8.3	192	26.7	0.8	

Jie Gao@CEPC UK workshop 2023
The 2023 International Workshop on CEPC (EU Edition)

Jie Gao@CEPC UK workshop 2023 CEPC Operation Plan

Particle	E _{c.m.} (GeV)	Years	SR Power (MW)	Lumi. per IP (10 ³⁴ cm ⁻² s ⁻¹)	Integrated Lumi. per year (ab ⁻¹ , 2 IPs)	Total Integrated L (ab ⁻¹ , 2 IPs)	Total no. of events
H*	240	10	50	8.3	2.2	21.6	4.3×10^6
			30	5	1.3	13	2.6×10^{6}
Z	0.1	2	50	192**	50	100	4.1×10^{12}
	91	2	30	115**	30	60	2.5×10^{12}
W	160	1	50	26.7	6.9	6.9	2.1×10^8
	160	1	30	16	4.2	4.2	1.3 × 10 ⁸
$t\overline{t}$	360	5	50	0.8	0.2	1.0	0.6×10^6
			30	0.5	0.13	0.65	0.4×10^{6}

^{*} Higgs is the top priority. The CEPC will commence its operation with a focus on Higgs.

^{**} Detector solenoid field is 2 Tesla during Z operation, 3Tesla for all other energies.

Uncertainties: quick scan and beam energy

Source	m _{top} precision (MeV)		
	Optimistic	Conservative	
Statistical	7	7	
Theory	8	24	
Quick scan	2	2	
$lpha_{ m S}$	3	16	
Top width	5	5	
Experimental efficiency	4	9	
Background	1	3	
Beam energy	2	2	
Luminosity spectrum	3	6	
Total (without theory)	11	21	
Total	14	32	

- The quick scans of CEPC beam energy are used to locate the optimal energy point before the high-luminosity runs
- CEPC can control the beam energy with a precision down to 10⁻⁵ corresponding to ~O(1) MeV at tt threshold
- This leads to an uncertainty of 2 MeV, as a small contribution to the total
- CLIC has a control of 10^{-4} on the beam energy, but also gives an impact on top mass less than the statistical uncertainty

Uncertainties Overview

ILC & FCC-ee

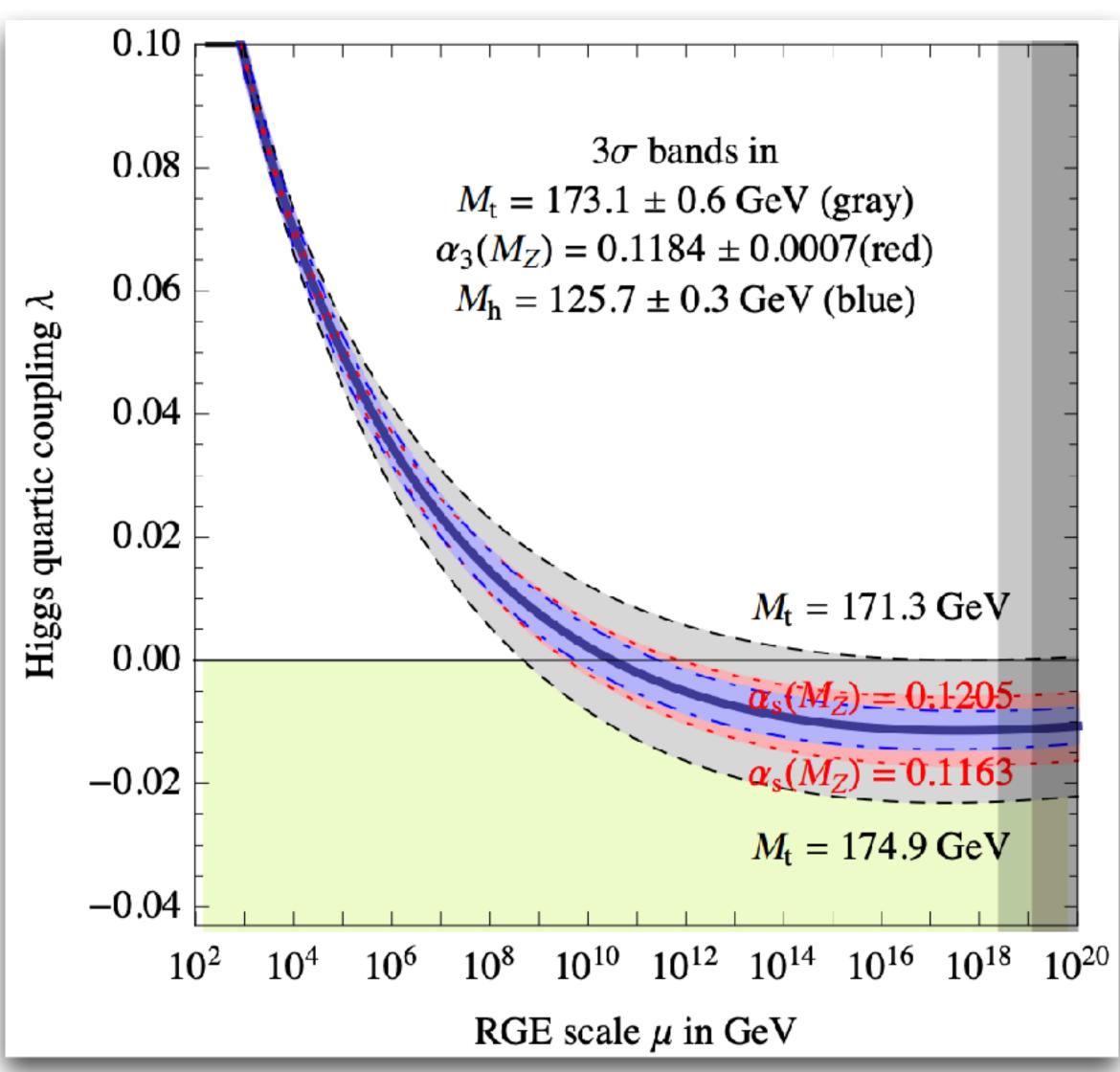
 $t\bar{t}$ threshold @ CEPC

Relatively thorough evaluation for ILC:

error source	$\Delta m_t^{ m PS} \; [{ m MeV}]$
stat. error (200 fb^{-1})	13
theory (NNNLO scale variations, PS scheme)	40
parametric ($lpha_s$, current WA: 9 x 10 ⁻⁴)	26
non-resonant contributions (such as single top)	< 40
residual background / selection efficiency	10 - 20
luminosity spectrum uncertainty	< 10
beam energy uncertainty	< 17
combined theory & parametric	30 - 50
combined experimental & backgrounds	25 - 50
total (stat. + syst.)	40 - 75

For FCC-ee $200fb^{-1}$

- 9 (compressed scan)
- 40 45, depending on scan range
- 3.2 with ultimate α_s (1.2 x 10⁻⁴)
- < 40 (no new evaluation)
- 10 20 (no new evaluation, ~ % level on selection)
- negligible
- 3 (for 5 MeV energy uncertainty)


30

FCC-ee 2025

Uncertainty source	$\mid m_{ m t}^{ m PS} \; [{ m MeV}]$	$\Gamma_{ m t} \ [{ m MeV}]$	Input values	CEPC studies
Experimental (stat. ×1.2)	4.3	10.4	$L = 410 {\rm fb^{-1} \ (FCC\text{-}ee)}$	100/fb
${ m Parametric} \; y_{ m t}$	4.2	3.6	$\delta y_t = 3\%$	
Parametric α_{S}	2.2	1.7	$\delta \alpha_{\rm S}(m_{\rm Z}^2) = 10^{-4}$	Similar 0.0001, 0.0007
Luminosity calibration (uncorr.)	0.5	1.0	$\delta L/L=0.1\%$	
Luminosity calibration (corr.)	0.4	0.4	$\delta L/L=0.05\%$	
Beam energy calibration (uncorr.)	1.2	1.8	$\delta\sqrt{s} = 5\mathrm{MeV}\ [36,37]$	Similar
Beam energy calibration (corr.)	1.2	0.1	$\delta \sqrt{s} = 2.5\mathrm{MeV}$	
Beam energy spread (uncorr.)	0.3	0.8	$\delta \Delta E = 1\% \ [extbf{36}]$	
Beam energy spread (corr.)	0.1	1.1	$\delta\Delta E=0.5\%$	
Total profiled	6.8	11.5		
Theory, unprofiled (scale)	35	25	$N^3LO NR-QCD [11]$	1%, 3%

Why top mass?

- A fundamental parameter in SM
- A stringent check of the internal consistency of SM
- Required in the evolution of Higgs quartic coupling affecting the Higgs potential stability at high energy scale
- Of course, the top mass is the heaviest particle "so far", why?

	$\delta m_{\rm t}^{ m hyb}$ [GeV]		
	all-jets	ℓ+jets	combination
Experimental uncertainties			
Method calibration	0.06	0.05	0.03
JEC (quad. sum)	0.15	0.18	0.17
 Intercalibration 	-0.04	+0.04	+0.04
– MPFInSitu	+0.08	+0.07	+0.07
 Uncorrelated 	+0.12	+0.16	+0.15
Jet energy resolution	-0.04	-0.12	-0.10
b tagging	0.02	0.03	0.02
Pileup	-0.04	-0.05	-0.05
All-jets background	0.07	_	0.01
All-jets trigger	+0.02	_	+0.01
ℓ +jets background	_	+0.02	-0.01
Modeling uncertainties			
JEC flavor (linear sum)	-0.34	-0.39	-0.37
light quarks (uds)	+0.07	+0.06	+0.07
– charm	+0.02	+0.01	+0.02
- bottom	-0.29	-0.32	-0.31
– gluon	-0.13	-0.15	-0.15
b jet modeling (quad. sum)	0.09	0.12	0.06
 b frag. Bowler–Lund 	-0.07	-0.05	-0.05
b frag. Peterson	-0.05	+0.04	-0.02
 semileptonic b hadron decays 	-0.03	+0.10	-0.04
PDF	0.01	0.02	0.01
Ren. and fact. scales	0.04	0.01	0.01
ME/PS matching	+0.24	-0.07	+0.07
ME generator	_	+0.20	+0.21
ISR PS scale	+0.14	+0.07	+0.07
FSR PS scale	+0.18	+0.13	+0.12
Top quark p_{T}	+0.03	-0.01	-0.01
Underlying event	+0.17	-0.07	-0.06
Early resonance decays	+0.24	-0.07	-0.07
CR modeling (max. shift)	-0.36	+0.31	+0.33
– "gluon move" (ERD on)	+0.32	+0.31	+0.33
"QCD inspired" (ERD on)	-0.36	-0.13	-0.14
Total systematic	0.70	0.62	0.61
Statistical (expected)	0.20	0.08	0.07
Total (expected)	0.72	0.63	0.61

CMS top mass Eur. Phys. J. C 79 (2019) 313

32