

CEPC Beam Backgrounds Status & MDI Updates

Haoyu SHI (On behalf of the CEPC MDI Working Group)

中國科學院為能物加加統所 Institute of High Energy Physics Chinese Academy of Sciences

Mar. 21st, 2025, CEPC DAY

- Introduction
- Sources, tools, mitigation methods
- Impacts Estimation
- Shielding of the BIB
- Summary & Outlook

Introduction

- Reasonable Estimation of Beam-induced background levels
 - Based on the 50-MW design of CEPC Accelerator TDR
 - Keep updating with the Ref-TDR detector
 - Higgs, Low-Lumi-Z, High-Lum-Z(3T for all)
- Estimation of the Noise on Detector due to Backgrounds, Normal Operation
 - Hit Rate/Occupancy
- Estimation of the Radiation Environment: contributions from Backgrounds in normal operation(the failure case, contributions from the signal will be considered later)
 - Radiation Damage to the Material(Detector, Accelerator, Electronics, etc...)
 - Radiation Damage to the personnel and the environment
 - Absorbed Dose, 1 MeV Si-eq fluence, Hadron fluence...
- Mitigation Methods

	Higgs	w	tī	z	Low-Lumi-Z
Number of IPs					
Solenoid(T)					
Circumference (km)					
Half crossing angle at IP (mrad)			16.5		
Bending radius (km)			10.7		
SR power per beam (MW)		5	0		12.1
Energy (GeV)	120	80	180	45.5	45.5
Energy loss per turn (GeV)	1.8	0.357	9.1	0.037	0.037
Damping time t _x /t _y /t _z (ms)	44.6/44.6/22.3	150/150/75	13.2/13.2/6.6	816/816/408	816/816/408
Piwinski angle	4.88	5.98	1.23	29.52	24
Bunch number	446	2162	58	13104	3978
Bunch spacing (ns)	277.0	138.5	2585.0	23.1	69.2
[× 23.08 ns]	12	6	112	1	3
Train gap [%]	63	10	55	9	9
Bunch population (10 ¹¹)	1.3	1.35	2.0	2.1	1.7
Beam current (mA)	27.8	140.2	5.5	1345.2	325.0
Phase advance of arc FODO (°)	90	60	90	60	60
Momentum compaction (10 ⁻⁵)	0.71	1.43	0.71	1.43	1.43
Beta functions at IP b x*/b y* (m/mm)	0.3/1	0.21/1	1.04/2.7	0.2/1.0	0.13/1.0
Emittance e _x /e _y (nm/pm)	0.64/1.3	0.87/1.7	1.4/4.7	0.27/5.1	0.27/5.1
Betatron tune n _x /n _y	445/445	317/317	445/445	317/317	317/317
Beam size at IP s _x /s _y (um/nm)	14/36	13/42	39/113	6/72	6/72
Bunch length (natural/total) (mm)	2.3/4.1	2.5/4.9	2.2/2.9	2.6/9.8	2.5/8.8
Energy spread (natural/total) (%)	0.10/0.17	0.07/0.14	0.15/0.20	0.04/0.15	0.04/0.13
Energy acceptance (DA/RF) (%)	1.6/2.2	1.05/2.5	2.0/2.6	1.2/1.7	1.0/1.7
Beam-beam parameters x _x /x _y	0.015/0.11	0.012/0.113	0.071/0.1	0.0046/0.074	0.0053/0.082
RF voltage (GV)	2.2	0.7	10	0.12	0.12
RF frequency (MHz)			650		
Harmonic number			216720		
Longitudinal tune n _s	0.049	0.062	0.078	0.035	0.035
Beam lifetime (Bhabha/beamstrahlung) (min)	40/40	60/195	81/23	120/280	150/180
Beam lifetime requirement (min)	20	25	18	81	68
$1 = 10 (10^{34} - 10^{-2})$	0.2	26.7	0.0	05.2	20

Sources and Simulation Tools

Single Beam

- Touschek Scattering
- Beam Gas Scattering(Elastic/inelastic)
- Beam Thermal Photon Scattering
- Synchrotron Radiation

Luminosity Related

- Beamstrahlung
- Radiative Bhabha Scattering
- Injection(Will be considered future)

Photon BG

Beam Loss BG

Injection BG

Background	Generation	Tracking	Detector Simu.	
Synchrotron Radiation	BDSim/Geant4	BDSim/Geant4		
Beamstrahlung/Pair Production	Guinea-Pig++			
Beam-Thermal Photon	PyBTH[Ref]		<u>CEPCSW/FLUKA</u>	
Beam-Gas Bremsstrahlung	<u>PyBGB[Ref]</u>	SAD		
Beam-Gas Coulomb	BGC in <u>SAD</u>	JAC		
Radiative Bhabha	BBBREM			
Touschek	TSC in <u>SAD</u>			

SR BG & Mitigation

- The central beam pipe was carefully designed to avoid the direct hitting of the SR photons
- The masks are implemented to further mitigate the secondaries, the design is still on going.
 - Several ways has been attempted, including the shrinking of the incoming beam pipe and different position/material/design of the mask.
 - We are still modeling the magnetic field map in our simulation tool.
 - We are also thinking some new methods like photon absorber in QDb, more study needed.

Shielding Methods	SR Backgrounds Level at VXD(Last Dipole Only)
Original	5795157
-1.9m-4mm	4512
5um Au	717973
-1.9m-4mm+5um Au	3051
-1.9m-4mm+5um Au+-4.3m mask	465
-1.9m-2mm+5um Au+-4.3m mask	1022
-1.9m-5mm+5um Au+-4.3m mask	71

Y. Tang

SR BG & Mitigation

- The central beam pipe was carefully designed to avoid the direct hitting of the SR photons
- The masks are implemented to further mitigate the secondaries, the design is still on going.
 - Several ways has been attempted, including the shrinking of the incoming beam pipe and different position/material/design of the mask.
 - We are still modeling the magnetic field map in our simulation tool.
 - We are also thinking some new methods like photon absorber in QDb, more study needed.

Shielding Methods	SR Backgrounds Level at VXD(Last Dipole Only)	Q: Refine the SR masks for the Ref-TDR configuration, incorporating simulations of tip scatteri	
-1.9m-5mm+5um Au+-4.3m mask	71	bounces within the beam pipe, and SR originating from the beam halo in quadrupoles	
~1MHz/		The SR masks has been implemented into CEPCSW geometry, therefore all the interactions including the tip scatterings and bounces within the beam pipe has been studied. Till now, the hit rate on VTX is ~1MHz/cm ² , would by acceptable at Higgs mode. The other more need more study. The SR originating from the beam halo has been implemented with some assumptions(~10 σ), the real profile. We still solving the interfaces between different tools.	

Pair Production(Beamstrahlung)

- Luminosity related backgrounds
- One of the dominant backgrounds at the CEPC, may lead to two different impacts:
 - The impacts on detector, caused by the electrons/positrons produced by photons
 - The impacts on accelerator components outside of the IR, caused by the photons directly.

Y. Tang

Parameter	Symbol	ILC-500	CLIC-380	CEPC-Z	FCC-Z	CEPC-W	FCC-W	CEPC-Higgs	FCC-Higgs	CEPC-top	FCC-to
Energy	E[GeV]	250	190	45.5	45.5	80	80	120	120	180	182.5
Particles per bunch	N[1e10]	3.7	2	14	24.3	13.5	29.1	13	20.4	20	23.7
Bunch Number				11934	10000	1297	880	268	248	35	40
Bunch Length	sigma_z [mm]	0.3	0.07	8.7	14.5	4.9	8.01	4.1	6.0	2.9	2.75
Collision Beam Size	sigma_x,y [um/nm]	0.474/5.9	0.149/2.9	6/35	8/34	13/42	21/66	14/36	14/36	39/113	39/69
Emittance	epsilon_x,y [nm/pm]	1e4/3.5e4	0.95e3/3e4	0.27/1.4	0.71/1.42	0.87/1.7	2.17/4.34	0.64/1.3	0.64/1.29	1.4/4.7	1.49/2.
Betafuncti on	beta_x,y [m/mm]	0.011/0.48	0.0082/0.1	0.13/0.9	0.1/0.8	0.21/1	0.2/1	0.3/1	0.3/1	1.04/2.7	1/1.6
Factor	[1e-4]	612.7	6304.6	2.14	1.7	3.0	2.4	4.8	5.2	5.6	7.10
n_gamma		1.9	4.34	1.0	1.36	0.45	0.59	0.4	0.64	0.22	0.26
Relative loss per particle	%/BX	19.3		0.0041	0.0092	0.0067	0.0072	0.0096	0.0161	0.0062	0.009

Special Topic: Photon Dump

IARC/IDRC

- We have completed the preliminary study on the photon dump and have already developed a reference design for it.
 - The extraction line and the modification of the bending magnets have not yet been incorporated into the design. The whole system design is on going.
 - The ambient equivalent dose constraint has been met, with a value of less than 5.5 mSv/h.

Mitigation of the BIBs

The sources of the BIBs has two groups:

- From IP, luminosity related(pair-production, radiative Bhabha)
- From anywhere around the ring, less in IP(single beam losses and SR)

Previously, we have several methods of shielding(or mitigation)

- Using collimators to block single beam loss outside of the IR
- Using mask to block SR outside of the Be beam pipe
- Using heavy metal(like W) somewhere in the IR(like outside the cryomodule)
- Using paraffine at both ends of the yoke(together with concrete wall maybe) to block the upstream single loss entering the IR

Collimators

Collimators were implemented to reduce IR loss caused by single beam.

- 19 sets of collimators were implemented for MDI purpose with updated position
- 12 sets of collimators were installed for passive machine protection and will also contribute to mitigating beam background.
- With the implementation of collimators, multi-turn beamstrahlung and radiative Bhabha loss particles have been
 effectively shielded outside the interaction region.
- Design Requirements:
 - Beam stay clear region: 18 σ_x +3mm, 22 σ_y +3mm
 - Impedance requirement: slope angle of collimator < 0.1

Peng Zhang, Haijing Wang

Loss Map at the IR @ Higgs

- Single Beam only
- Errors implemented
 - High order error for magnets
 - Beam-beam effect

Loss Map at the IR @ Higgs

- Single Beam only
- Errors implemented
 - High order error for magnets
 - Beam-beam effect

Iocc Data -	Loss Number	Bunch number $*$ Particles per Bunch $*(1 - e^{-1})$
LOSS RULE -	Loss Time	Beam Lifetime

	50MW Higgs, 346ns/BX		50MW Higgs, 277ns/BX
Pair Production	~1.82GHz in IR	Pair Production	~1.82 GHz in IR
Beam Thermal Photon	~0.30MHz/beam in IR	Beam Thermal Photon	~0.3 kHz/beam in IR
Beam Gas Bremsstrahlung	~0.04MHz/beam in IR	Beam Gas Bremsstrahlung	~4.1 kHz/beam in IR
Beam Gas Coulomb	~0.23MHz/beam in IR	Beam Gas Coulomb	~87.8 kHz/beam in IR
Touschek Scattering	~0.06MHz/beam in IR	Touschek Scattering	~0.3 kHz/beam in IR
SR	~630 PHz/beam generated at last bending magnet	SR	~630 PHz/beam generated a last bending magnet

Loss Map at the IR @ Low-Lumi Z

- Single Beam only
- **Errors** implemented
 - High order error for magnets
 - Beam-beam effect

Beam Way

10²

10¹

100

 10^{-1}

10-2

 10^{-3}

 10^{-4}

10-5

 10^{-6}

-6

oss Rate/MHz/10cm

Loss Map at the IR @ Low-Lumi Z

- Single Beam only
- **Errors** implemented
 - High order error for magnets
 - Beam-beam effect
- Assume that the beam lifetime is same as High-Lumi Z

	10MW Z, 69ns/BX
Pair Production	~3.2GHz in IR
Beam Thermal Photon	~3.4MHz/beam in IR
Beam Gas Bremsstrahlung	~2.5MHz/beam in IR
Beam Gas Coulomb	~272MHz/beam in IR
Touschek Scattering	~62MHz/beam in IR

	10MW Z, 69ns/BX
Pair Production	~3.2GHz in IR
Beam Thermal Photon	~24.83 Hz/beam in IR
Beam Gas Bremsstrahlung	~17.9 kHz/beam in IR
Beam Gas Coulomb	~20.8 MHz/beam in IR
Touschek Scattering	~1.3 kHz/beam in IR

Beam Lifetime

 $Loss Rate = \frac{Loss Number}{Loss Time} = \frac{Bunch number * Particles per Bunch * (1 - e^{-1})}{Beam Lifetime}$

Loss Map at the IR @ High-Lumi Z

Single Beam only

10³

10¹

 10^{-1}

 10^{-3}

10-5

Loss Rate/MHz/10cm

- **Errors** implemented
 - High order error for magnets

Loss Map at the IR @ High-Lumi Z

- Single Beam only
- Errors implemented
 - High order error for magnets
 - Beam-beam effect
- Assume that the beam lifetime is same as High-Lumi Z

	50MW Higgs, 23ns/BX
Pair Production	~25.5GHz in IR
Beam Thermal Photon	~0.26GHz/beam in IR
Beam Gas Bremsstrahlung	~0.01GHz/beam in IR
Beam Gas Coulomb	~2.36GHz/beam in IR
Touschek Scattering	~6.24GHz/beam in IR

	50MW Z, 23ns/BX
Pair Production	~25.5GHz in IR
Beam Thermal Photon	~0.1 kHz/beam in IR
Beam Gas Bremsstrahlung	~0.007 GHz/beam in IR
Beam Gas Coulomb	~0.2 GHz/beam in IR
Touschek Scattering	~1.6 kHz/beam in IR

 $Loss Rate = \frac{Loss Number}{Loss Time} = \frac{Bunch number * Particles per Bunch * (1 - e^{-1})}{Beam Lifetime}$

Higgs – No Shield

We have obtained a preliminary estimate of
the beam-induced background levels in
Higgs mode

- Assume an operational time of 7000hr/yr

BIB Rates Considered @ Higgs	Vacuum Level: 10 ⁻⁷ Pa, H ₂	
	50MW Higgs, 346 ns/BX	
Pair Production	~1.82 GHz in IR	
Beam Thermal Photon	~0.3 kHz/beam in IR	
Beam Gas Bremsstrahlung	~4.1 kHz/beam in IR	
Beam Gas Coulomb	~87.8 kHz/beam in IR	
Touschek Scattering	~0.3 kHz/beam in IR	

Sub-Detectors	ctors Ave. Hit Rate(MHz/cm2) Max. Hit Rate(MHz/cm ²)		Max. Occupancy(%)	
Vertex	1.063	1.195	0.003	
ITK-B/E	0.000729/0.00350	0.00192/0.02471	6.34e-5	
ТРС	0.0052	0.018	0.11	
OTK – B/E	0.00123/0.0016	0.00179/0.00692		
Ecal-B/E	Ecal-B/E 0.019/0.079 Hcal-B/E 0.00018/0.0066		0.79/3.19	
Hcal-B/E			0.00049/0.017	
Muon – Endcap	Muon – Endcap 0.00000169		0.26	
LumiCal – Si/LYSO	12.33/1.10	253.95/3.43	-/11.69	

Low Lumi Z – No Shield

We have obtained a preliminary estimate of
the beam-induced background levels in
Low-Lumi-Z mode

- Assume an operational time of 7000hr/yr

BIB Rates Considered @ Low-Z	Vacuum Level: 10 ⁻⁷ Pa, H ₂
	10MW Z, 69ns/BX
Pair Production	~3.2GHz in IR
Beam Thermal Photon	~24.83 Hz/beam in IR
Beam Gas Bremsstrahlung	~17.9 kHz/beam in IR
Beam Gas Coulomb	~20.8 MHz/beam in IR
Touschek Scattering	~1.3 kHz/beam in IR

Sub-Detectors	Ave. Hit Rate(MHz/cm2)	Max. Hit Rate(MHz/cm ²)	Max. Occupancy(%)
Vertex	4.408	8.551	0.002
ITK-B/E	0.00156/0.009	0.00479/0.06871	4.75e-5
TPC	0.0060	0.021	0.13
OTK – B/E	0.00234/0.00189	0.00344/0.01087	
Ecal-B/E	0.019/0.091	0.464/6.915	0.18/1.00
Hcal-B/E	0.00065/0.0064	0.0012/0.225	0.00015/0.003
Muon – Endcap	Muon – Endcap 0.0000222		0.08
LumiCal – Si/LYSO	46.52/10.43	2862.17/36.66	-/6.48

High Lumi Z – No Shield

We have obtained a preliminary estimate of	
the beam-induced background levels in	
High-Lumi-Z mode	

- Assume an operational time of 7000hr/yr

BIB Rates Considered @ High-Z	Vacuum Level: 10 ⁻⁷ Pa, H ₂	
	50MW Z, 23ns/BX	
Pair Production	~25.5GHz in IR	
Beam Thermal Photon	~0.1 kHz/beam in IR	
Beam Gas Bremsstrahlung	~0.007 GHz/beam in IR	
Beam Gas Coulomb	~0.2 GHz/beam in IR	
Touschek Scattering	~1.6 kHz/beam in IR	

Sub-Detectors	Ave. Hit Rate(MHz/cm2)	Hit Rate(MHz/cm2) Max. Hit Rate(MHz/cm ²)	
Vertex	13.597	26.463	0.002
ITK-B/E	ITK-B/E 0.00508/0.02728 TPC		1.93e-4
ТРС			
OTK – B/E	0.00725/0.00897	0.01041/0.03569	
Ecal-B/E	Ecal-B/E 0.051/0.245		0.79/3.19
Hcal-B/E 0.002/0.02 Muon – Endcap 0.000007		0.035/0.616	0.00012/0.0036
		0.00003587	0.09
LumiCal – Si/LYSO	LumiCal – Si/LYSO 129.35/28.52		-/10.97

Mitigation of the Backgrounds

Shielding has been implemented at both ends of the yoke using the 10 cm of paraffin, and also 10mm W outside of the LumiCal-LYSO. The shell of cryo-module also used as shielding.

Estimation of Impacts in the MDI

				BIB Rates Considered @ Higg	ζS Vacuum L	evel: 10 ⁻⁷ Pa, H ₂	
We have obtained a preliminary estimate of the beam-				50MW Higgs, 346	ns/BX		
i	nduced background levels in Higgs mode			Pair Production	~1.82 GHz in I	R	
 Assume an operational time of 7000hr/yr(may change to 			Beam Thermal Photon	~0.3 kHz/beam i	n IR		
	7500hr/yr accordi	ng to Acc TDR)		Beam Gas Bremsstrahlung	~4.1 kHz/beam i	~4.1 kHz/beam in IR	
	 No Safety Factor 			Beam Gas Coulomb	~87.8 kHz/beam	in IR	
	 ~50% mitigated by the shielding. 		Touschek Scattering	~0.3 kHz/beam i	n IR		
e e pi	Sub-Detectors	Ave. Hit Rate(MHz/cm2)	Max. Hit Rate(MHz/cm ²)	Max. Occupancy(%)	Ave. TID(Gy/yr)—Oct24		
Acce.	Vertex	1.117	1.255	0.003	~21000		
	ІТК	0.00063/0.00277	0.001/0.01306	3.78e-5	128		
	TPC	0.0034	0.011	0.066	23.4(Supporting)		
	OTK – B/E	0.00068/0.00093	0.00105/0.00692				
	Ecal-B/E	0.011/0.045	0.424/2.87	0.57/2.4	0.322		
	Hcal-B/E	0.0002/0.0053	0.0058/0.221	0.00046/0.013	0.044		
	Muon – Endcap	0.00000140	0.0000285	0.20	0.21 <mark>To Be</mark>	Updated	
	LumiCal – Si/LYSO	12.33/1.10	253.95/3.43	-/11.69		21	

Radiation Map @ Higgs – Charge Particle Fluence(Pairs only)

Number of Pair vs Single is ~ 34000:1

Deposited Energy from Pair vs Single is ~ 280:1

Radiation Map @ Higgs – TID (Pairs only)

Radiation Map @ Higgs – 1 MeV Si-eq Fluence (Pairs only)

~10¹²/yr at VTX ~10¹⁴/yr at Lumi

Estimation of Impacts in the MDI

- We have obtained a preli beam-induced backgrour
 - Assume an operational

Ave. Hit

- ~50% mitigated by the s

Sub-Detectors

Vertex

ITK

TPC

OTK - B/E

Ecal-B/E

Hcal-B/E

Muon – Endcap

LumiCal – Si/LYSO

		BIB Rates Considered @ Low-	Z Vacuum Level: 10 ⁻⁷ Pa, H ₂
oreliminary estimate of the			10MW Z, 69ns/BX
round levels in	Low-Z mode	Pair Production	~3.2GHz in IR
rad time of 7000 hr/s/r		Beam Thermal Photon	~24.83 Hz/beam in IR
the shielding	1117 yi	Beam Gas Bremsstrahlung	~17.9 kHz/beam in IR
ine shielding.		Beam Gas Coulomb ~20.8 MHz/beam in	
		Touschek Scattering	~1.3 kHz/beam in IR
e. Hit Rate(MHz/cm2)	Max. Hit Rate(MHz/cm ²)	Max. Occupancy(%)	Ave. TID(Gy/yr)
4.408	8.551	0.0024	
0.00102/0.00398	0.00279/0.01973	7.58e-6	
0.0037	0.013	0.078	
0.00121/0.00156	0.00189/0.00664		
0.015/0.065	0.335/6.699	0.29/0.78	
0.0007/0.0082	0.012/0.249	0.00018/0.00458	
0.00000178	0.00001025	0.08	To Be Updated
46.52/10.43	2862.17/36.66	-/6.48	25

Estimation of Impacts in the MDI

				BIB Rates Considered @ High-	-Z Vacuum Level: 10^{-7} Pa, H ₂
	We have obtained a preliminary estimate of				50MW Z, 23ns/BX
	the beam-indu	ced background	d levels in	Pair Production	~25.5GHz in IR
	High-Z mode		Beam Thermal Photon	~0.1 kHz/beam in IR	
				Beam Gas Bremsstrahlung	~0.007 GHz/beam in IR
	 Assume an op 	erational time of 7	000hr/vr	Beam Gas Coulomb	~0.2 GHz/beam in IR
				Touschek Scattering	~1.6 kHz/beam in IR
	Sub-Detectors	Ave. Hit Rate(MHz/cm2)	Max. Hit Rate(MHz/cm ²)	Max. Occupancy(%)	Ave. TID(Gy/yr)
	Vertex	13.597	26.463	0.0025	
	ІТК	0.00379/0.01430	0.0147/0.0723	6.91e-6	
	ТРС				
	OTK – B/E	0.00375/0.00487	0.006/0.042		
	Ecal-B/E	0.077/0.334	2.104/34.528	0.29/1.1	
	Hcal-B/E	0.0022/0.053	0.044/2.148	0.00018/0.0085	
	Muon – Endcap	0.00000591	0.00003075	0.09	To Be Updated
	LumiCal – Si/LYSO	129.35/28.52	7824.42/100.45	-/10.97	26

Summary & Outlook

The estimation of beam induced background level at Higgs and Low/Highlumi-Z is almost finished, together with the mitigation methods

- The updated collimators look promising. All single beam backgrounds have been mitigated at least one order of magnitude.
- The dose estimation using FLUKA is on going, we have pair from Higgs and are doing other cases. We formed a dedicated working group working on this(1 staff from IMMU+ 1 student from NKU).
- We have the simulation results based on CEPCSW-TDR25.1.1.

For future work of BG Study:

- We plan to have simulation results at Higgs/Low-Lumi-Z and High-Lumi-Z using CEPCSW-TDR 25.3.6(ongoing, for noise hit), and FLUKA(ongoing, for radiation map) before April Review.
- In future simulation study, there will be several things could be optimized, including the optimization of collimators, the study on Beamstrahlung Cut, the real vacuum profile, the extension of MDI region in simulation, the full map of other operation modes, and the new methods to mitigate SR.
- We are also planning the BG experiment on BEPCII-U.
- The design of monitoring system is also need to be considered. IARC

Thank you for your attention!

中國科學院為能物品加完所 Institute of High Energy Physics Chinese Academy of Sciences

Mar. 21st, 2025, CEPC DAY

Backup

Higgs – No Shield

ITKB Hit Distribution

VERTEX Hit Distribution

ITKE Hit Distribution

160

140

Injection Backgrounds @ Higgs

A preliminary study on the injection backgrounds has been performed:

- RBB is taken into account in all cases
- A simplified model of top-up injection beam
- Tails from imperfectly corrected X-Y coupling after the injection point
- Some tolerances to imperfect beams from the booster (e.g. too large emittances)
- non-Gaussian distributions existing/building up in the booster and being injected into the main

S. Bai

Recommendations from IDRC

1. Optimize the collimators using simulations that account for secondary particle interactions.

Answer: The collimators has been updated with the secondaries considered.

2. Refine the SR masks for the Ref-TDR configuration, incorporating simulations of tip scatterings, bounces within the beam pipe, and SR originating from the beam halo in quadrupoles.

Answer: The SR masks has been updated and included in simulation.

3. Explore the feasibility of placing heavy metal masks near the interaction point (IP) to absorb particle showers effectively.

Answer: The heavy metal shielding has been added outside of the cryo-module. The BG level has been mitigated with such shielding.

Recommendations from IARC

- 1. The significant amount of beamstrahlung emitted at the IP during collisions was not discussed and must be considered in detail to ensure safe extraction from the vacuum pipe into a dedicated beam dump, for suitable heat extraction and radiation containment;
- \Rightarrow Sure, we've considered it and the design of the dump is ongoing.
- 1. The radiation tolerance of detector components should be thoroughly investigated to ensure that the current estimated beam-loss rates in the IR are acceptable;
- Sure, the estimation of beam induced backgrounds level at IR is updating together of the detector. Currently, the level at Higgs mode is acceptable.
- 1. Beam-loss sensors within the detector, capable of issuing beam-dump request signals in case of excessive radiation, are essential to protect several key detector components. Signals from these sensors should be used with different thresholds for injection and non-injection periods;
- \Rightarrow The monitor system would be designed when the detector was fixed.
- 1. Check whether the reserved cabling space is sufficient for Vertex Detector (VXD) readout and power-supply cables, as well as cooling pipes, etc. Study the procedure for installation and mounting of detector components near the beam pipe and the insertion of the final-doublet cryostat taking into account the presence of the cabling;
- \Rightarrow Sure, this work needs joint effort and would be designed together with detector.
- 1. Arrange a focused review on MDI in the coming year, inviting members from both detector and accelerator groups with sufficient expertise and experience to cover all the relevant aspects, which would be very beneficial.
- ⇒ Thank you, it's in arrangement.