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Effective Field Theories

B2SEan

Wil

*
® The intuitive idea behind effective

theories is that you can calculate
without knowing the exact theory.

® |n some sense, the ideas of EFT are Les Houches 2017
‘obvious’. However, implementing them
in @ mathematically consistent way in an
interacting QFT is not so obvious.

Session CVII

® An EFT is a quantum theory in its own
right, and like any other QFT, it comes
with a regularization and
renormalization scheme necessary to
obtain finite matrix elements.




Histoncof note

0fd - {ashuoned renormalizadion paradiam
(£ 19%0-4330) g

Good theories axe renomalizable
Non- venormalizable theories are BAD  ( unpredictove -.. )

Modern venormalization /EFT  paradigm (2 4390 -4330)

Most theories are probobly effechive theones and

non- renormalizable .

Super- enormalizadls nterackions ave BAD and should be
{orbidden by symmetres.

“Effective Field Theory: Concepts and Applications” Beneke
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2. Soft effective theory in QED
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1. SMEFT



SMEFT

e |f new, heavy particles exist beyond the Standard Model, with masses M
much larger than the electroweak symmetry breaking scale v, we can build
their low-energy theory, called SMEFT, by enhancing the SM Lagrangian with
high-dimensional local operators.

e The new operators C’)f”) with mass dimension D =4 + n. There is an infinite
set of such operators, but importantly there exists only a finite set of
operators for each dimension D

e The contributions of these operators to any given observable are suppressed
by powers of (v/M)P-4 relative to the contributions of the operators of the
SM.



SMEFT and Wilsonian Approach

® |n constructing the effective Lagrangian we split up the contributions from
virtual particles into short- and long-distance modes:

/wdw_/wdw+fde
0 w— M @ 0 (l))

— : : Energy — : :
sensitive to UV physics and is sensitive to IR physics and is
absorbed into the Wilson G (M) absorbed into the matrix
coefficients M elements

(O (M)



Wilsonian Approach

e |f we are performing a measurement at a characteristic energy scale E, such
that m « E < M, then we can integrate out the high-energy fluctuations (with

frequencies w > E) from the generating functional.

e This yields a different effective Lagrangian, but one in which the operators

are the same as before Enengy
+ M
0 da) o~ dCl) E dC() oy
— = ——_'+' )
(O (E))

e The values of the Wilson coefficients and operators matrix elements need to
be different

o0

LEpT = ZZ C’) (M) = ZZ C’) (E).

n=0 1 n=0 1




SMEFT and Wilsonian Approach

We are thus led to study the effective Lagrangian

(n)
LEFT = Z Z ('u) O (1),

n=0 1

Here 0 (u) are renormalized composite operators defined in
dimensional regularization and the MS scheme

Cc" (u) are the corresponding renormalized Wilson coefficients.

These are nothing but the running couplings of the effective
theory!

The scale u serves as the renormalization scale for these
guantities, but at the same time it is the factorization scale
which separates short-distance (high-energy) from long-
distance (low-energy) contributions.




Collinear factorization in proton-proton collisions

For inclusive observables, sensitive only to a single high-energy scale
Q, we have

1
o= Z/O dr1drabap (Q, 1, T2, pif) [fa (@1, pf) fo (22, ) + O (Aqen/Q)]

a,b

partonic cross parton distribution
sections: functions (PDFs):
perturbation theory nonperturbative

power corrections
nonperturbative
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The “right” way to look at this formula is EFT

7 =Y | dwrduaCun (@or.va, ) (P (1) O ()] P (1)) (P (9205 (22)] P (p2)) + O (Aen/Q)
a,b 0

Wilson coefficient:
matching at u = QO

-
perturbation theory O
D)
[e)
>
P
&'5 low-energy matrix power
elements suppressed

nonperturbative operators
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The matching coefficient C,; is independent of

external states and insensitive to physics below the
matching scale u.

Can use quark and gluon states to perform the
matching.

e Trivial matrix elements

(g2 (2'P)| 04 (2)|qar (2" p)) = daar 6(z" — )

e Wilson coefficients are partonic cross section

Cab(@a L1, ZUQ) — OA_a,b(Qa L1, SEQ)

e Bare Wilson coefficients have divergencies.
Renormalization induces dependence on L.
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Asymptotical expansion

Consider an integral

M
| M
umwﬂzf do T
0

xr+m m

m m
M I(m, M) = —1In 2 0(—)
If m < , we have I(m, M) n i s A

Asymptotical expansion: not analytic in the expansion parameter
because of presence of the logarithm.

Our goal: obtain expanded results before carrying out the integral.

M o'e
Naive expansion breaks down: / dgjl / dx !
0 L 0 T+ m



Asymptotical expansion

« Cut-off regularisation: / / /

Ii(m, M) = /0 dwaz—km IHE+O(A)

M M
1 1 M
I>(m, M) :/ dx N/ dr— =1In —
A x—l—m A i A

« Dimensional regularisation: /d:z: S /d:z::z:e

M o0
1 1 1
]1(m,M):/ dx x° N/ dx x° =—— —lIlnm
0 0

T+ m r+ m €

M 1 M 11
Ir(m, M) = dx x° ~ drz‘— =—+1InM
0 T +m 0 r €
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2. Soft effective theory in QED
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Soft effective theory in QED

® \When we talk about electron—electron scattering, we really measure
the inclusive process

e (p1)t+e (p2) > e (p3)+e (ps)+ Xs(gs)

¢ |t will be sufficient to assume that the total energy fulfills E; < m,

® \We will now analyse the above process up to terms suppressed by
powers of the expansion parameter A = E,, /m,
1 1
® The effective Lagrangian Llz= L)+ —L{ +—L{

e e



Effective Lagrangian

The leading Lagrangian

1
,CZ — —Z 'LLUF'L“)
The leading-power EFT Lagrangian is therefore simply the one for free
photons, since the effective theory is obtained by integrating out the

massive particles which leaves only the photons.

Integrating out the electrons does induce higher-power operators which
describe photon-photon interactions. While we will not need them, it is
an interesting exercise to analyse these higher-power terms; the first
non-trivial ones arise at dimension 8

However, Esz is by itself not sufficient.

We do need to include the incoming and outgoing electrons in the
effective theory



Soft Photons and eikonal approximation

e Consider an outgoing electron with momentum p"* = m,o"
Q p+d p+ta p

&' (k) e(R)

Notethat g =k+ kK and g=F

® \We can expand the internal fermion propagators in the small momentum

P+4+m, _ P+ me _‘¢—|—1 )
P+q@2—m2+i0 2p-q+i0 2 v-g+i0

Py——,
v-q+10

Ar(p+q) =1

. 4 Y 1
® where we introduced the projection operator P, = ;¢

PZ=P,, Py¢Py=Pye-v. HW



Soft Photons in Electron—Electron Scattering

® This form of the expanded soft emissions is well known and called the
eikonal approximation

) L
(—zee - v)....

/

i(p) Py —— (—ice - 0) P,
-4 0-4q

® Can we obtain the expanded expression from an effective Lagrangian?

® \/iew the expanded propagator as the propagator in the effective theory

® The emissions in the expanded diagram must be resulting from a
Feynman rule —zeoH

® \Write down a Lagrangian which produces them!



Soft Photons in Electron—Electron Scattering

e Consider
otr = ho(x) i - Dby () D, = 0, + ied,,

e /13 is an auxiliary fermion field and obtained by multiplying a regular fermion
field with P,

th‘v:¢h‘v:hv

e The propagator can be obtained by inverting the quadratic part of the
Lagrangian

e The propagator of the field only has a single pole in the energy corresponding
to the fermion. The anti-fermion pole has been lost in the expansion.

® |n this situation anti-fermions cannot arise as external particles and their
virtual effects can be absorbed into the Wilson coefficients of the effective
theory.



Soft Photons in Electron—Electron Scattering

® \We constructed the effective Lagrangian in such a way that it reproduces
the expansion of the full-theory diagram

® |[n HQET, the same Lagrangian can also be derived in a path-integral
method.

® The field h, cannot describe other fermion lines which have different
velocities. To account for all four fermion lines, we need to include four
auxiliary fermion fields

4
_ | 1
Lefr = Zhvi (x) 10; - thi (x) — ZF,u,vFlw + ALjnt o _P':'L/me

;=
1=1

¢ \We need different fields to represent the electrons along the different
directions in the effective theory, while all of these were described by a
single field in QED



Soft Photons in Electron—Electron Scattering

® The interaction terms

ALini =Y _ Ci(v1,02,03,04,me) by ()i, (%) Py () Ty (%)
1

® |n principle we could also write down interaction terms involving only two
fields such as
AL, = Cop(v1,v3) h2 (P, (x),
e Their Wilson coefficients are zero if the velocities are different, since the
corresponding operator would describe a process in which a fermion

spontaneously changes its velocity, which violates momentum
conservation.

® \We could also write interactions terms with covariant derivatives or more
fields, but these are higher-dimensional operators, whose contributions are
suppressed by powers of the electron mass



Wilson coefficients

® Compute the same quantity in QED and in the effective theory and then
adjust the Wilson coefficient to reproduce the QED result. E.g. the
amputated on-shell Green’s function

> > >
§ §< = Caﬁyé('vl, 02, 03, Uy, me)
> > >

® To reproduce the QED result, the Wilson coefficient must be set equal to
the on-shell QED Green’s function (which is the same as the scattering
amplitude, up to the external spinors)

® At the moment, we are only discussing tree-level matching but the same
simple relation also holds at loop level in dimensional regularization. The
reason is that all loop corrections to the on-shell amplitude vanish in the
effective theory because they are given by scaleless integrals.



Scaleless integrals

1
xl-l—e

o0
Let us consider the x integration: / dx
0
it develops an ultraviolet divergence for € < 0 and an infrared divergence for € >0

In order to give a mathematical meaning to this integral we split the integration
region into two parts using a regulator A

00 1 A 1 00 1
/0 dx—:vHs:/O da:—xHE—i—/A da:st

To distinguish the nature of the two divergences we can use two different
regulators in the two different regions, by working out the integration for g <0
and foreyy >0

dy—— = — + |
xlte €IR Euv

/oo 1 AR A—¢uv
0

The r.h.s. can be analytically continued for arbitrary values of €r and gyy without
any constraint, therefore we are free to identify €r and eyv. As a consequence of
this, the integral vanishes



Wilson coefficients

The on-shell amplitudes suffer from infrared singularities
The Wilson coefficients have ultra-violet divergences

The residual IR divergences in the on-shell amplitudes are identical to the
UV divergences in the Wilson coefficient.

The equality comes about since the (vanishing) on-shell loop integrals in
the low energy effective theory suffer from both types of singularities.
Schematically, the situation can be summarized by the following relation:

1 1 1 1
= — = 4+ _
EIR EUV EIR €UV
N~ N~ ~ ~ 7
on-shell amplitude Wilson coeff. soft and coll. loop integrals




Soft Wilson line

Our effective theory factorizes low- and high-energy physics: the hard
scattering of the electrons is part of the Wilson coefficient, which depends
on the high-energy scale me, while the low-energy diagrams in the
effective theory only depend on photon-energy scales

We can obtain a very elegant form of the low-energy matrix element by
introducing the Wilson line

0
S;(x) = exp [—ie/ dsv; -A(x+s'v,~)] :

—00

A point-like source which travels along the path y#(s) = x* + s

The energy of the outgoing electrons is much larger than the photon
energies, they travel without recoiling when emitting photons.



Soft Wilson line

® Expand the Wilson line in the coupling

0
(¥ (R)|S:(0)[0) = —ie/ dsv; (y (k)| Ay (s25)|0)

—0O0
0 | . e(k

= —ie/ dsv; - e(B)eVi* = ¢ vi - & ), .
o0 —v;-k+10

® \We reproduce the eikonal structure

® To ensure the convergence of the integral at s = —oo, the exponent v; - k

must have a negative imaginary part, which amounts to the +i0
prescription in the eikonal propagator.



Decoupling transformation

Perform a field redefinition

ho, (%) = Si(x) KD (%),
The fermion Lagrangian then takes the form

o (%) 0; - D hoy () = 19 () ST(x) 35 - D Si (%) B (x)
= 79 () ST(x) S;(x) iv; - § hD ()
=hS) (x) ;- 9 hi) (x).

Wilson line fulfills the equation v;-DS;(x) =0 HW

The Wilson lines cancel in the fermion Lagrangian. We remove the
interactions with the soft photons using the decoupling transformation



Effective Lagrangian

® \We end up with Wilson lines along the directions of all particles in the
scattering process.

ALin =y Ci(v1,22,3,04) KO S{T:81 hD 1O 15, hY
1

P1 P3

s
‘ >
weal

%) D4 y2) Py Vs Uy,

22 D3




QED Factorization

® Since the photons no longer interact with the fermions after the
decoupling, the relevant matrix element factorizes into a fermionic part
times a photonic matrix element.

M=) " Ciii(v3) T;u(vy) it(vs) Tiu(v2) (X,(#)1S3 81 8] 5210)

= Mo (X(k)|S1 8, ST S,10),

® The amplitude factorizes into an amplitude without soft photons times a
matrix element of Wilson lines.

® Analogous statements hold for soft gluon emissions in QCD, except that
the Wilson lines will be matrices in colour space and we have to keep track
of the colour indices.



Factorization

The cross section takes the form

o = H(mea {‘Z_)}) S(Es: {2}) 5

Hard function

1 d’p3 d>p4

H ) — = -
(me {2}) 2E12E2|‘Ul . ‘02| (27.[)32E3 (27-[)32E4

(Meel*@m)*8@ (o1 +p2 —p3 — p4) 5
Soft function
- - 2
S teh) D] (X131 81 315210 6025~ Bx).
X

Note that both the hard and soft functions depend on {2} = {v1,...,v4]}

We expanded the small soft momentum out of the momentum
conservation 6 function

SV (1 +p2—p3—pa—k) =8P (1 +p2—p3—pa) + O,



Renormalization

While the inclusive cross section is finite, the hard and soft functions
individually suffer from divergences.

The soft function suffers from UV divergences, which can be regularized
using dimensional regularization. These UV divergences can be absorbed
into the Wilson coefficients of the effective theory, which are encoded in
the hard function.

After renormalization the factorization theorem takes the form
o = H(me: {2}3 ,LL) S(ES> {2}3 :LL) ’
The u dependence of the functions fulfills an RG equation

Since the cross section is finite, the hard and soft anomalous dimensions
must be equal and opposite



When constructing EFT, we have expanded in the soft-photon momenta.

Method of Region

This is fine for tree-level diagrams, but how about loops?

The Taylor expansion does not commute with the loop integrations

A general technique called the method of regions to expand loop integrals

around various limits

For simplicity we consider a scalar integral

m,v — k

G ;

k+q

F=/ddk

1 1

(k+q)? (mv— k)2 —m2”’



Method of Region

In the low-energy theory, we assumed &* ~ g"* < m,.

Expanding the integrand

F —/ddk : : 14 |
IOW_ (k+q)2 —Zmefu.k | Zmev.k I e oo b)

The expansion produces exactly the linear propagators encountered in our
tree-level discussion

The expansion has produced ultraviolet divergences which are stronger
than the one in the original integral



Method of Region

To correct the problems from naively expanding the integrand, we consider

FhighEF_Flow
1 1 1 k?
— | 4% — 1
_/ (k+q)2|:(mev—k)2—m§ —Zmev-k{ +2mv-k+ ”

the integrand has only support for &* > ¢

We can therefore expand the integrand around g¢* =0

Fi —/ddkl A : L PO
high = k2 2qg-F (mev— k)2 —m2  —2m,v-k 2mv-k

Dropping the scaleless integrals, we get

Fi, _/ddkil K :
high = k2 2¢-k ) (mev—k)2—m2’

So we obtain the full result by performing the expansion of the integrand in
two regions



Method of Region

We can summarize the method of regions expansion as follows:

® Consider all relevant scalings (regions) of the loop momenta.
® Expand the loop integral in each region.

® |ntegrate each term over the full phase space

® Add up the contributions.

This technique provides a general method to expand loop integrals around
different limits

In some cases dim-reg alone is not sufficient. (e.g. TMD or small-x)

The method of region technique has a close connection to EFTs in that the
low-energy regions correspond to degrees of freedom in the EFT and the
expanded full theory diagrams are equivalent to effective-theory diagrams.



3. Soft-collinear effective theory



Introduction

Soft-Collinear Effective Theory (SCET) is the effective field theory for
processes with energetic particles such as jet production at high-energy
colliders.

Pj J - . Z H —= J PJ

/ l\ 2
Typically such processes involve a scale hierarchy
Q" = (ps +p7)" > ~ 15> 1]

In SCET, the physics associated with the hard scale Q2 is integrated out and
absorbed into Wilson coefficients.

SCET involves two different types of fields, collinear and soft fields to
describe the physics associated with the two low-energy scales p,2 and ps?.



Introduction

The result of a SCET analysis of a jet cross section is often a factorization
theorem

c=H - J®JRS Q® = (ps +p3)? > p5 ~ p% > P
® Hard function; Jet function; Soft function

The theorem is obtained after expanding in the ratios of the scales and
holds at leading power.

Each of the functions is only sensitive to a single scale.

The individual functions furthermore fulfill renormalization group (RG)

equations. By solving RG equations one can resum the large perturbative
logarithms o™ In™(Q2/p3)



Introduction

In certain cases, the soft or collinear scales can be so low that a
perturbative expansion becomes unreliable

Factorization theorems allow one to separate perturbative from non-
perturbative physics, (e.g. PDFs). It is crucial to be able to make
predictions.

Traditionally, factorization theorems were derived purely diagrammatically

An advantage of SCET is that effective theory provides an operator
formulation of the low-energy physics, which simplifies and systematizes
the analysis. This is especially important for complicated problems.

Via the RG equations, SCET also provides a natural framework to perform
resummations.



Introduction

® Compared to traditional effective field theories such as Fermi theory, SCET
involves several complications.

® \We cannot simply integrate out particles: quarks and gluons are still
present in the low-energy theory. Instead, one splits the fields into modes

H J J S
¢ = Onh + e+ Pz + ¢s

® An important and nontrivial element of the analysis is to identify the
relevant momentum modes for the problem at hand, which are the
degrees of freedom of the effective theory. This is done by analyzing full
theory diagrams and provides the starting point of the effective theory
construction.



Introduction

® A second complication is that the different momentum components of the
fields scale differently.

® E.g. Momentum components transverse to the jet direction are always
small, but the components along the jet directions are large.

® To perform a derivative expansion of the effective Lagrangian, one
therefore needs to split the momenta into different components.

® |ntroducing reference vectors

nt o p; nt o< ph



Introduction

® The fact that the momentum components of the collinear particles along
the jet are unsuppressed leads to a final complication, namely that one
can write down operators with an arbitrary number of such derivatives.

® One way to take all these operators into account is to make operators
nonlocal along the corresponding light-cone directions

TMD PDF




The Sudakov Problem

® The one-loop contribution to the Sudakov form factor

k+p k+1

p k /

® define L2 =-I2 -i0, P2 =—p2 -i0 and Q2 =—(l-p)2 -i0 and will analyse the form
factor in the limit

L’ ~P°« Q%

® This is the limit of large momentum transfer and small invariant mass, the
same kinematics which is relevant for the jet process



The Sudakov Problem

® \We want to find out which momentum modes are relevant in the Sudakov
problem

1

—d)2 4—d | d
I P+ i0) [(h+ ) + 0] [(h+ D2+ 0]

I =17 U

® |ntroduce light-like reference vectors along p, and |, in analogy to the

vectors v, we introduced in our discussion of soft photons.
n* = (1,0,0,1) ~ p*/p",
_ 0 with n* =7 =0 and n-7=2.
" = (1,0,0,—1) ~ I*/1°,

® Any four vector can be decomposed in the form

nt  _ nt
pﬂ:n.p7+n.p? _|_p‘i

= p + ¢ 4.



The Sudakov Problem

Define a small expansion parameter A2~ P?/0*~1%/0* « 1.

The following scalings yield non-zero contributions

(n-kyii- koK)
hard n (1,1, 1)Q,
collinear to p* (0) (A%, 1, A) O,
collinear to 7*  (¢) (1, A%, A) Q,
soft s) (A%, A%, 0D 0.

For some other observables, the soft mode scales as (A\,A,A). The version of
SCET for this situation is called SCET2 to distinguish it from the one
relevant for the Sudakov form factor which is also called SCET1.

SCET?2 involves so-called rapidity logarithms, which is related to the TMD
physics

Let us now expand the integrand in the different regions to leading power.



E.g. Collinear region

® |n the collinear region the integration momentum scales as k+ ~ (A2,1,A)Q
and k2 ~ A2Q2, we have

(B+D*>=2k_-1, +OM%),

1
I = ig 244 f d’k |
R (k2 +10) (2k_ - 1 4+ 10) [(k+ p)? + 0]

® Using the Schwinger parametrization,

1 _ ['(m+ n) ood n™—1

A"B" T Jo A+ nB)yrtm’

® \We have

L=

F(1+¢) T?(—e) [(u?\°
_Zl+-p_ ['(1-—2¢) (PZ) |



All regions

® Having obtained the contributions from all the different momentum
regions, we can now add them up and verify whether we reproduce the
full integral.

® This involves some non-trivial cancellations since the individual integrals
are all divergent, while the full integral is finite in d=4

Frd+g) /1 1 2 1 2 g2
Ih= ( > ) 2+—lnu—2+—ln2u2—
Q e ¢ Q2 0 6

I'(1+e¢) 1 1 wu? 1 ,u? =w?
= 0? In

(1 1 1 2 2 2
_fd+e (1 1wt 1y apt 7t
QZ

I

I_
‘ g2 ¢ L2 2  I? 6

r1 1 1. p?Q* 1 20?  n?
_ (+8)( L9 Y ﬂ)

2 \etPom™ T

I 1
’ 27 12p2 " 6

1 QZ QZ 7.[2
It0t= @ (lnﬁlnpz + 3 )




SCET in the ¢3 theory

We now construct a Lagrangian whose Feynman rules directly yield the
expanded diagrams obtained using method of regions expansion

Start from a toy model

£(9) = 30u0@)0"6(z) — £6%(@)

Split the scalar field in the sum of a field collinear to the momentum p, a
field collinear to the momentum /, and a soft field

d(x) = ¢c(x) + dz(x) + ¢s(x) .

It was not necessary to introduce in the sum above a field for the hard
region, since these contributions are absorbed into Wilson coefficients



Effective Lagrangian

® the original Lagrangian can be written as the sum of four terms

£(¢) =L (ch) + L ((/56) + L (¢8) +Lers ((/507 Pe, Cbs) :

N N N
EEC E;Cé Eﬁs

® The interaction of collinear and soft fields

Lc—i-s (¢07 Qbéa ¢8) — _g¢cz¢s - %¢52¢3a

S
¢ e
c o c

® |t |looks like there should be many additional interaction terms, but they
are forbidden by momentum conservation



Interaction forbidden by momentum conservation

S0
S

(,750_.’,.’ qﬁc(x)qbg(x) An energetic particle cannot
decay into two soft particles

R Oz A particle moving along the
¢ ’ +2z direction cannot decay
C

—_— ’ gbc(:c) g(x) into two particle moving

S along the —z direction

L’ Oz The “+ component” of the c field
’ is of order A\?, it cannot give rise

ch_(/ ¢c($) ¢5(CC)¢S(QZ) to a field with a “+ component”
of order 1, such as ¢




Multipole expansion

Consider the Fourier transform of the fields in a given interaction term

/dda:qbc /dd /ddpl /ddp2 /djf)s

He(p1)de(p2) Ps(ps)e

the sum of the three momenta scales as »{ +p5 +p% ~ (A%, 1,)) Q

Consequently the components of x must scale as z" ~ (1 =T

1 1
A2’

the Taylor expansion of the soft field around the point x-

8:(@) = 6a(5-) + 21 - DL ba(5-) + T4 0 b4(2-) + 5 (212,100 Bu(0)) + ..

O

O(N\?)

The leading power scalar SCET Lagrangian

-

O(2)

1 1
Lox = 50u00(2)0"9c(a) — 36%(z) + 50,8e(x)0" ¢ola) — 5 ¢3(z)

1
+ §au¢s (CB)

065(x) — 5i#3(x) — SEAD)9s(a-

) = 262(x)s(+)

)

—i(p14+p2+ps)-x
)

L
o



Matching

only the operators which involve collinear fields in different directions get
matching corrections.

in order to describe the Sudakov form factor, we introduce an external
current coupling to two scalar fields

J:¢2:\/

The most general form that the current operator can have in the effective
theory is

C
J=J2+J3+---=Cz¢c¢a+2—?(¢z¢é+¢c¢g)+‘“,

In addition to operators with multiple fields, one should also consider
operators involving derivatives on the fields



Matching

® Even at leading power in A, one needs to allow for the insertion of an
arbitrary number of these derivatives in the current operators in the
effective theory.

n-0¢e(x) ~ Npe(x), 0 de(x) ~ Ape(x), 7~ Ope(x) ~ Ne(x).

® The expansion of a collinear field along the direction associated with the
large momentum component can be written in terms of an infinite sum
over the non-power suppressed derivatives

oo

ti
i=0

® to include terms with arbitrarily high derivatives is equivalent to allowing
non-locality of the collinear fields along the collinear directions.

Jo(z) = /dsdt Co(s,t, ) ¢c (x + sn) ¢z (z + tn)



Matching

® the Fourier transform of the coefficient Cy(s,t) will be

~

Co(n-p,n-l,u)= /dsdt eiSﬁ'pe_itn'lCQ(s,t,,u).

® The function C; must be expanded in powers of the coupling constant g as
follows

Gy = GO 1 26 + 1ED 4 ...

® the matching equation at the order of g2

p [ Cbc ,/, ¢5
NV LA

-

=Q2




Matching

® match the Feynman diagrams involving a current operator Js

p \\ / \ é§0)\i"/

® the first diagram on the l.h.s. and the first diagram on the r.h.s. give
identical contributions

® the second diagrams give us

—(n-lz)(gﬁ-p)+z'0' P—12)2=-2p- 12+ 0 (N) =—(n-l) (A -p)+ 0O (\?)

é:gO) (’I’I,°l1,n'l2,'ﬁ'p,/.l:) —

® The inverse derivative of a field can be written as an integral

: 0
5 @) = [ dsolatsm);
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Matching

® |tis a characteristic feature of SCET that the operators are non-local along
the directions of large light-cone momentum.

® |n general, in order to write down the most general SCET operators, one
smears the fields along the light cone.

Jo(z) = /dsdt Co(s,t, 1) ¢c (x + sn) ¢z (z +tn) ,

+00 +00 +00
J3(27) = / ds / dtq / dto 03(8, t1, 1o, /,I,)Qﬁc(ﬂﬁ + Sﬁ)¢5($ +t1n)</)5(a: +t2n) + (C <~ (_3)



Sudakov Form Factor in the ¢3 theory

e All of the elements needed for the calculation of the one-loop correction to
the current operator in the ¢3 theory in the limit in which A = 0 are available

p [ ¢c ,/ ¢5 ¢c ,/ qbé
NZ A VT Y

e The squares of the external momenta p and | are small but not exactly equal
to zero

e For order-by-order calculations, the direct application of the strategy of
regions is more efficient. However, SCET allows one to study all-order
properties of scattering amplitudes, such as factorization theorems.



QCD Sudakov form factor within SCET

® |[n QCD the most general leading-power SCET current operator.
JH(z) = / ds / dt Cy (s, )X (x4 + 21 + 1) S}, (0) S5 (0) ¥ X (o + 21 +tn)

® The soft interactions do not cancel, and the Sudakov form factor receives
low-energy contributions which describe a long-range interaction between

the fast moving ingoing and outgoing quarks.




Resummation by RG Evolution

The one-loop correction to the Wilson coefficient

ces a4 os(i) 2 3 n? Q? 5
Cyr(e: Q) =1+ CF(—S—Z—E-F?—S-I-O(S))(M) -I-O(ozs)

We have added a label bare to the Wilson coefficient to indicate that we
still need to renormalize it, which is done by absorbing the divergences into
a multiplicative Z-factor

CV(QZD ,u/) ! (83 QZ: ,U/) élia/re(ga Qz)

8—>0

Doing so, leaves us with the renormalized Wilson coefficient

2 2
éV(QZ,/L)zl-i-aZ(:)C ( S—+3IHS—+?—8)+O(OZSZ).

The whole procedure is the same as renormalization in standard quantum
field theory, up to the fact that we had to deal with 1/€2 divergences, which
arise because we have both soft and collinear divergences.



Resummation by RG Evolution

® Due to the presence of the double logarithms, the anomalous dimension
governing the RG equation for the Wilson coefficient has a logarithmic

plece

2

d - -
Cy(Q% ) = [CF Veurp (@s) I % + )/V(Ots)] Cr(Q% ),

dlnu

® The complete form factor can then be written as
F(Q* L% P%) =Cv (Q*,1%) T (L*, 1) T (P* 11*) S (AZ, 11?)

® The factorization formula puts constraints on the anomalous dimensions
governing the RG equation of the various factors

d

dln Cv (@) T (L%,1%) T (P, 1) S (A2,1?) | = 0.




Resummation by RG

® Schematic representation of the scale separation and of the calculational
procedure in renormalization group improved perturbation theory.

Q2

d ~ 2 3
dln'Ll,CV (Q27 l‘l‘) - lCF’YcuSP(aS) ln % + ’YV (as)] CV(Qza l»l’)

d 2 2 L? >
dln,uj(L ,,u) - CF’YcuSP(O‘S)lnﬁ'F’YJ(Oés) j(L,u) ,

d 2 9 A? s
dlnuS (A5 1%) = |CPYeusp (as)lnﬁ + s (as)| S (Az, p1°) ;



4. Applications in event shapes
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Operator  analysis of e'e’
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As o check, we should now cvaluate the photon  self energy:
one finds T[(S) q” ' 93 [--—'fn( s—as)]
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The IR oiv. cancellation between veal and virtuel is manifest:

NP S AR L

- YQGL~ . YQQL

TI\Q 'iﬂ\ajinw:" Pt arises whan pavticles * n the Loop ge on the mass shell
The electromagnetic coupliag of guarks has the Form -

L e

Jis G Rt s
So the self enmergy:.

T Kfucg) = (70 )"fd“x'%‘ LR TY x> YeoalIn>
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We can expand the froduct of curvents:
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Factorization for the event-shape variable thrust

® The definition of thrust
T = ~max |z 5
— X . i
O TP
® A sum over all particles in the event and one sums the projections of their

momenta along the thrust axis nr which must be chosen to maximize the
sum.

1

® The thrust T(t=1 - T) thus measures the fraction of momentum flowing
along the thrust axis.

1/

e -

\\\\\‘\h I

R

T=1-T=0.002 T=035



IRC safe

® Thrust is soft and collinear safe, i.e. its value does not change under
exactly collinear splittings or infinitely soft emissions.

® This property makes it possible to compute it perturbatively.

ot e — dac L do as 8% +t% 4 2u
999 oo ds dt 27 st
l do 1 do
7 _ t— ) Oy —
o dr o dsdt T [5(7 s)B(t — s)B(u — s)

(T —1)0(s — ) 8(u—t) + (T — ) O(t — u) O(s — u)]

2 1271 do_ 1—-271 g dO_
S — o(r —t d dt ——o(1 —
o ] ds/dtdsd (t —1) /r s/ a (1 —u)

O {3( +7)(3r—1)  [4+6n(r - 1.)]111‘;—-}

27 o T (1 — 7)

® However, for small T « 1 we encounter large logarithms.



IRC limit

® Choose the SCET reference vectors

nt = (].,ﬁT) nt = (1,—ﬁT).

e \We separate the sum over particles into individual sums in the soft and
collinear sectors

TQ=Z|15%|—|ﬁT°@'|
=Y " npit+ Y Hoput Y n-ph+ > wph

=n-px.+n-px +0n px.+n-p%._,

e We split the soft particles into left- and right-moving ones in order to be able
write the sums in terms of light-cone components.

e |n the last line, we have introduced the total momentum in each category.



IRC limit

® Due to the definition of the thrust axis, the total transverse momentum is
zero in each hemisphere

® Up to power corrections, we therefore write the invariant mass of all
particles in the right hemisphere as

M3 = (px. +px.)?

. 2 — R
Pe —ch-i-n'pXCn'st

De

® Up to power corrections, we obtain

Q% = M? + M3 =p% +0% +Q(n-p% +7-p%)



Factorization

® The cross section

Z_: - ;@2 (Mete™ =" = X)| 2m)*@ (g — px) §(r — 7(X))
X

® hadronic tensor

H,,(¢,7) =j<0| J3(0) 1X)(X] J,,(0) [0)(2m) 26D (q — px) 6(r — (X))

® |eptonic tensor

64Qg _ _
L*(q1,q2) = Q4 v(q2) v u(q1) u(q1) v” v(go)

® Averaging over the spins of the incoming leptons




Factorization

Introduce the dummy integration

1= / 437 6B (7 — i)

=Q/2

Using the fact that momentum conservation fixes |px,
Q 2
/d3ﬁ5(3) (n — 7ip) = (27) /dcosO (E) 5(2)(19}(6)

The cross section involves a 6-function which fixes the total transverse
momentum of the collinear radiation to be zero

Combining it with the momentum conservation 6-functions and expanding
away small momentum components

5(4)((1 — DX, — PX. — PX,) 5(2)(17)%6)
=26(i- px. — Q) 6(n - px, — Q)6 (p%,)5®(px,)

C

The factor of 2 is the Jacobian for converting to light-cone components.



Factorization

To separate the individual contributions to thrust, we introduce three
more integrations

L= famzo? - ) [an2 o —p3,) [dwsw—n-p —n-pk)

Plug in the factorized SCET current into the hadron tensor, we obtain the
cross section in the factorized form

do M2 + M? 4+ Qu
__L 5 . 2 2 2 / c C
g 5 Lu ICy (— 10, p)] /dM /dM dw 6 (T 02 )
Xi(ol X2 5(0)| Xe)(Xel X2 o 10) 6(M2 — p%.) 6P px.) (R px. — Q)
Xec

Xi(ol X2, (0)|Xa)( Xz XE 510y 6(MZ — p%.) 6P (px.)d(n - px, — Q)

Xz

< SL 018180 4y X)X [S1S],, 10) 6w — -, — k)

X (2m)* (V) ap (V1 )ys



Factorization

® Collinear matrix elements are color diagonal, proportional to 6ab64e
® Soft function
:Nij O| STS X|[STS] |O)(5(w—n-p§s—'ﬁ-p§(8)
Xs

® Jet function

o 5], =§ﬁ (01X25(0) 1X) (Xel %2,0(0)[0)

x 6(M? — p%. )5(2)(19)( )é(n-px, — @),
5de
e L %ﬁ X2,(0) [Xo) (Xcl x5,5(0) [0)

x §(M? — p%.) 6P(px.)6(n - px. — Q).




Factorization

® Factorization formula

do 7"'JVCQ?O‘Z
drdcos  2Q?2

(14 cos?8)|Cy (—Q? — 0, /1,)|2/nd2 ‘/dMé2 /dw
M? + M? + Quw
ol T —
( %
® Hard, jet and soft functions depend on u. To resum large logarithms, one
can again solve the RG equations and evolve to a common reference scale

)J(Mf,u) J(MZ, 1) S(w, ),

® The soft and jet functions are convolved; This complication can be avoided
by working in Laplace space since the transformation turns the
convolution into a product

= /Ooodwl /Ooodwg 0(w — w1 — wa) fwi)g(w2)

h(s) :/o dwe™**h(w / dwl/ dws €™ 7925 f(wy)g(wa) = f(s) §(s)



5. Applications in the jet physics



An effective field theory for jet processes
Becher, Neubert, Rothen, DYS "15

EFT contains two modes:

hard: pp~ @ (1,1,1)
soft: ps ~ QB (1,1,1)

NB:
1. no collinear singularity, only single logs
2. method of region to verify at two-loop level

Hard parton described by collinear field &, € {x;, xi, A",

i

i (0)

gauge invariant: x;(0) = W/ () .

Perform decoupling transformation: @, = 5;(n;) 8\”  sitn) = Pesp (ig. [ dsns- 42(on) 77
0

Evaluates the matrix element of the operator with one collinear particle

(017 (0) [ps) = 83 u(p;)

82



Factorization

e The operator for the emission from an amplitude with m hard partons

hard scattering amplitude with m particles (vector
~ Incolor space)

@
O
O
O O
O
O
O
»
S

\)

\S

soft Wilson lines along the directions of the
energetic particles (color matrices)

NB: No jet function, since no collinear scales

To get the cross section, we need to square & integrate over phase space

33



Factorization for gap between jets in e+e-

(Becher, Neubert, Rothen, DYS, '15 PRL, '16 JHEP; Caron-Huot 15 JHEP)

Hard function

m hard partons along T O Soft(;‘uncti?n d
fixed directions {n1, ..., Nm} r[p ] squared amplituae

Hon X | M) (M| with m Wilson lines

ot
Q(1;)

Q QQ Z H/ d A Trc H ({ﬁl, 7ﬁm}7Q7:u)Sm({ﬁla 7ﬁm}7QQ7:u)]

m=21=1

—
# of jet not fixed Integrate the angles for hard partons

84



Renormalization

UV poles inside hard function removed by renormalizing the hard function as

m

Hm({n},Q,0,€) = > Hi({n},Q,6,1) Z[},({n},Q,d,¢, 1)

[=2

1. obtain the bare hard function from on-shell matching. The IR poles are in
one-to-one correspondence to UV div, since the EFT loop-integrals are
scaleless.

2. We can understand the UV div. of hard function from the structure of the IR
div. in the real and virtual diagrams

3. lower multiplicity virtual diagrams are needed to cancel the div. of real
emission diagrams

H(Q, 1) = HE (@, ) — Z2(Q, e, )y HL(Q, )

85



the renormalization matrix must have the form:

as a? «
Qs O

VN VRV
/

\: s:::)

At each higher order in perturbation theory, more off-diagonal contributions fill in

1
0 1
Z"({n},Q,6,¢,u) ~ | 0 0
0 0

By consistency, the matrix ZH must render the soft functions finite
S({n},@B,6,1) =Y Zih({n},Q,5,¢, 1) & Sm({n}, QB,6,¢)
m=l

Higher multiplicity soft functions are needed to absorb the div. of matrix elements
with fewer Wilson lines

H " H A
Comy. Zo SutE)y Zu B Sy Zug 61

Test at two-loop level !!!
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Leading Log Resummation = master equation under Markovian
approximation

JLL(Q,QO) = Z <'Hz({n1,"ﬂ2}a@,#h) ® Uam ({1}, tis, bin) ® 1>

m=2

(‘/QRQ 0 0 \

0 V3 R3 0 ...
One-loop anomalousdim.: =] 0 0 Vi Ry ... _

0 0 0 V5...

\ o)

RG equation: L, (1) = Hon () Vi + Hon 1 (DR t—/a(Q) do_ o
g . di m — m m m—1 m—1 o) 5(a) AT

. M—1
Lindblad equation: p = —% [H,p]+ > (Lka,T~c — 1L Lyp — %pL,Tch)
k=1



Super-leading logs = Lindblad eqn in color space

(V2R2 0 0 \

0 Vi Ry 0 ...
One-loop anomalous dimension: 1" =| 0 0 Vi Ry... wh— i1
0 0 0 Vi ... Yong e ngng - ng

dd(r _
V,, = 22 / T, Tp +Tig - Tjp) WE [OF (k) + O (k)] <

2 i,L i — T r - T r) 115, i i i
+ mz L Tjr = Tir - Tjr) ij, IT;; = 1 if both incoming

(i5) ) }
or outgoin
m = Z Crz L /Vm_H 9111(77772+1) g g

Individually R and Vi, contain singularities when emitted gluon k gets collinear to
parsons i or j.
e Expect cancellation in inclusive soft observables such as gaps between jets at
lepton colliders

e Collinear factorization violation: Glauber phases spoil this cancellation :
soft+collinear double logs! “Super-leading logs”



Extracting the collinear singularities: W;; =

The one-loop anomalous dimension is

=R+ ZR
1=1,2
with
_ dQ (ng,) ~

89
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S
p
§ ?
Ry =—4) TipoT;gW " Onara (Nin+1)
(i7)
R; = —4T; 1, oT; g6 (ny, — n;)
Hm T;L,L © CZ-‘j,R — T;a %m 1136
1 3 1
HoR, =)



Hard function for octet exchange:

I, = K X ~ tcalsal a4aztﬁlﬁ3tﬁ2ﬁ400

Action of the anomalous dimension
Tiw © Tin 2CMR-00)

XL e XL -
M, R - /\Qi( +

Compute H.,U (s, pn) = HaPexp [/

Hh d/,l,
s M

Hh d Hh d Hh d
M pus M Jp '

r(Qui)]

S
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All-order evolution of leading Super-Leading Logs
(Becher, Neubert, DYS '21 PRL + Stillger’23 JHEP)
All-order structure: Kampe de Feriet function (a two-variable generalization of

the generalized hypergeometric series, the general sextic equation can be
solved in terms of it)

| 2|
m=0 r=0 (2)m+7~( )m+r m:.T.
1:1,4 )
— ‘|‘F2+0(2 5 ’27 'w,—’uw) w:N(»O;:(N)lz(@>
'2 ’ s

Sudakov suppression of the superleading
logarithms is weaker than the one present
for global observables

A& /35 %)

Global logs >

&
_ W — OO 1
Superleading logs > —

w

(2 0 [(;(‘\]

Red: Four loop  Blue: Five loop  Black: all order
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