

The top mass at the ttbar threshold with CEPC

CEPC RefTDR weekly meeting

Leyan Li (Peking University, PKU)

on behalf of

Xiaohu Sun, Zhan Li, Shudong Wang, Gang Li, Yuming Lin

 $Mar 3^{rd}, 2025$

Reference: Eur. Phys. J. C (2023) 83:269, arXiv:2207.12177

Introduction

- CEPC will be a versatile machine with many opportunities
 - Higgs factory @~240 GeV, Diboson factory @~160 GeV, Z factory @~90 GeV
- @~360 GeV it can also be a playground for
 - Top quark precision measurements
 - Higgs complementary measurements
 - BSM searches

Top quark mass measurements

- The top "pole" mass is measured using top reconstruction at hadron colliders
- Heavily relies on the performance of MET (the neutrino) and JER & JES
- ATLAS+CMS combined measurements (15) reached a level of uncertainties of 330 MeV dominated by systematic uncertainties
- Further improvements in precision are highly challenging due to the predominance of systematic uncertainties inherent to hadron collider environments.

ATLAS-CONF-2023-066, CMS-PAS-TOP-22-001 for Run1 New results such as CMS Eur. Phys. J. C 83 (2023) 963 with 370 MeV using Run2

ttbar threshold scan

- ee-colliders enable both top reconstruction and ttbar threshold scan.
- The scan is made against \sqrt{s} and cross-section is the direct observable
- This brings measurements of top mass and a couple of other parameters

• Top width, Top Yukawa coupling, α_S

Our setup in Eur. Phys. J. C (2023) 83:269, arXiv:2207.12177

- Use the package "QQbar_threshold" to calculate cross-section near threshold in ee-colliders at N³LO in resummed non-relativistic perturbation theory
 - The incorporation of Coulomb interactions between the quark and the antiquark results in a significant enhancement of the cross section.
 - To circumvent ambiguities arising from IR renormalons, the package employs the PS shift (PSS) mass scheme as the default approach.

$$m_t^{PS} = 171.5 \,\text{GeV}, \qquad \alpha_s(m_Z) = 0.1184$$

- ISR effects are also included in the package
- We integrate luminosity spectrum (LS) by a Gaussian function with the CEPC expected beam energy spread (~500 MeV) as a function of s

 \sqrt{s} [GeV]

Luminosity Spectrum (LS) @ CEPC

- The beam energy resolution increases as a function of \sqrt{s}
- The LS is shown for $\sqrt{s}=340 {\rm GeV}$ with a width of ~480 MeV
- Similar to the FCC-ee scenario

Which energy to collide with?

- Around the ttbar threshold, we need to identify the energy point(s) that contain(s) the most sensitivity
- Construct Fisher information to test the energy point(s)

$$I(\sqrt{s}) = \int \left(\frac{\partial log(G(\sigma|\sigma_0(\sqrt{s},\theta),\sqrt{\sigma_0(\sqrt{s},\theta)}))}{\partial \theta} \right)^2 \times G(\sigma|\sigma_0(\sqrt{s},\theta),\sqrt{\sigma_0(\sqrt{s},\theta)}) d\sigma.$$

• Larger amplitudes implies richer information and higher sensitivities

Statistical uncertainty of 1D scan

- Aiming at measuring one parameter at a time (1D), given limited total luminosity:
 - Only colliding at one optimal energy point would give the best sensitivity
 - This is tested with many different scenarios: one vs multiples energy points, un-even luminosity allocation etc.
- The precision of statistical-only one-parameter measurement using one optimal energy point @CEPC is calculated

\sqrt{s} (GeV)	Δm_{top}	$\Delta \Gamma_{top}$	$\Delta \alpha_S$
342.75	9 MeV	343 MeV	0.00041
344.00	> 50 MeV	26 MeV	0.00047
343.50	15 MeV	40 MeV	0.00040

In the table, 342.75 GeV, 344.00 GeV and 343.50 GeV are optimal energy points for top quark mass, width and α_S , respectively

Eur. Phys. J. C (2023) 83:269, arXiv:2207.12177

All are stats-only here

Totally assumed Exprimental Uncertainty

- Experimental efficiency of the future detectors is yet to know(JER, JES, btagging-effciency...)
- Assume possible scenarios of uncertainties 0.5%, 1%, 3% and 5% that impacts signal rates directly
- This leads to top mass uncertainties of 5, 10, 27, 44 MeV, respectively

• Using the detector simulation information provided by the CEPC refTDR physics group, we can more accurately assess experimental uncertainties

	Top mass uncertainties (MeV)		
	Optimistic	Conservative	
Statistics	9	9	
Theory	8	24	
Quick scan	2	2	
$lpha_S$	17	17	
Width	10	10	
Experimental efficiency	5	44	
Background	2	14	
Beam energy	2	2	
Luminosity spectrum	3	6	
Total	24	57	

Eur. Phys. J. C (2023) 83:269, arXiv:2207.12177

- Experimental uncertainty sources we care about most & truly need:
 - JES and its uncertainties
 - an excellent btagger and its uncertainties
 - JER and its impact on b-tagging

Primary Plan

- Level 1: Complete the production of the ttbar signal sample.
- Level 2: Complete the production of the background sample.
- Approach:
 - Utilize CEPC_SW for sample generation as the primary option.
 - Prioritize the ttbar signal sample due to time constraints.

Backup Plan: Fast Simulation with Delphes

- If the primary plan faces delays or challenges, switch to fast simulation using Delphes.
- Key modifications to Delphes card:
 - Incorporate JES and its uncertainties.
 - Include JER and its uncertainties.
 - Add b-tagging efficiency curves and their uncertainties.

```
158
759
     760
     # Jet Energy Scale
761
     762
763
     module EnergyScale JetEnergyScale {
       set InputArray FastJetFinder/jets
764
765
       set OutputArray jets
766
767
       # scale formula for jets
768
       set ScaleFormula {1.0075}
```

<u>delphes_card_CEPC.tcl</u>

Back Up

XS at the $t\bar{t}$ threshold with CEPC

tcl card overview of delphes_CEPC ?

- LO sample generate workflow
 - Basic Process Overview
 - How to submit madevent jobs(.sh .py ...)
 - Issues
 - Allocation of sample jobs (Leyan, Yuming @ ihep.ac.cn)
- Outlook on Analysis framework ?

整个框架

MG5 pythia8 产生samples

这里可以做一个表 list

然后接入delphes_cepc

接着进入我们自己的分析框架

Top quark Mesurement @ CEPC


```
e- e+ > mu- mu+
e- e+ > q qbar
e- e+ > b b~
e- e+ > a z
e- e+ > w+ w-
e- e+ > z z
e- e+ > z w+ w-
e- e+ > z z z
```

```
e- e+ > t t~ QED<=99 QCD<=99, (t > w+ b QED<=99 QCD<=99, w+ > up_type_q down_type_q QED<=99 QCD<=99), (t > w- b~ QED<=99 QCD<=99, w- > up_type_q down_type_q QED<=99 QCD<=99) e- e+ > t t~ QED<=99 QCD<=99, (t > w+ b QED<=99 QCD<=99, w+ > up_type_q down_type_q QED<=99 QCD<=99), (t~ > w- b~ QED<=99 QCD<=99) QCD<=99, w- > charged_lepton neutrino QED<=99 QCD<=99) e- e+ > t t~ QED<=99 QCD<=99, (t > w+ b QED<=99 QCD<=99, w+ > charged_lepton neutrino QED<=99 QCD<=99, w+ > charged_lepton neutrino QED<=99 QCD<=99, w- > up_type_q down_type_q QED<=99 QCD<=99)
```

e- e+ > t t~ QED<=99 QCD<=99, (t > w+ b QED<=99 QCD<=99, w+ Table 5 Background cross-section near the top threshold and at 500 charged_lepton neutrino QED<=99 QCD<=99), (t~ > w- b~ QED<=99 $\frac{\text{GeV}}{E_{cm}(\text{GeV})}$ 352

 $E_{cm}(GeV)$ 352
 500

 qq(fb) 24149 ± 69 12136 ± 46
 $W^+W^-(fb)$ 11628 ± 4 7708 ± 3
 $ZW^+W^-(fb)$ 11.07 ± 0.01 36.16 ± 0.02

 ZZ(fb) 703.5 ± 0.3 447.9 ± 0.2

```
e- e+ > w+ t~ b $ t t~, (w+ > up_type_q down_type_q), (t~ > w- b~, w- > up_type_q down_type_q) e- e+ > w+ t~ b $ t t~, (w+ > charged_lepton neutrino), (t~ > w- b~, w- > charged_lepton neutrino) e- e+ > w+ t~ b $ t t~, (w+ > charged_lepton neutrino), (t~ > w- b~, w- > up_type_q down_type_q) e- e+ > w+ t~ b $ t t~, (w+ > up_type_q down_type_q), (t~ > w- b~, w- > charged_lepton neutrino)
```

```
e- e+ > w- t b~ $ t t~, (w- > up_type_q down_type_q), (t > w+ b, w+ > up_type_q down_type_q) e- e+ > w- t b~ $ t t~, (w- > charged_lepton neutrino), (t > w+ b, w+ > charged_lepton neutrino) e- e+ > w- t b~ $ t t~, (w- > up_type_q down_type_q), (t > w+ b, w+ > charged_lepton neutrino) e- e+ > w- t b~ $ t t~, (w- > charged_lepton neutrino), (t > w+ b, w+ > up_type_q down_type_q)
```

Top quark Mesurement @ CEPC

Towards TDR

Chapter	1 Det	ector and Physics performance	1		
1.1	Introdu	ction	1		
1.2	Detecto	r Performance	1		
	1.2.1	Tracking (Chenguang Zhang, Hao Zhu, et al.)	1		
		1.2.1.1 Tracking efficiency	1		
		1.2.1.2 Momentum resolution	2		
		1.2.1.3 Impact parameter resolution	3		
	1.2.2	PID	4		
		1.2.2.1 Photon, Electron and Muon (Ligang Xia, Danning Liu, et al.)	4		
		1.2.2.2 Charged Hadrons (Chenguang Zhang, Xiaotian Ma, et al.)	4		
	1.2.3	Jets (Kaili Zhang, Xiaotian Ma, Yingqi Hou, Chenguang Zhang, Jiarong Li, et al.)	6		
		1.2.3.1 Actual Jet Energy Resolution	7		
		1.2.3.2 Jet performance in physics events	7		
	1.2.4	Vertexing (Chenguang Zhang, et al.)	2		
		1.2.4.1 Vertex Efficiency	2		
		1.2.4.2 Vertex Resolution	2		
	1.2.5	Jet Flavor Tagging - traditional way (Chenguang Zhang, et al.)	2		
	1.2.6	Jet Origin ID (Manqi Ruan, Kaili Zhang, et al.)	2		
1.3	Physics	Benchmarks	3		
	1.3.1	Event Generation (Kaili Zhang, Gang Li, et al.)	3		
		1.3.1.1 Monte Carlo event generators	3		
		1.3.1.2 Generated signal and background samples	3		
	1.3.2	Analysis Tools	3		
		1.3.2.1 Multivariate analysis tools	3		
	1.3.3	Higgs mass and production cross-section through recoil mass (Mingshui Chen, et al.)	4		
	1.3.4	Branching ratios of the Higgs boson in hadronics final states (Yanping Huang, et al.)			
	1.3.5	$H o \gamma \gamma$ (Yaquan Fang, et al.)			
	1.3.6	$H \rightarrow invisible$ (Mingshui Chen, et al.)			
	1.3.7	Weak mixing angle (Zhijun Liang, Bo Liu, et al.)	4		
	1.3.8	A channel in flavor physics (Shanzhen Chen, et al.)	4		
	1.3.9	top mass and width (Xiaohu Sun, et al.)	4		
	1.3.10	W fusion cross section (Hongbo Liao, et al.)	4		
	1.3.11	Long-lived particles (Liang Li, et al.)	4		
	1.3.12	smuon (Xuai Zhuang, et al.)	4		
		$Z ightarrow \mu \mu$	4		
		$H o \mu \mu$	4		
2025/1/	6				