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Soft-collinear effective theory (SCET)



Effective Field Theories 
• The intui*ve idea behind effec*ve 

theories is that you can calculate 
without knowing the exact theory. 

•  In some sense, the ideas of EFT are 
‘obvious’. However, implemen*ng them 
in a mathema*cally consistent way in an 
interac*ng QFT is not so obvious.  

• An EFT is a quantum theory in its own 
right, and like any other QFT, it comes 
with a regulariza*on and 
renormaliza*on scheme necessary to 
obtain finite matrix elements.
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1. SMEFT



SMEFT
• If new, heavy par*cles exist beyond the Standard Model, with masses M 

much larger than the electroweak symmetry breaking scale v, we can build 
their low-energy theory, called SMEFT, by enhancing the SM Lagrangian with 
high-dimensional local operators. 

• The new operators           with mass dimension D = 4 + n. There is an infinite 
set of such operators, but importantly there exists only a finite set of 
operators for each dimension D  

• The contribu*ons of these operators to any given observable are suppressed 
by powers of (v/M)D-4 rela*ve to the contribu*ons of the operators of the 
SM.



SMEFT and Wilsonian Approach
• In construc*ng the effec*ve Lagrangian we split up the contribu*ons from 

virtual par*cles into short- and long-distance modes: 

sensi*ve to UV physics and is 
absorbed into the Wilson 
coefficients 

sensi*ve to IR physics and is 
absorbed into the matrix 
elements 



Wilsonian Approach
• If we are performing a measurement at a characteris*c energy scale E, such 

that m ≪ E < M, then we can integrate out the high-energy fluctua*ons (with 
frequencies ω > E) from the genera*ng func*onal.  

• This yields a different effec*ve Lagrangian, but one in which the operators      
are the same as before  

• The values of the Wilson coefficients and operators matrix elements need to 
be different 



SMEFT and Wilsonian Approach
• We are thus led to study the effec*ve Lagrangian  

• Here               are renormalized composite operators defined in 
dimensional regulariza*on and the MS scheme 

•              are the corresponding renormalized Wilson coefficients. 
These are nothing but the running couplings of the effec*ve 
theory!  

• The scale μ serves as the renormaliza*on scale for these 
quan**es, but at the same *me it is the factoriza*on scale 
which separates short-distance (high-energy) from long-
distance (low-energy) contribu*ons. 



For inclusive observables, sensiFve only to a single high-energy scale 
Q, we have
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power corrections

nonperturbative

partonic cross 
sections: 

perturbation theory

parton distribution 
functions (PDFs): 

nonperturbative

Collinear factorizaFon in proton-proton collisions
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� =
X

a,b

Z 1

0
dx1dx2�̂ab (Q, x1, x2, µf ) [fa (x1, µf ) fb (x2, µf ) +O (⇤QCD/Q)]



The “right” way to look at this formula is EFT
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low-energy matrix 
elements


nonperturbative

Wilson coefficient: 
matching at μ ≈ Q 

perturbation theory

power 
suppressed

operators
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The matching coefficient         is independent of 
external states and insensiFve to physics below the 
matching scale μ.  

Can use quark and gluon states to perform the 
matching. 

• Trivial matrix elements 

• Wilson coefficients are partonic cross secFon 

• Bare Wilson coefficients have divergencies. 
RenormalizaFon induces dependence on μ. 
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Cab(Q, x1, x2) = σ̂ab(Q, x1, x2)
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Asymptotical expansion
• Consider an integral 

• If                    ,  we have 

• Asympto*cal expansion: not analy*c in the expansion parameter 
because of presence of the logarithm. 

• Our goal: obtain expanded results before carrying out the integral. 

• Naive expansion breaks down:
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• Cut-off regularisa*on:

• Dimensional regularisa*on:
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AsymptoFcal expansion
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2. Soft effective theory in QED



• When we talk about electron–electron sca`ering, we really measure 
the inclusive process  

• It will be sufficient to assume that the total energy fulfills  

• We will now analyse the above process up to terms suppressed by 
powers of the expansion parameter  

• The effec*ve Lagrangian 

Soft effective theory in QED



• The leading Lagrangian  

• The leading-power EFT Lagrangian is therefore simply the one for free 
photons, since the effec*ve theory is obtained by integra*ng out the 
massive par*cles which leaves only the photons.  

• Integra*ng out the electrons does induce higher-power operators which 
describe photon-photon interac*ons. While we will not need them, it is 
an interes*ng exercise to analyse these higher-power terms; the first 
non-trivial ones arise at dimension 8  

• However,             is by itself not sufficient.  

• We do need to include the incoming and outgoing electrons in the 
effec*ve theory 

Effective Lagrangian



• Consider an outgoing electron with momentum   

• We can expand the internal fermion propagators in the small momentum  

• where we introduced the projec*on operator 

Soft Photons and eikonal approximation 

HW



• This form of the expanded sod emissions is well known and called the 
eikonal approxima*on 

• Can we obtain the expanded expression from an effec*ve Lagrangian?  

• View the expanded propagator as the propagator in the effec*ve theory  

• The emissions in the expanded diagram must be resul*ng from a 
Feynman rule  

• Write down a Lagrangian which produces them! 

Soft Photons in Electron–Electron Scattering 



• Consider 

•       is an auxiliary fermion field and obtained by mul*plying a regular fermion 
field with  

• The propagator can be obtained by inver*ng the quadra*c part of the 
Lagrangian  

• The propagator of the field only has a single pole in the energy corresponding 
to the fermion. The an*-fermion pole has been lost in the expansion.  

• In this situa*on an*-fermions cannot arise as external par*cles and their 
virtual effects can be absorbed into the Wilson coefficients of the effec*ve 
theory. 

Soft Photons in Electron–Electron Scattering 



• We constructed the effec*ve Lagrangian in such a way that it reproduces 
the expansion of the full-theory diagram 

• In HQET, the same Lagrangian can also be derived in a path-integral 
method.  

• The field hv cannot describe other fermion lines which have different 
veloci*es. To account for all four fermion lines, we need to include four 
auxiliary fermion fields 

• We need different fields to represent the electrons along the different 
direc*ons in the effec*ve theory, while all of these were described by a 
single field in QED 

Soft Photons in Electron–Electron Scattering 



• The interac*on terms  

• In principle we could also write down interac*on terms involving only two 
fields such as  

• Their Wilson coefficients are zero if the veloci*es are different, since the 
corresponding operator would describe a process in which a fermion 
spontaneously changes its velocity, which violates momentum 
conserva*on.  

• We could also write interac*ons terms with covariant deriva*ves or more 
fields, but these are higher-dimensional operators, whose contribu*ons are 
suppressed by powers of the electron mass 

Soft Photons in Electron–Electron Scattering 



• Compute the same quan*ty in QED and in the effec*ve theory and then 
adjust the Wilson coefficient to reproduce the QED result. E.g. the 
amputated on-shell Green’s func*on  

• To reproduce the QED result, the Wilson coefficient must be set equal to 
the on-shell QED Green’s func*on (which is the same as the sca`ering 
amplitude, up to the external spinors)  

• At the moment, we are only discussing tree-level matching but the same 
simple rela*on also holds at loop level in dimensional regulariza*on. The 
reason is that all loop correc*ons to the on-shell amplitude vanish in the 
effec*ve theory because they are given by scaleless integrals. 

Wilson coefficients

=



• Let us consider the x integra*on: 

• it develops an ultraviolet divergence for ε < 0 and an infrared divergence for ε > 0  

• In order to give a mathema*cal meaning to this integral we split the integra*on 
region into two parts using a regulator Λ  

• To dis*nguish the nature of the two divergences we can use two different 
regulators in the two different regions, by working out the integra*on for εIR < 0 
and for εUV > 0  

• The r.h.s. can be analy*cally con*nued for arbitrary values of εIR and εUV without 
any constraint, therefore we are free to iden*fy εIR and εUV. As a consequence of 
this, the integral vanishes 

Scaleless integrals



• The on-shell amplitudes suffer from infrared singulari*es  

• The Wilson coefficients have ultra-violet divergences  

• The residual IR divergences in the on-shell amplitudes are iden*cal to the 
UV divergences in the Wilson coefficient.  

• The equality comes about since the (vanishing) on-shell loop integrals in 
the low energy effec*ve theory suffer from both types of singulari*es. 
Schema*cally, the situa*on can be summarized by the following rela*on: 

Wilson coefficients



• Our effec*ve theory factorizes low- and high-energy physics: the hard 
sca`ering of the electrons is part of the Wilson coefficient, which depends 
on the high-energy scale me, while the low-energy diagrams in the 
effec*ve theory only depend on photon-energy scales  

• We can obtain a very elegant form of the low-energy matrix element by 
introducing the Wilson line  

• A point-like source which travels along the path  

• The energy of the outgoing electrons is much larger than the photon 
energies, they travel without recoiling when emijng photons. 

Soft Wilson line



• Expand the Wilson line in the coupling  

• We reproduce the eikonal structure  

• To ensure the convergence of the integral at s = −∞, the exponent vi · k 
must have a nega*ve imaginary part, which amounts to the +i0 
prescrip*on in the eikonal propagator. 

Soft Wilson line



• Perform a field redefini*on  

• The fermion Lagrangian then takes the form 

• Wilson line fulfills the equa*on  

• The Wilson lines cancel in the fermion Lagrangian. We remove the 
interac*ons with the sod photons using the decoupling transforma*on 

Decoupling transformation 

HW



• We end up with Wilson lines along the direc*ons of all par*cles in the 
sca`ering process. 

Effective Lagrangian



• Since the photons no longer interact with the fermions ader the 
decoupling, the relevant matrix element factorizes into a fermionic part 
*mes a photonic matrix element.  

• The amplitude factorizes into an amplitude without sod photons *mes a 
matrix element of Wilson lines.  

• Analogous statements hold for sod gluon emissions in QCD, except that 
the Wilson lines will be matrices in colour space and we have to keep track 
of the colour indices. 

QED Factorization



• The cross sec*on takes the form 

• Hard func*on  

• Sod func*on 

• Note that both the hard and sod func*ons depend on  

• We expanded the small sod momentum out of the momentum 
conserva*on δ func*on 

Factorization



• While the inclusive cross sec*on is finite, the hard and sod func*ons 
individually suffer from divergences.  

• The sod func*on suffers from UV divergences, which can be regularized 
using dimensional regulariza*on. These UV divergences can be absorbed 
into the Wilson coefficients of the effec*ve theory, which are encoded in 
the hard func*on.  

• Ader renormaliza*on the factoriza*on theorem takes the form  

• The μ dependence of the func*ons fulfills an RG equa*on  

• Since the cross sec*on is finite, the hard and sod anomalous dimensions 
must be equal and opposite 

Renormalization 



• When construc*ng EFT, we have expanded in the sod-photon momenta. 
This is fine for tree-level diagrams, but how about loops?  

• The Taylor expansion does not commute with the loop integra*ons  

• A general technique called the method of regions to expand loop integrals 
around various limits  

• For simplicity we consider a scalar integral 

Method of Region



• In the low-energy theory, we assumed  

•  Expanding the integrand  

• The expansion produces exactly the linear propagators encountered in our 
tree-level discussion  

• The expansion has produced ultraviolet divergences which are stronger 
than the one in the original integral 

Method of Region



• To correct the problems from naively expanding the integrand, we consider  

• the integrand has only support for 

• We can therefore expand the integrand around 

• Dropping the scaleless integrals, we get  

• So we obtain the full result by performing the expansion of the integrand in 
two regions 

Method of Region



• We can summarize the method of regions expansion as follows:  

• Consider all relevant scalings (regions) of the loop momenta.  
• Expand the loop integral in each region.  
• Integrate each term over the full phase space  
• Add up the contribu*ons.  

• This technique provides a general method to expand loop integrals around 
different limits  

• In some cases dim-reg alone is not sufficient. (e.g. TMD or small-x) 
• The method of region technique has a close connec*on to EFTs in that the 

low-energy regions correspond to degrees of freedom in the EFT and the 
expanded full theory diagrams are equivalent to effec*ve-theory diagrams.

Method of Region



3. Soft-collinear effective theory 



Introduction
• Sod-Collinear Effec*ve Theory (SCET) is the effec*ve field theory for 

processes with energe*c par*cles such as jet produc*on at high-energy 
colliders.  

• Typically such processes involve a scale hierarchy  

• In SCET, the physics associated with the hard scale Q2 is integrated out and 
absorbed into Wilson coefficients.  

• SCET involves two different types of fields, collinear and sod fields to 
describe the physics associated with the two low-energy scales pJ2 and ps2. 



Introduction
• The result of a SCET analysis of a jet cross sec*on is oden a factoriza*on 

theorem  

• Hard func*on;  Jet func*on;  Sod func*on 

• The theorem is obtained ader expanding in the ra*os of the scales and 
holds at leading power.  

• Each of the func*ons is only sensi*ve to a single scale.  

• The individual func*ons furthermore fulfill renormaliza*on group (RG) 
equa*ons. By solving RG equa*ons one can resum the large perturba*ve 
logarithms 



Introduction
• In certain cases, the sod or collinear scales can be so low that a 

perturba*ve expansion becomes unreliable  

• Factoriza*on theorems allow one to separate perturba*ve from non-
perturba*ve physics, (e.g. PDFs). It is crucial to be able to make 
predic*ons.  

• Tradi*onally, factoriza*on theorems were derived purely diagramma*cally  

• An advantage of SCET is that effec*ve theory provides an operator 
formula*on of the low-energy physics, which simplifies and systema*zes 
the analysis. This is especially important for complicated problems.  

• Via the RG equa*ons, SCET also provides a natural framework to perform 
resumma*ons. 



Introduction
• Compared to tradi*onal effec*ve field theories such as Fermi theory, SCET 

involves several complica*ons.  

• We cannot simply integrate out par*cles: quarks and gluons are s*ll 
present in the low-energy theory. Instead, one splits the fields into modes  

• An important and nontrivial element of the analysis is to iden*fy the 
relevant momentum modes for the problem at hand, which are the 
degrees of freedom of the effec*ve theory. This is done by analyzing full 
theory diagrams and provides the star*ng point of the effec*ve theory 
construc*on. 



Introduction
• A second complica*on is that the different momentum components of the 

fields scale differently.  

• E.g. Momentum components transverse to the jet direc*on are always 
small, but the components along the jet direc*ons are large.  

• To perform a deriva*ve expansion of the effec*ve Lagrangian, one 
therefore needs to split the momenta into different components.  

• Introducing reference vectors 



Introduction
• The fact that the momentum components of the collinear par*cles along 

the jet are unsuppressed leads to a final complica*on, namely that one 
can write down operators with an arbitrary number of such deriva*ves.  

• One way to take all these operators into account is to make operators 
nonlocal along the corresponding light-cone direc*ons 

TMD PDF



• The one-loop contribu*on to the Sudakov form factor  

• define L2 =−l2 −i0, P2 =−p2 −i0 and Q2 =−(l−p)2 −i0 and will analyse the form 
factor in the limit  

• This is the limit of large momentum transfer and small invariant mass, the 
same kinema*cs which is relevant for the jet process 

The Sudakov Problem 



• We want to find out which momentum modes are relevant in the Sudakov 
problem  

• Introduce light-like reference vectors along pμ and lμ, in analogy to the 
vectors vμ we introduced in our discussion of sod photons.  

• Any four vector can be decomposed in the form 

The Sudakov Problem 



• Define a small expansion parameter  

• The following scalings yield non-zero contribu*ons  

• For some other observables, the sod mode scales as (λ,λ,λ). The version of 
SCET for this situa*on is called SCET2 to dis*nguish it from the one 
relevant for the Sudakov form factor which is also called SCET1.  

• SCET2 involves so-called rapidity logarithms, which is related to the TMD 
physics  

• Let us now expand the integrand in the different regions to leading power. 

The Sudakov Problem 



• In the collinear region the integra*on momentum scales as kμ ∼ (λ2,1,λ)Q 
and k2 ∼ λ2Q2 , we have 

• Using the Schwinger parametriza*on,  

• We have 

E.g. Collinear region



• Having obtained the contribu*ons from all the different momentum 
regions, we can now add them up and verify whether we reproduce the 
full integral.  

• This involves some non-trivial cancella*ons since the individual integrals 
are all divergent, while the full integral is finite in d=4

All regions



• We now construct a Lagrangian whose Feynman rules directly yield the 
expanded diagrams obtained using method of regions expansion  

• Start from a toy model 

• Split the scalar field in the sum of a field collinear to the momentum p, a 
field collinear to the momentum l, and a sod field 

• It was not necessary to introduce in the sum above a field for the hard 
region, since these contribu*ons are absorbed into Wilson coefficients 

SCET in the φ3 theory



• the original Lagrangian can be wri`en as the sum of four terms 

• The interac*on of collinear and sod fields  

• It looks like there should be many addi*onal interac*on terms, but they 
are forbidden by momentum conserva*on 

Effective Lagrangian



Interaction forbidden by momentum conservation



• Consider the Fourier transform of the fields in a given interac*on term 

• the sum of the three momenta scales as  

• Consequently the components of x must scale as  

• the Taylor expansion of the sod field around the point x−  

• The leading power scalar SCET Lagrangian 

Multipole expansion 



• only the operators which involve collinear fields in different direc*ons get 
matching correc*ons.  

• in order to describe the Sudakov form factor, we introduce an external 
current coupling to two scalar fields  

• The most general form that the current operator can have in the effec*ve 
theory is 

• In addi*on to operators with mul*ple fields, one should also consider 
operators involving deriva*ves on the fields 

Matching



• Even at leading power in λ, one needs to allow for the inser*on of an 
arbitrary number of these deriva*ves in the current operators in the 
effec*ve theory.  

• The expansion of a collinear field along the direc*on associated with the 
large momentum component can be wri`en in terms of an infinite sum 
over the non-power suppressed deriva*ves  

• to include terms with arbitrarily high deriva*ves is equivalent to allowing 
non-locality of the collinear fields along the collinear direc*ons. 

Matching



• the Fourier transform of the coefficient C2(s,t) will be  

• The func*on C2 must be expanded in powers of the coupling constant g as 
follows  

• the matching equa*on at the order of g2

Matching



• match the Feynman diagrams involving a current operator J3 

• the first diagram on the l.h.s. and the first diagram on the r.h.s. give 
iden*cal contribu*ons  

• the second diagrams give us 

• The inverse deriva*ve of a field can be wri`en as an integral 

Matching







• It is a characteris*c feature of SCET that the operators are non-local along 
the direc*ons of large light-cone momentum.  

• In general, in order to write down the most general SCET operators, one 
smears the fields along the light cone. 

Matching



• All of the elements needed for the calcula*on of the one-loop correc*on to 
the current operator in the φ3 theory in the limit in which λ → 0 are available  

• The squares of the external momenta p and l are small but not exactly equal 
to zero  

• For order-by-order calcula*ons, the direct applica*on of the strategy of 
regions is more efficient. However, SCET allows one to study all-order 
proper*es of sca`ering amplitudes, such as factoriza*on theorems. 

Sudakov Form Factor in the φ3 theory



• In QCD the most general leading-power SCET current operator.  

• The sod interac*ons do not cancel, and the Sudakov form factor receives 
low-energy contribu*ons which describe a long-range interac*on between 
the fast moving ingoing and outgoing quarks. 

QCD Sudakov form factor within SCET



• The one-loop correc*on to the Wilson coefficient  

• We have added a label bare to the Wilson coefficient to indicate that we 
s*ll need to renormalize it, which is done by absorbing the divergences into 
a mul*plica*ve Z-factor 

• Doing so, leaves us with the renormalized Wilson coefficient  

• The whole procedure is the same as renormaliza*on in standard quantum 
field theory, up to the fact that we had to deal with 1/ε2 divergences, which 
arise because we have both sod and collinear divergences. 

Resummation by RG Evolution 



• Due to the presence of the double logarithms, the anomalous dimension 
governing the RG equa*on for the Wilson coefficient has a logarithmic 
piece 

• The complete form factor can then be wri`en as  

• The factoriza*on formula puts constraints on the anomalous dimensions 
governing the RG equa*on of the various factors 

Resummation by RG Evolution 



• Schema*c representa*on of the scale separa*on and of the calcula*onal 
procedure in renormaliza*on group improved perturba*on theory. 

Resummation by RG 



4. Applications in event shapes  















• The defini*on of thrust  

• A sum over all par*cles in the event and one sums the projec*ons of their 
momenta along the thrust axis nT which must be chosen to maximize the 
sum.  

• The thrust T ( τ = 1 − T ) thus measures the frac*on of momentum flowing 
along the thrust axis. 

Factorization for the event-shape variable thrust 

τ = 1−T ≈ 0.002 τ ≈ 0.35 



IRC safe
• Thrust is sod and collinear safe, i.e. its value does not change under 

exactly collinear splijngs or infinitely sod emissions.  

• This property makes it possible to compute it perturba*vely.  

• However, for small τ ≪ 1 we encounter large logarithms. 



IRC limit
• Choose the SCET reference vectors  

• We separate the sum over par*cles into individual sums in the sod and 
collinear sectors  

• We split the sod par*cles into led- and right-moving ones in order to be able 
write the sums in terms of light-cone components.  

• In the last line, we have introduced the total momentum in each category. 



IRC limit
• Due to the defini*on of the thrust axis, the total transverse momentum is 

zero in each hemisphere  

• Up to power correc*ons, we therefore write the invariant mass of all 
par*cles in the right hemisphere as  

• Up to power correc*ons, we obtain 



Factorization
• The cross sec*on  

• hadronic tensor  

• leptonic tensor  

• Averaging over the spins of the incoming leptons 



Factorization
• Introduce the dummy integra*on  

• Using the fact that momentum conserva*on fixes  

• The cross sec*on involves a δ-func*on which fixes the total transverse 
momentum of the collinear radia*on to be zero  

• Combining it with the momentum conserva*on δ-func*ons and expanding 
away small momentum components  

• The factor of 2 is the Jacobian for conver*ng to light-cone components.



Factorization
• To separate the individual contribu*ons to thrust, we introduce three 

more integra*ons  

• Plug in the factorized SCET current into the hadron tensor, we obtain the 
cross sec*on in the factorized form 



Factorization
• Collinear matrix elements are color diagonal, propor*onal to δabδde  

• Sod func*on  

• Jet func*on



Factorization
• Factoriza*on formula 

• Hard, jet and sod func*ons depend on μ. To resum large logarithms, one 
can again solve the RG equa*ons and evolve to a common reference scale  

• The sod and jet func*ons are convolved; This complica*on can be avoided 
by working in Laplace space since the transforma*on turns the 
convolu*on into a product 



5. Applications in the jet physics  
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An effecFve field theory for jet processes

EFT contains two modes: 

NB:  
1. no collinear singularity, only single logs 
2. method of region to verify at two-loop level

Hard parton described by collinear field

Perform decoupling transformaFon:

gauge invariant:

Evaluates the matrix element of the operator with one collinear parFcle

Becher, Neubert, Rothen, DYS ’15
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FactorizaFon

• The operator for the emission from an amplitude with m hard partons  

Mm

so` Wilson lines along the direcFons of the 
energeFc parFcles (color matrices)

hard scacering amplitude with m parFcles (vector 
in color space)

J
H
E
P
1
1
(
2
0
1
6
)
0
1
9

!n

α
δ = tan(α/2)

2Eout < βQ

Figure 1. Definition of the parameters δ and β of the dijet cross section. We use the thrust axis
!n as the jet axis.

Weinberg [42]. Using the thrust vector as the jet axis leads to a simpler form of the

phase-space constraints and enables us to use existing two-loop results for the cone-jet soft

function obtained in [32, 33].

2.1 Wide-angle jets

Let us first consider wide-angle jets with δ ∼ 1. In this case the effective theory contains

only two relevant momentum regions, whose components (n · p, n̄ · p, p⊥) scale as follows:

hard: ph ∼ Q (1, 1, 1) ,

soft: ps ∼ Qβ (1, 1, 1) .
(2.3)

The hard mode describes the energetic particles inside the jet. Since we are dealing with

wide jets, the energetic radiation inside the jet covers a large angular range. It is thus not

collinear to !n but has a homogenous scaling of all components. Given their large energy,

these particles can never go outside the jet, in contrast to the soft partons which can be

emitted inside or outside. Since there are no collinear singularities for large cone size, the

cross section is single-logarithmic, i.e. the leading logarithms have the form αn
s ln

nβ.

The factorization of an amplitude with m hard partons and an arbitrary number of soft

partons is of course well known. Each hard parton gets dressed with a Wilson line along

its direction. For an outgoing particle in the color representation Ti propagating along the

direction ni, the appropriate Wilson line is given by the path-ordered exponential

Si(ni) = P exp

(
igs

∫ ∞

0
ds ni ·Aa

s(sni)T
a
i

)
. (2.4)

The Wilson line Si is a matrix in color space, which acts on the color index of particle i.

The operator for the emission from an amplitude with m hard partons then takes the form

S1(n1)S2(n2) . . . Sm(nm) |Mm({p})〉 , (2.5)

where nµ
i = pµi /Ei, and we use the compact notation {p} ≡ {p1, p2, . . . , pm}. This equation

is analogous to the factorization for amplitudes with coft particles [38], but while the coft

case involves splitting amplitudes, we are now dealing with ordinary amplitudes |Mm({p})〉.
In writing (2.5) we use the color-space formalism of [43, 44], in which amplitudes are treated

as n-dimensional vectors in color space. Since they act on different particles, the different

generators trivially commute [T a
i ,T

b
j ] = 0 for i $= j. The same is therefore true for the

– 6 –

NB: No jet funcFon, since no collinear scales

To get the cross secFon, we need to square & integrate over phase space
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FactorizaFon for gap between jets in e+e-
(Becher, Neubert, Rothen, DYS, ’15 PRL, ’16 JHEP; Caron-Huot ’15 JHEP)

�(Q,Q⌦) ⇠
1X

m=2

mY

i=1

Z
d⌦(~ni)

4⇡
Trc [Hm({~n1, · · · ,~nm}, Q, µ)Sm({~n1, · · · ,~nm}, Q⌦, µ)]

<latexit sha1_base64="68E/jScgUmcQ/g+8SOiA8prTOCo="></latexit>

Integrate the angles for hard partons# of jet not fixed

Hard scale Soft scaleColor Trace

<latexit sha1_base64="IRax+eOHlWArGqt/AocWvBh+9aw="></latexit>

Tr[⇢O]
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RenormalizaFon
UV poles inside hard funcFon removed by renormalizing the hard funcFon as

1. obtain the bare hard funcFon from on-shell matching. The IR poles are in 
one-to-one correspondence to UV div, since the EFT loop-integrals are 
scaleless. 

2. We can understand the UV div. of hard funcFon from the structure of the IR 
div. in the real and virtual diagrams 

3. lower mulFplicity virtual diagrams are needed to cancel the div. of real 
emission diagrams

H
(1)
3 (Q,µ) = H

(1)
3 (Q, ✏)� Z(1)

23 (Q, ✏, µ)H(0)
2 (Q,µ)

<latexit sha1_base64="joM53MpPSOEImwaHMGqomqTNHC0="></latexit>
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the renormalizaFon matrix must have the form:

At each higher order in perturbaFon theory, more off-diagonal contribuFons fill in

By consistency, the matrix ZH must render the so` funcFons finite

Higher mulFplicity so` funcFons are needed to absorb the div. of matrix elements  
with fewer Wilson lines 

Test at two-loop level !!!



Leading Log ResummaFon = master equaFon under Markovian 
approximaFon

In the last step, we have introduced the evolution time t ⌘ t(µh, µs). For a given µh, there

is a one-to-one correspondence of the evolution time to the low scale µs. Obviously, for

µh = µs, we have t = 0. During the evolution, t grows and goes to infinity as µs hits the

Landau pole. For µh = MZ and two-loop running with a Landau pole at ⇤ = 0.230GeV,

the choice µs = 1GeV corresponds to t = 0.08. A plot connecting t and µs for di↵erent

values of µh can be found in Figure 1 of our previous paper [15].

In [15] we implemented the RG evolution factor U({n}, µs, µh) in the large-Nc limit

using the parton shower method proposed by Dasgupta and Salam in [27]. We don’t want

to repeat the entire discussion here, but we give the algorithm in Appendix B, since we

need to extend it to compute the soft functions, as discussed below. Let us also list the

one-loop anomalous dimension, since its form will be relevant in the discussion of the jet

mass below. It is given by [8]

�(1) =

0

BBBBBB@

V2 R2 0 0 . . .

0 V3 R3 0 . . .

0 0 V4 R4 . . .

0 0 0 V5 . . .

...
...

...
...

. . .

1

CCCCCCA
. (2.4)

The entries Rm and Vm are angular functions associated with the emission of a real or

virtual soft gluon and take the form

Vm = 2
X

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

Z
d⌦(nk)

4⇡
W

k

ij ,

Rm = �4
X

(ij)

Ti,L · Tj,R W
m+1

ij
⇥in(nm+1) , (2.5)

where the color matrices Ti,L act on the hard function from the left, i.e. on the amplitude,

while Ti,R acts on the conjugate amplitude. The sum runs over all unequal pairs (ij) of

the m hard partons. The anomalous dimension involves the dipole radiator

W
k

ij =
ni · nj

(ni · nk)(nj · nk)
, (2.6)

which is given by the product of the associated eikonal factors. In the virtual corrections,

one integrates over the direction nk of the emission. We note that individually Rm and

Vm su↵er from collinear divergences, which cancel in the cross section. In the Monte Carlo

implementation, one works with a collinear cuto↵ to regularize the divergences.

As long as we choose the µh and µs properly, the hard and soft functions will be

free of large logarithms and the large logarithmic terms are resummed in the evolution

factor. Because they are free of large logarithms, the higher-multiplicity hard functions

are suppressed by ↵s as Hl ⇠ ↵
l�2
s H2. At LL level, we thus only need to include the hard

function H2 and the soft function is given as the unit matrix in the color space Sm ⇠ 1.

At LL accuracy, the RG-improved result (2.1) simplifies to

�
LL(Q,Q0) =

1X

m=2

⌦
H2({n1, n2}, Q, µh)⌦U2m({n}, µs, µh) ⌦̂1

↵
. (2.7)

– 5 –

RG equa*on:

RG = Parton Shower
• Ingredients for LL 

• RG 

• equivalent to parton shower equation

!13

divergence from the lower end of the energy integration, the total result for the divergent

part becomes

αs

4π
z
(1)
m,m({n}, Q, δ, ε, µ) +

αs

4π

∫
dΩ(nm+1)

4π
z
(1)
m,m+1({n, nm+1}, Q, δ, ε, µ)

= − αs

2πε

∑

(ij)

Ti · Tj

∫
dΩ(nk)

4π
W k

ij Θ
nn̄
out(nk) . (5.8)

Since the color factors are contracted with the trivial tree-level soft function, we do not need

to distinguish the left and right color generators. Note that inside the cone the real and

virtual corrections have cancelled, so that the net result only gets contributions from out-

of-cone radiation and precisely cancels against the divergence of the soft function. We see

that the renormalization indeed works at the one-loop level. We have repeated the same

exercise also for the narrow-jet case, see Appendix C. In this case, we can give explicit

expressions for the angular integrals. Again, we find that the divergences cancel as they

should.

5.2 Renormalization-group evolution at leading logarithmic level

We now discuss the anomalous-dimension matrix ΓH defined in (2.40), which governs the

RG evolution of the hard (2.38) and soft functions (2.39), and verify the agreement between

the perturbative expansion of the BMS equation and our RG-based resummation method.

In order to resum the leading logarithmic terms, the anomalous-dimension matrix is needed

up to O(αs). It can be expressed as

ΓH ({n}, Q, δ, µ) =
αs

4π
Γ(1) ({n}, Q, δ, µ) +O(α2

s) , (5.9)

where

Γ(1) =






V2 R2 0 0 . . .

0 V3 R3 0 . . .

0 0 V4 R4 . . .

0 0 0 V5 . . .
...

...
...

...
. . .






. (5.10)

It follows from the discussion in the previous section that, in the soft approximation, the

corresponding matrix elements are given by

Vm = Γ(1)
m,m = −2

∑

(ij)

(Ti,L · Tj,L + Ti,R · Tj,R)

∫
dΩ(nk)

4π
W k

ij

[
Θnn̄

in (k) +Θnn̄
out(k)

]
,

Rm = Γ
(1)
m,m+1 = 4

∑

(ij)

Ti,L · Tj,RWm+1
ij Θnn̄

in (nm+1) . (5.11)

The anomalous dimensions Vm and Rm depend on the directions {n} = {n1, . . . , nm} and

colors of the hard partons, and the indices i, j in the sum run from 1 to m. The quantities

Rm also depend on the additional direction nm+1 of the real emission. The integration over

this direction is performed after the multiplication with the soft function. At first sight,

– 40 –

d

dt
Hn(t) = Hn(t)Vn +Hn�1(t)Rn�1(t) (11)

H2(th = 0) = 1, Hn>2(th = 0) = 1 (12)

Hn(t) =

Z
t

0
dt

0Hn�1(t
0)Rn�1(t

0)e�(t0�t)Vn (13)

�LL =
1X

n=2

Hn(ts)⌦ Sn(ts) (14)

d

d lnµ
Hm({n}, Q, �, µ) = �

mX

l=2

Hl({n}, Q, µ)�H

lm
({n}, Q, µ) (15)

d

d lnµ
Hm(Q,µ) = �

mX

l=2

Hl(Q,µ)�H

lm
(Q,µ) (16)

Hm(t) = Hm(t1)e
(t�t1)Vn +

Z
t

t1

dt
0
Hm�1(t

0)Rm�1e
(t�t

0)Vn (17)
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Z
t

0
dt
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�LL =
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d
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Hm({n}, Q, �, µ) = �

mX

l=2

Hl({n}, Q, µ)�H
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({n}, Q, µ) (15)

d

d lnµ
Hm(Q,µ) = �

mX

l=2

Hl(Q,µ)�H

lm
(Q,µ) (16)

H2(µ = Q) = �0 (17)

Hm(µ = Q) = 0 for m > 2 (18)

Sm(µ = �Q) = 1 (19)

Hm(t) = Hm(t1)e
(t�t1)Vn +

Z
t

t1

dt
0
Hm�1(t

0)Rm�1e
(t�t

0)Vn (20)

2
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dt
Hn(t) = Hn(t)Vn +Hn�1(t)Rn�1(t) (11)

H2(th = 0) = 1, Hn>2(th = 0) = 1 (12)

Hn(t) =

Z
t

0
dt

0Hn�1(t
0)Rn�1(t

0)e�(t0�t)Vn (13)

�LL =
1X

n=2

Hn(ts)⌦ Sn(ts) (14)

d

d lnµ
Hm({n}, Q, �, µ) = �

mX

l=2

Hl({n}, Q, µ)�H

lm
({n}, Q, µ) (15)

d

d lnµ
Hm(Q,µ) = �

mX

l=2

Hl(Q,µ)�H
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(Q,µ) (16)

H2(µ = Q) = �0 (17)

Hm(µ = Q) = 0 for m > 2 (18)

Sm(µ = �Q) = 1 (19)

d

dt
Hm(t) = Hm(t)Vm +Hm�1(t)Rm�1 . (20)

Hm(t) = Hm(t1)e
(t�t1)Vn +

Z
t

t1

dt
0
Hm�1(t

0)Rm�1e
(t�t

0)Vn (21)

2

Ti · Tj ! �Nc

2
�j,i±1 . (26)

S0(n̄)S1(n1) . . . Sm(nm) |Mm({p})i , (27)

S0(n̄)S1(n) . . . Sm+1(nm+1) , (28)

hard: ph ⇠ !R (1, 1, 1)

soft: ps ⇠ !R (,,)

left-collinear: pc ⇠ !R (1,,
p
)

(29)

|MS

m
({p})i = h{p}|S(n)S†(n̄)|0i . = h (30)

hH(0)
2 ⌦ U2m ⌦̂S

(0)
m

i = hH(0)
2 +

Z
d⌦1

4⇡
(31)

S
(0)
m

= 1 (32)

�LL(Q,Q0) =
1X

m=2

hH(0)
2 ⌦ U2m ⌦̂S

(0)
m

i (33)

=
⌦
H

(0)
2 (t) +

Z
d⌦3

4⇡
H

LL
3 +

Z
d⌦3

4⇡

Z
d⌦4

4⇡
H

LL
4 + . . .

↵
, (34)

t ⌘ t(µh, µs) =

Z
↵s(µh)

↵s(µs)

d↵

�(↵)

↵

4⇡
(35)

�(Q,Q0) =
1X

m=2

⌦
Hm({n}, Q, µ)⌦ Sm({n}, Q0, µ)

↵
, (36)

�(Q,Q0) = H2(Q,µ)S2(Q0, µ)Snon�global(Q/Q0, µ) (37)

d

d lnµ
S2(Q0, µ) = �s S2(Q0, µ) (38)

shower evolution time

Q0
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In the last step, we have introduced the evolution time t ⌘ t(µh, µs). For a given µh, there

is a one-to-one correspondence of the evolution time to the low scale µs. Obviously, for

µh = µs, we have t = 0. During the evolution, t grows and goes to infinity as µs hits the

Landau pole. For µh = MZ and two-loop running with a Landau pole at ⇤ = 0.230GeV,

the choice µs = 1GeV corresponds to t = 0.08. A plot connecting t and µs for di↵erent

values of µh can be found in Figure 1 of our previous paper [15].

In [15] we implemented the RG evolution factor U({n}, µs, µh) in the large-Nc limit

using the parton shower method proposed by Dasgupta and Salam in [27]. We don’t want

to repeat the entire discussion here, but we give the algorithm in Appendix B, since we

need to extend it to compute the soft functions, as discussed below. Let us also list the

one-loop anomalous dimension, since its form will be relevant in the discussion of the jet

mass below. It is given by [8]
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The entries Rm and Vm are angular functions associated with the emission of a real or

virtual soft gluon and take the form

Vm = 2
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⇥in(nm+1) , (2.5)

where the color matrices Ti,L act on the hard function from the left, i.e. on the amplitude,

while Ti,R acts on the conjugate amplitude. The sum runs over all unequal pairs (ij) of

the m hard partons. The anomalous dimension involves the dipole radiator

W
k

ij =
ni · nj

(ni · nk)(nj · nk)
, (2.6)

which is given by the product of the associated eikonal factors. In the virtual corrections,

one integrates over the direction nk of the emission. We note that individually Rm and

Vm su↵er from collinear divergences, which cancel in the cross section. In the Monte Carlo

implementation, one works with a collinear cuto↵ to regularize the divergences.

As long as we choose the µh and µs properly, the hard and soft functions will be

free of large logarithms and the large logarithmic terms are resummed in the evolution

factor. Because they are free of large logarithms, the higher-multiplicity hard functions

are suppressed by ↵s as Hl ⇠ ↵
l�2
s H2. At LL level, we thus only need to include the hard

function H2 and the soft function is given as the unit matrix in the color space Sm ⇠ 1.

At LL accuracy, the RG-improved result (2.1) simplifies to

�
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dipole:

VmHm ⇠

X

a

T a
i · T a

j |Mmi hMm| + |Mmi hMm|

X

a

T a
i · T a

jvirtual:

RmHm ⇠ T a
i |Mmi hMm| T a

jreal:

d

dt
Hn(t) = Hn(t)Vn +Hn�1(t)Rn�1(t) (11)

H2(th = 0) = 1, Hn>2(th = 0) = 1 (12)

Hn(t) =

Z
t

0
dt

0Hn�1(t
0)Rn�1(t

0)e�(t0�t)Vn (13)

�LL =
1X

n=2

Hn(ts)⌦ Sn(ts) (14)

d

d lnµ
Hm({n}, Q, �, µ) = �

mX

l=2

Hl({n}, Q, µ)�H

lm
({n}, Q, µ) (15)

d

d lnµ
Hm(Q,µ) = �

mX

l=2

Hl(Q,µ)�H

lm
(Q,µ) (16)

H2(µ = Q) = �0 (17)

Hm(µ = Q) = 0 for m > 2 (18)

Sm(µ = �Q) = 1 (19)

t =

Z
↵(Q)

↵(µ)

d↵

�(↵)

↵

4⇡
(20)

d

dt
Hm(t) = Hm(t)Vm +Hm�1(t)Rm�1 . (21)

Hm(t) = Hm(t1)e
(t�t1)Vn +

Z
t

t1

dt
0
Hm�1(t

0)Rm�1e
(t�t

0)Vn (22)
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the MadGraph5 aMC@NLO event generator [26]. This provides an automated frame-

work to perform the LL resummation for single-logarithmic observables. However, collider

observables are typically double logarithmic. The LL in the jet mass distribution, for ex-

ample, are ↵n
s ln

2n
⇢. Even for non-global observables, these double logarithmic terms have

a simple structure, and they can be factored out and treated separately. In the parton

shower framework, we therefore subtract these “global” contributions and exponentiate

them manually, as Dasgupta and Salam did in their original paper on NGLs [27]. Given

their di↵erent nature, it is interesting to analyze both the interjet energy flow and the jet

mass as examples and we will present LL0 and NLL0 improved results for single logarithmic

and double logarithmic observables, separately. A second motivation to also analyze the

jet mass, is that there are LEP measurements to which we can compare to, in contrast

to the interjet energy flow. Unfortunately, the typical jet mass at LEP jet is quite low

M . 10GeV, which translates to a scale of the soft radiation of Q0 ⇠ M
2
/Q . 1GeV so

that non-perturbative e↵ects are very important in the peak region of the distribution.

Our paper is organized as follows. In the next section, we will discuss LL0 resummation

for interjet energy flow and show how one implements the one-loop corrections to the hard

and soft functions. We then move to the jet mass distribution in Section 3, focussing on the

di↵erences to the single-logarithmic case. We will in particular show how to subtract global

logarithms in the parton shower and in the soft function. After presenting numerical results

in Section 4 and comparing to LEP data and PYTHIA results, we conclude in Section 5.

2 Interjet energy flow at LL0 accuracy

The perturbative expansion of the interjet energy flow in (1.1) su↵ers from large logarithms

of the ratio of the hard scale Q and the soft scale Q0. To resum these, one solves the RG

equation of the hard function and evolves it from its characteristic scale µh ⇠ Q down to

a soft scale µs ⇠ Q0. This yields the RG-improved expression [8]

�(Q,Q0) =
1X

l=2

⌦
Hl({n0}, Q, µh)⌦

1X

m�l

Ulm({n}, µs, µh) ⌦̂Sm({n}, Q0, µs)
↵
, (2.1)

where the evolution factor is defined as a path-ordered exponential of the anomalous di-

mension

U({n}, µs, µh) = P exp

Z
µh

µs

dµ

µ
�H({n}, µ)

�
. (2.2)

The RG-evolution generates additional partons and maps the l-parton configuration along

the directions {n0} = {n1, . . . , nl} into an m-parton final state along the directions {n} =

{n1, . . . , nl, nl+1, . . . , nm}. The symbol ⌦̂ in (2.1) indicates the integral over the directions

of the additional m� l partons generated in the evolution.

At the leading logarithmic level, we only need the one-loop anomalous dimension and

can rewrite the exponent as

Z
µh

µs

dµ

µ
�H =

Z
↵s(µh)

↵s(µs)

d↵

�(↵)

↵

4⇡
�(1) =

1

2�0
ln

↵s(µs)

↵s(µh)
�(1) ⌘ t�(1)

. (2.3)
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Lindblad equa*on:



Super-leading logs = Lindblad eqn in color space

One-loop anomalous dimension:

⇧ij = 1
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In the last step, we have introduced the evolution time t ⌘ t(µh, µs). For a given µh, there

is a one-to-one correspondence of the evolution time to the low scale µs. Obviously, for

µh = µs, we have t = 0. During the evolution, t grows and goes to infinity as µs hits the

Landau pole. For µh = MZ and two-loop running with a Landau pole at ⇤ = 0.230GeV,

the choice µs = 1GeV corresponds to t = 0.08. A plot connecting t and µs for di↵erent

values of µh can be found in Figure 1 of our previous paper [15].

In [15] we implemented the RG evolution factor U({n}, µs, µh) in the large-Nc limit

using the parton shower method proposed by Dasgupta and Salam in [27]. We don’t want

to repeat the entire discussion here, but we give the algorithm in Appendix B, since we

need to extend it to compute the soft functions, as discussed below. Let us also list the

one-loop anomalous dimension, since its form will be relevant in the discussion of the jet

mass below. It is given by [8]
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The entries Rm and Vm are angular functions associated with the emission of a real or
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the m hard partons. The anomalous dimension involves the dipole radiator
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which is given by the product of the associated eikonal factors. In the virtual corrections,

one integrates over the direction nk of the emission. We note that individually Rm and

Vm su↵er from collinear divergences, which cancel in the cross section. In the Monte Carlo

implementation, one works with a collinear cuto↵ to regularize the divergences.

As long as we choose the µh and µs properly, the hard and soft functions will be

free of large logarithms and the large logarithmic terms are resummed in the evolution

factor. Because they are free of large logarithms, the higher-multiplicity hard functions

are suppressed by ↵s as Hl ⇠ ↵
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s H2. At LL level, we thus only need to include the hard

function H2 and the soft function is given as the unit matrix in the color space Sm ⇠ 1.

At LL accuracy, the RG-improved result (2.1) simplifies to
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Individually Rm and Vm contain singulariFes when emiced gluon k gets collinear to 
parsons i or j.  

• Expect cancellaFon in inclusive so` observables such as gaps between jets at 
lepton colliders 

• Collinear factorizaFon violaFon: Glauber phases spoil this cancellaFon : 
so`+collinear double logs! “Super-leading logs”
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ExtracFng the collinear singulariFes: 

The one-loop anomalous dimension is

with
<latexit sha1_base64="K6MvVDWEMROCFNnQAwbtPZRcLB0="></latexit>

V m = 2
X

(ij)

(T i,L · T j,L + T i,R · T j,R)

Z
d⌦ (nk)

4⇡
W̄ k

ij

V c
i = 4Ci1

V G = �8i⇡ (T 1,L · T 2,L � T 1,R · T 2,R)
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Rm = �4
X

(ij)

T i,L � T j,RW̄
m+1
ij ⇥hard (nm+1)

Rc
i = �4T i,L � T i,R� (nk � ni)
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Hard funcFon for octet exchange: 

AcFon of the anomalous dimension

Compute
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All-order evoluFon of leading Super-Leading Logs

Sudakov suppression of the superleading 
logarithms is weaker than the one present 
for global observables 
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Superleading logs

Red: Four loop      Blue: Five loop      Black: all order

(Becher, Neubert, DYS ’21 PRL + S*llger’23 JHEP)

All-order structure: Kampe de Feriet funcFon (a two-variable generalizaFon of 
the generalized hypergeometric series,  the general sexFc equaFon can be 
solved in terms of it)


