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1 Introduction

Significant developments of scattering amplitudes. Off-shell observables such as dilation
operators and correlation functions.

Fn,O(1, . . . , n) =

∫

d4x e−iq·x ⟨p1 . . . pn|O(x)|0⟩

= δ(4)(
n

∑

i=1

pi − q) ⟨p1 . . . pn|O(0)|0⟩ (1.1)

1

⟨p1p2…pn |0⟩ ⟨𝒪1𝒪2…𝒪n⟩
Scattering amplitude Correlation functions

Partially on-shell, partially off-shell:
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1) Nuclear “structure factor”

p
e

ū(p′ )[γμF1(q2) + iσμνqν

2m
F2(q2)]u(p)

“Rutherford formula”

Point particle scattering

θ
σ(θ)

“Mott formula”
∼ e2(ūγμu)

ημν

q2 (v̄γνv)



1) Nuclear “structure factor”
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formula for elastic scattering, which replaces Eq. (11)
when the nucleus is 6nite, must have the form (YUKAWA)I'2

(Ze'I ' coss-', 8 2

~.(e)=I I .„'p(r)e"'dr'2E' sin sg "nuclear
volume

(13)
P.I

where p(r) is the charge density within a nucleus as a
function of radius vector from the center of the nucleus
and Ag is the momentum transfer vector. The numerical
magnitude of q for elastic scattering is, thus, given by

2If' 2
q= sin —,'8 =—sin-', 8 (14)

Ac

Q.QI
GAUSSI

EXPONENTIAl

as shown in Fig. 2 where
I ptI = ~

ppI. pp and pt are the
incident and scattered momenta, respectively. X in
Eq. (14) is the reduced de Broglie wavelength of the
high-energy incident electron:

K=A/pe. , (15)
qr in Eq. (13) is, thus, a dimensionless phase factor.
The assumption is made once more that the nucleus

does not recoil, or equivalently, that Fig. 2 is imagined
to be in the center-of-mass frame.
It can be shown" that the integral in Eq. (13) can

be reduced, so that
t'Zes) coss gsrst" singr

a, (8)=I I p(r) 4vrrsdr . (16)
E 2EJ sin4-';6I, ~ p qr

Since the quantity in square brackets multiplies the
point charge cross section given by Eq. (11), it is
customary to follow the precedent established in the
electron diffraction and x-ray diffraction analogs of this
equation and call this quantity

4xP= —p(r) sin(qr)rdr
q Jp

the "form factor" or "structure factor" corresponding
to a finite nuclear charge distribution. Indeed, the
analogy is very close" and it is merely necessary to
replace the electron cloud of an atom by the proton
cloud of a nucleus. If the charge density in Eq. (16) is
normalized to unity, the form factor F is a dimensionless
quantity.
In dealing with the first Born approximation, the

central idea is as follows: To obtain the actual scattering
from a finite nucleus, it is necessary merely to multiply

FIG. 2. The mo-
mentum transfer q
in electron scatter-
ing. For elastic scat-
tering in the center-
of-mass frame lpil= Ipal.

—Pp= q

' See, for example, Z. G. Pinsker E/ectroe Digructioe (Sutter-
worth Scientific Pubiications, London, 1955), p. '148, Eq. (7,25).

0.00I

0.000I

FIG. 3. The square of the form factor for typical charge
distributions.

the point charge scattering cross section by the square
of a form factor appropriate to the particular model of
a nucleus under consideration. This procedure makes
the calculations quite direct and usually quite simple,
since it is only necessary to evaluate a single quadrature
I-Eq. (17)'j. For light nuclei this is satisfactory. Unfor-
tunately, for medium and heavy nuclei, this procedure
fails. As is weH. known, the first Born approximation is
equivalent to considering both the incident and dif-
fracted waves as plane waves. Actually, the waves are
distorted by the intense nuclear electromagnetic fieM, ,
so that they can no longer be considered plane waves.
Perhaps an equivalent way of saying this is that the
first Born approximation amounts to a single scattering
in the force field, while the exact scattering depends on
a plurality of scatterings in the same force field.
In any event, the application of the Born formalism

to elastic scattering provides a most valuable tool for
analyzing electron scattering by light nuclei and is of
qualitative value in discussing heavier nuclei. We shall
make further remarks about the accuracy of the first
Born approximation at a later time.
Making use of Eq. (17),we shall now give the results

for a number of useful nuclear models. In order to
present the calculations in the most succinct way, we
have prepared in Table I2' a series of form factors for
several nuclear charge density distributions. In the
table "a," represents the root-mean-square radius,
weighted according to charge, and defined as

a= r24~r'pdr =4~ pr4dr,
4p p

~' This convenient form of the table is due to E. E. Chambers.
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Form factor characterizes the deviation from the point-particle picture. 
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FIG. 5. Curve (a) shows the theoretical Mott curve for a spinless
point proton. Curve (b) shows the theoretical curve for a point
proton with the Dirac magnetic moment, curve (c) the theoretical
curve for a point proton having the anomalous contribution in
addition to the Dirac value of magnetic moment. The theoretical
curves (b) and (c) are due to Rosenbluth. s The experimental
curve falls between curves (b) and (c). This deviation from the
theoretical curves represents the eGect of a form factor for the
proton and indicates structure within the proton, or alternatively,
a breakdown of the Coulomb law. The best 6t indicates a size
of 0.70X10 "cm.

s M. N. Rosenbluth, Phys Rev. 79, 615 (19.50).

in saturation of the ion chamber monitor response and
in the integrating voltmeter, and perhaps other un-
known items. In Fig. 5 we have drawn a curve, labeled
"experimental curve, "which is our best estimate of the
accumulated data at 188 Mev. The limits of error
represent the greatest variations we have observed in
any runs. However all runs, not being absolute, are
normalized to each other by "best fitting. "The experi-
mental curve is also normalized to the theoretical curve
at small angles. Also plotted in Fig. 5 are (a) the theo-
retical Mott curve for a spinless point proton, (b) the
theoretical curve for a point proton with the Dirac
value of magnetic moment (gyromagnetic ratio 2.00),
(c) the theoretical curve for a point proton with the
anomalous value of the proton moment in addition to
the Dirac moment (gyromagnetic ratio=5. 58). The
theoretical curves (b), (c) are obtained from calcula-
tions of Rosenbluth. ' The experimental curve deviates
from curves (a), (b), and (c) at the larger angles and is
lower than the curve for a point proton with anomalous
moment, but higher than the curve for a point proton
with Dirac moment. This reduction at large angles
below the curve for point charge represents the eGect
of a "structure factor" or a "form factor" for the proton
and hence indicates the finite size of the proton. Since
the usual electromagnetic relations and the Coulomb

interaction have been used in Rosenbluth's calculation,
we are here assuming the validity of these interactions
at small distances (&10 "cm). Subject to this assump-
tion, the experiment indicates the proton is not a
point.
In order to carry out the form factor calculations, we

have made use of Rosenbluth's formalism. However
we have given the charge and magnetic moment
phenomenological interpretations in place of the meson
theoretic interpretations originally presented by Rosen-
bluth. ' We may write Rosenbluth's formulas as follows:
for a point charge we have

where

(f2
o =aIve 1+ L2(1+tu)s tan'(8/2)+p'] (1)4M'

e' (cos'(0/2) ) 1
(2)4E' & sin (i)/2) 3 1+(2Z/3f) sin'(8/2)

and where

(2/K) sin(e/2)

L1+(2F/cV) sin'(()/2)) 1

where Ft is the charge form factor (which also influences
the intrinsic "Dirac" magnetic moment) and Fs the
anomalous magnetic moment form factor. In principle
F& does not have to be the same as F2. Fj and F2 may
be written as functions of (q(r)), where (r) is the root-
mean-square radius of the appropriate charge, or mo-
ment distribution. F& and F2 may also be identified
with e'/e and k'e'/kae in Rosenbluth's article.
We have not made detailed analyses for different F&

and F&.Rather, as may be seen below, we have assumed
F~=F2. However, the data at all energies are quite
consistent with this choice.
At the energies used in these experiments, the form

factor (F& or Fs) is not appreciably shape dependent,
i.e., one cannot distinguish between uniform, expo-
nential, or Gaussian charge (or magnetic moment)
distributions. A11 that can be determined is a mean
square radius. Therefore we have tried to fit the experi-
9We are indebted to Dr. D, R, Yennie for formulation of

Eqs. (1)—(4).

Here natural units, k= c= 1, are used and the equations
are written in terms of the laboratory coordinates; g is
the invariant momentum transfer in the center-of-mass
frame expressed in laboratory coordinates; E is the
energy of the incident electrons; 3f the mass of the
proton, and p, is the anomalous part of the proton's
magnetic moment (p, = 1.79). )1 is the reduced de Broglie
wavelength of the electron in the laboratory system.
For a dift'use proton we may write:

o =o~s FI'+ t 2(F&+pFs)' tan'(8/2)+p'Fs j (4)1
g

4M'

McAllister and Hofstadter, Phys.Rev. (1956)
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formula for elastic scattering, which replaces Eq. (11)
when the nucleus is 6nite, must have the form (YUKAWA)I'2

(Ze'I ' coss-', 8 2

~.(e)=I I .„'p(r)e"'dr'2E' sin sg "nuclear
volume

(13)
P.I

where p(r) is the charge density within a nucleus as a
function of radius vector from the center of the nucleus
and Ag is the momentum transfer vector. The numerical
magnitude of q for elastic scattering is, thus, given by

2If' 2
q= sin —,'8 =—sin-', 8 (14)

Ac

Q.QI
GAUSSI

EXPONENTIAl

as shown in Fig. 2 where
I ptI = ~

ppI. pp and pt are the
incident and scattered momenta, respectively. X in
Eq. (14) is the reduced de Broglie wavelength of the
high-energy incident electron:

K=A/pe. , (15)
qr in Eq. (13) is, thus, a dimensionless phase factor.
The assumption is made once more that the nucleus

does not recoil, or equivalently, that Fig. 2 is imagined
to be in the center-of-mass frame.
It can be shown" that the integral in Eq. (13) can

be reduced, so that
t'Zes) coss gsrst" singr

a, (8)=I I p(r) 4vrrsdr . (16)
E 2EJ sin4-';6I, ~ p qr

Since the quantity in square brackets multiplies the
point charge cross section given by Eq. (11), it is
customary to follow the precedent established in the
electron diffraction and x-ray diffraction analogs of this
equation and call this quantity

4xP= —p(r) sin(qr)rdr
q Jp

the "form factor" or "structure factor" corresponding
to a finite nuclear charge distribution. Indeed, the
analogy is very close" and it is merely necessary to
replace the electron cloud of an atom by the proton
cloud of a nucleus. If the charge density in Eq. (16) is
normalized to unity, the form factor F is a dimensionless
quantity.
In dealing with the first Born approximation, the

central idea is as follows: To obtain the actual scattering
from a finite nucleus, it is necessary merely to multiply

FIG. 2. The mo-
mentum transfer q
in electron scatter-
ing. For elastic scat-
tering in the center-
of-mass frame lpil= Ipal.

—Pp= q

' See, for example, Z. G. Pinsker E/ectroe Digructioe (Sutter-
worth Scientific Pubiications, London, 1955), p. '148, Eq. (7,25).

0.00I

0.000I

FIG. 3. The square of the form factor for typical charge
distributions.

the point charge scattering cross section by the square
of a form factor appropriate to the particular model of
a nucleus under consideration. This procedure makes
the calculations quite direct and usually quite simple,
since it is only necessary to evaluate a single quadrature
I-Eq. (17)'j. For light nuclei this is satisfactory. Unfor-
tunately, for medium and heavy nuclei, this procedure
fails. As is weH. known, the first Born approximation is
equivalent to considering both the incident and dif-
fracted waves as plane waves. Actually, the waves are
distorted by the intense nuclear electromagnetic fieM, ,
so that they can no longer be considered plane waves.
Perhaps an equivalent way of saying this is that the
first Born approximation amounts to a single scattering
in the force field, while the exact scattering depends on
a plurality of scatterings in the same force field.
In any event, the application of the Born formalism

to elastic scattering provides a most valuable tool for
analyzing electron scattering by light nuclei and is of
qualitative value in discussing heavier nuclei. We shall
make further remarks about the accuracy of the first
Born approximation at a later time.
Making use of Eq. (17),we shall now give the results

for a number of useful nuclear models. In order to
present the calculations in the most succinct way, we
have prepared in Table I2' a series of form factors for
several nuclear charge density distributions. In the
table "a," represents the root-mean-square radius,
weighted according to charge, and defined as

a= r24~r'pdr =4~ pr4dr,
4p p

~' This convenient form of the table is due to E. E. Chambers.

Robert Hofstadter 
(1915 – 1990)  

Nobel laureate 1961

“form factor”
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346 Renormalized perturbation theory

leg corrections, which we have already calculated and rendered finite by the counterterms
δ2, δm and δ3 in the renormalization of the 2-point functions. As before, we write

− ieRΓµ = 1PI . (19.42)

This is normalized so that at leading order Γµ = γµ. More generally, we showed in Chap-
ter 17 that, by Lorentz invariance and the Ward identity (which holds for off-shell photons),
arbitrary contributions to Γµ can be written in terms of two Lorentz-scalar form factors, F1

and F2:

Γµ(p) = F1(p2)γµ +
iσµν

2me
pνF2(p2). (19.43)

At leading order:

F1

(
p2
)

= 1, F2

(
p2
)

= 0. (19.44)

At next-to-leading order (order e2
R), the form factors get contributions from a loop graph

and from counterterms:

− ieRΓµ = 1PI = + + · · · .

(19.45)
From Eq. (19.16) we see that the counterterm gives Γµ = δ1γµ, which contributes only to
F1

(
p2
)
.

We calculated F2

(
p2
)

at 1-loop when we considered corrections to the magnetic moment
of the electron in Chapter 17. There we found a finite answer:

F2(p2) =
e2

R

4π2

∫ 1

0
d3x δ(x + y + z − 1)

z(1− z)m2
R

(1− z)2m2
R − xyp2

+ O
(
e4

R

)
. (19.46)

In particular, F2(0) = α
2π , which led to a prediction for the anomalous magnetic moment

of the electron: g − 2 = 2F2(0) = α
π . Since this correction was finite, no counterterm was

needed.
We also began the calculation of F1

(
p2
)

at 1-loop. Appending the counterterm diagram
to the expression for F1

(
p2
)

in Chapter 17, we find

F1

(
p2
)

= 1 + f
(
p2
)

+ δ1 + O
(
e4

R

)
, (19.47)

where

f(p2) = −2ie2
R

∫
d4k

(2π)4

∫
dx dy dz δ(x + y + z − 1)

× k2 − 2(1− x)(1− y)p2 − 2(1− 4z + z2)m2
R

[k2 − (m2
R(1− z)2 − xyp2)]3

. (19.48)
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Leading order:

One-loop order:
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to the expression for F1

(
p2
)

in Chapter 17, we find

F1

(
p2
)

= 1 + f
(
p2
)

+ δ1 + O
(
e4

R

)
, (19.47)

where

f(p2) = −2ie2
R

∫
d4k

(2π)4

∫
dx dy dz δ(x + y + z − 1)

× k2 − 2(1− x)(1− y)p2 − 2(1− 4z + z2)m2
R

[k2 − (m2
R(1− z)2 − xyp2)]3

. (19.48)

Anomalous magnet moment

Γμ(q) = γμF1(q2) + iσμνqν

2m
F2(q2)

jμ = ψ̄ γμψ

ψ̄γμψ → ψ̄Γμψ
“Rosenbluth formula”



3) Sudakov form factor
• Pioneer work by Vladimir Sudakov in 1954

SOVIET PHYSICS JETP VOLUME 3, NUMBER 1 AUGUST, 1956 

Vertex Parts at Very High Energies in Quantum Electrodynamics 

v. V.SUDAKOV 
(Submitted to JETP editor Nov. 4, 1954) 

]. Exper. Theoret. Phys. USSR 30,87-95 (January 1956) 

A method is developed for calculating Feynman integrals with logarithmic accuracy, 
working to any order of perturbation theory. The method is applied to calculate the ver-
tex part in quantum electrodynamics for a certain range of values of the momenta. The 
result is displayed as the sum of a perturbation series. 

l J.HE technique of Feynman for calculating ma-
trix elements in quantum electrodynamics is only 

suitable for the lowest-order approximations, since 
the algebraic complexities increase extremely ra-
pidly when we consider contributions to the matrix 
element from higher-order perturbations. When per-
turbation theory is not applicable and it is neces-
sary to .consider the sum of the entire perturbation 
series*, another technique must be developed. For 
example, one elegent method 3 of calculating inte-
grals with logarithmic accuracy depends on chang-
ing k into ik 0• This method is, however, not app-
licabfe to all cases. In particular, it is inapplicable 
to the calculation of the -vertex part r (]' (p, q; l) in 

In what follows we shall everywhere omit the limit-
ing process, simply choosing <to be a positive 
number so small that it does-not make any contri-
bution in the final result. We shall evaluate (l) 
supposing that 

(2) 

where l = p- q. For simplicity we assume 

(3) 

* We do not need to worry about the divergence of the 
pertur.bation series, 2 which occurs at much higher 
energies than those which we consider. 

1 R. P. Feynman, Phys. Rev. 76, 769 ( 1949) 
2 

F. ]. Dyson, Phys. Rev. 85, 631 (1952). 
3 L. D. Landau, A. A. Abrikosov and I. M. K.halatni-

kov, Dokl. Akad. Nauk. SSSR 95, 497, 773, 1177 and 
96, 261 (1954). 
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the case when the absolute value of the square of 
one of the vectors p, q, lis much larger than the 
absolute squares of the other two vectocs. This 
case is especially important foc concrete physical 
applications. There ippear in this case terms with 
the structure e 2 L 1 L 2 , a product of two big loga-
rithms entering with each power of e 2 (we call 
these doubly-logarithmic terms). Rut the earlier 
method 3 can give only terms with the structure 
e 2L (singly-logarithmic terms), in which one large 
logarithm enters with each power of e 2• 

l. To explain the method+ of obtaining the 
doubly-logarithmic te*rms, we shall consider as an 
example the integral 

(l) 

which allows us to omit m2 in the first two factors 
of the denominator in (1). 

From (2) it follows that to a close approximation 
/ 2 = -2pq, which allows US to rev.Tite (2) in the 
form 

(2a) 

Hence it is clear that the squares of the vectors p, 
q are very small compared with the squares of 
their components; the squares of the vectors p, q 
are almost null. 

+In this paper the Feynman notations are used: 

* The integral (l) is singular. To define it precisely 
we have to specify the Feynman rules for integrating 
round the poles. This is done by adding infinitesimal 
imaginary terms to the factors in the denominator. 

A closed formula of summing up the leading-logarithm terms.

346 Renormalized perturbation theory

leg corrections, which we have already calculated and rendered finite by the counterterms
δ2, δm and δ3 in the renormalization of the 2-point functions. As before, we write

− ieRΓµ = 1PI . (19.42)

This is normalized so that at leading order Γµ = γµ. More generally, we showed in Chap-
ter 17 that, by Lorentz invariance and the Ward identity (which holds for off-shell photons),
arbitrary contributions to Γµ can be written in terms of two Lorentz-scalar form factors, F1

and F2:

Γµ(p) = F1(p2)γµ +
iσµν

2me
pνF2(p2). (19.43)

At leading order:

F1

(
p2
)

= 1, F2

(
p2
)

= 0. (19.44)

At next-to-leading order (order e2
R), the form factors get contributions from a loop graph

and from counterterms:

− ieRΓµ = 1PI = + + · · · .

(19.45)
From Eq. (19.16) we see that the counterterm gives Γµ = δ1γµ, which contributes only to
F1

(
p2
)
.

We calculated F2

(
p2
)

at 1-loop when we considered corrections to the magnetic moment
of the electron in Chapter 17. There we found a finite answer:

F2(p2) =
e2

R

4π2

∫ 1

0
d3x δ(x + y + z − 1)

z(1− z)m2
R

(1− z)2m2
R − xyp2

+ O
(
e4

R

)
. (19.46)

In particular, F2(0) = α
2π , which led to a prediction for the anomalous magnetic moment

of the electron: g − 2 = 2F2(0) = α
π . Since this correction was finite, no counterterm was

needed.
We also began the calculation of F1

(
p2
)

at 1-loop. Appending the counterterm diagram
to the expression for F1

(
p2
)

in Chapter 17, we find

F1

(
p2
)

= 1 + f
(
p2
)

+ δ1 + O
(
e4

R

)
, (19.47)

where

f(p2) = −2ie2
R

∫
d4k

(2π)4

∫
dx dy dz δ(x + y + z − 1)

× k2 − 2(1− x)(1− y)p2 − 2(1− 4z + z2)m2
R

[k2 − (m2
R(1− z)2 − xyp2)]3

. (19.48)

l

• “High-momentum electromagnetic vertex” was the PhD project of 
Roman Jackiw (1966), assigned by his advisor Ken Wilson.

ANNALS OF PHYSICS: 48,292-321 (1968) 

Dynamics at High Momentum and the Vertex Function 
of Spinor Electrodynamics 

ROMAN JACKIW* 

CERN, Geneva 
and 

Jefferson Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138 

A modification of Feynman rules is developed such that the high-energy asymptotic 
forms of individual Feynman diagrams or of the complete n-point functions are ob- 
tainable. The modifications are similar to those discovered by Weinberg in connection 
with the dynamics at infinite momentum. The present techniques are used to obtain 
the high-energy behavior of the vertex of spinor electrodynamics. It is suggested that 
the result on the mass shell and large, spacelike momentum transfers is 

exp [ 
- & log% !A! 

IL2 1 
when all crossed diagrams are included. The off-mass-shell asymptotic form is also 
obtained and found to agree with previous results. The Bethe-Salpeter kernel, occurring 
in the integral equation for the vertex, is given in the relevant energy regions. 

I. INTRODUCTION 

In a recent investigation of dynamics at infinite momentum, Weinberg (I) has 
derived a new set of diagrammatic rules. These rules, to be applied in the p = 0~) 
Lorentz frame, replace the usual Feynman rules as well as the old-fashioned 
perturbation theory rules. They have the advantage of simplifying the set of dia- 
grams that needs to be considered in descriptions of physical processes. The 
purpose of this paper is to report the results of an examination of the high-energy 
behavior of the vertex function (three-point function) of spinor electrodynamics. 
In the course of this analysis we find it convenient to introduce diagrammatic 
rules which determine the high-energy asymptotic form of the vertex, and which 
are strikingly similar to Weinberg’s rules. It is suggested that these rules may be 
useful in the analysis of the high-energy behavior of the integral equations which 
are satisfied by the n-point functions of field theory. 

* Junior Fellow, Society of Fellows. 
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Guido Altarelli Vladimir Gribov Vladimir Sudakov
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3) Sudakov form factor
Further development around 1980

• Alfred Mueller (1979) and John Collins (1980) generalized Sudakov’s 
result by including non-leading logarithms in QED. 

• Ashoke Sen (1981) generalized the results to QCD. 



IR divergences
Infrared structure of amplitudes:

Following refs. [26, 30], we expand K[g], γ[g]
K , and G[g] in powers of αs,

K[g](αs, ϵ) =
∞
∑

l=1

1

2lϵ
al γ̂(l)

K , (4.24)

γ[g]
K

(

ᾱs

(µ2

µ̃2
,αs, ϵ

))

=
∞
∑

l=1

al
(µ2

µ̃2

)lϵ

γ̂(l)
K , (4.25)

G[g]
(

−1, ᾱs

(µ2

ξ2
,αs, ϵ

)

, ϵ
)

=
∞
∑

l=1

al
(µ2

ξ2

)lϵ

Ĝ(l)
0 , (4.26)

where a is defined in eq. (4.8) and the hats are a reminder that the leading-Nc dependence

has also been removed in eqs. (4.24), (4.25) and (4.26). That is, the perturbative coefficients

(defined with expansion parameter αs/(2π)) have a leading-color dependence on Nc of,

γ(l)
K = γ̂(l)

K N l
c , G(l)

0 = Ĝ(l)
0 N l

c . (4.27)

We can suppress the [g] label because the N = 4 MHV amplitudes are all related by

supersymmetry Ward identities [57], so that the corresponding functions for external gluinos,

etc., are the same as for gluons. Equation (4.24) follows from solving eqs. (2.12) and (2.13)

of ref. [30] in the conformal case (β ≡ 0). In this case, K[g] contains only single poles in ϵ,

which are simply related to γ[g]
K .

The integral over G is very simple,

∫ −Q2

0

dξ2

ξ2
G[g] = −

∞
∑

l=1

al

lϵ

( µ2

−Q2

)lϵ
Ĝ(l)

0 . (4.28)

The first integral over γK gives,

∫ µ2

ξ2

dµ̃2

µ̃2
γ[g]

K =
∞
∑

l=1

al

lϵ

[(µ2

ξ2

)lϵ
− 1
]

γ̂(l)
K . (4.29)

Adding the K[g] term to 1/2 of eq. (4.29), using eq. (4.24), we see that the “−1” is

cancelled. Then the integral over ξ is properly regulated, and evaluates to

−
1

2

∞
∑

l=1

al

(lϵ)2

( µ2

−Q2

)lϵ
γ̂(l)

K . (4.30)

Combining this result with eq. (4.28) gives

M[gg→1]
(Q2

µ2
,αs(µ), ϵ

)

= exp

[

−
1

4

∞
∑

l=1

al
( µ2

−Q2

)lϵ( γ̂(l)
K

(lϵ)2
+

2Ĝ(l)
0

lϵ

)

]

. (4.31)
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FIG. 5: Infrared structure of leading-color scattering amplitudes for particles in the adjoint rep-

resentation. The straight lines represent hard external states, while the curly lines carry soft or

collinear virtual momenta. At leading color, soft exchanges are confined to wedges between the

hard lines.

constant everywhere. Thus the leading-color IR structure of n-point amplitudes in MSYM

may be rewritten as,

Mn =
n
∏

i=1

[

M[gg→1]

(

si,i+1

µ2
,αs, ϵ

)]1/2

× hn (ki, µ,αs, ϵ) , (4.21)

where hn is no longer a color-space vector.

For a general theory, the Sudakov form factor at scale Q2 can be written as [30]

M[gg→1]
(Q2

µ2
,αs(µ), ϵ

)

= exp

{

1

2

∫ −Q2

0

dξ2

ξ2

[

K[g](αs(µ), ϵ) + G[g]
(

−1, ᾱs

(µ2

ξ2
,αs(µ), ϵ

)

, ϵ
)

+
1

2

∫ µ2

ξ2

dµ̃2

µ̃2
γ[g]

K

(

ᾱs

(µ2

µ̃2
,αs(µ), ϵ

))]

}

, (4.22)

where γ[g]
K denotes the soft or (Wilson line) cusp anomalous dimension, which will produce

a 1/ϵ2 pole after integration. The function K[g] is a series of counterterms (pure poles in ϵ),

while G[g] includes non-singular dependence on ϵ before integration, and produces a 1/ϵ pole

after integration.

In MSYM, αs(µ) is a constant, and the running coupling ᾱs(µ2/µ̃2,αs, ϵ) in 4 − 2ϵ di-

mensions has only trivial (engineering) dependence on the scale,

ᾱs

(µ2

µ̃2
,αs(µ), ϵ

)

= αs ×
(µ2

µ̃2

)ϵ(

4πe−γ
)ϵ

. (4.23)

This simple dependence makes it very easy to perform the integrals over ξ and µ̃.
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Sudakov form factor + finite]
Leading IR singularity -> Cusp anomalous dimension

figure from L. Dixon 1105.0771

For modern dim-reg representation, see:  
Magnea and Sterman 1990; 
Catani 1998,  
Sterman and Tejeda-Yeomans 2002 
Bern, Dixon, Smirnov 2005



4) “Modern” general form factors
Hybrids of on-shell states and off-shell operators:

form factors
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1 Introduction

Significant developments of scattering amplitudes. Off-shell observables such as dilation
operators and correlation functions.

Fn,O(1, . . . , n) =

∫

d4x e−iq·x ⟨p1 . . . pn|O(x)|0⟩

= δ(4)(
n

∑

i=1

pi − q) ⟨p1 . . . pn|O(0)|0⟩ (1.1)

1

⟨p1p2…pn |0⟩ ⟨𝒪1𝒪2…𝒪n⟩
Scattering amplitude Correlation functions



• Maldacena and Zhiboedov (2010) considered high-point form factors 
at strong coupling using AdS/CFT duality. 

• Brandhuber, Spence, Travaglini, GY (2010) and Bork, Kazakov, 
Vartanov (2010) studied high-point form factors at weak coupling. 
MHV structure of form factors:

FMHV

n (1+, .., i�, .., j�, .., n
+; tr(�2)) = �4(

nX

i=1

pi � q)
hiji2

h12i · · · hn1i

Brandhuber, Spence, Travaglini, GY 2010

T-duality

4) “Modern” general form factors



Applications of form factors
• Operator classification and spectrum

• EFT amplitudes

• IR divergences (Sudakov FF)

• Correlation functions (EEC, etc..)

• New hidden structures beyond amplitudes

SciPost Physics Submission
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Figure 1: Master integrals for the planar two-loop minimal form factors.
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Figure 2: Complete set of unitarity cuts for the planar two-loop form factors.

where master integrals Ii correspond to the topology and labeling given in Fig. 1. The master
coefficients ci are what to be computed. The spanning set of cuts used to fix all coefficients
are given in Fig. 2. Note that the two-loop minimal form factors of length-3 operators have
no sub-leading-color contribution, thus the set of planar cuts are enough to fix the full results.
More details can be found in [6].

4 Results and analysis

The master integrals in Fig. 1 are known in terms of 2d harmonic polylogarithms [30, 31].
Together with IBP coefficients, the form factors can be written in explicit functional form,
from which one can extract the wanted physical information.

The bare form factors contain divergences and can be schematically expanded as:

Loop form factor= (Universal IR div.)+ (UV div.)+ (Finite part) , (17)

where the infrared (IR) divergences depend only on the configuration of external on-shell
states, while the UV divergences are related to the operator and coupling renormalization.

Operator renormalization

In dimensional regularization, both IR and UV divergences are regularized by ✏ = (4� D)/2,
and it may seem non-trivial to disentangle the two divergences. Fortunately, this problem can
be easily solved, thanks to the universal structure of IR divergences. In particular, the two-loop
IR can be obtained by the Catani form [32], which is determined by the one-loop form factor
together with some universal functions independent of operartors.

After subtracting IR divergences, the obtained UV divergences can be eliminated by per-
forming operator renormalization. The renormalization constant Z in general takes a matrix
form as:

OR,i = Z j
i OB, j , (18)

since different operators in the same basis can generally mix with each other under renormal-
ization. From the renormalization constant, one can further define the dilation operator as

D= �d log Z
d logµ

. (19)

5

RenormalizationSudakov form factor EFT amplitudes



Form factor Observables

Compute cross sections

Z
dPSn⇥ Form factor

2

Form factors serve a useful testing ground for such studies, and 
for also computing interesting observables such as EEC, etc.

(weight factor)

Applications of form factors



Applications of form factors

Scattering Amplitudes Correlation Functions

Form Factors

O

O1

O2 O3

Figure 1: Form factors provide a bridge between amplitudes and correlation functions.
By imposing on-shell unitarity cuts (indicated by the red dash lines), the amplitudes are
building blocks in form factors, and so are form factors in correlation functions.

It should be fair to say that among these developments, one of the most important ideas is
the use of on-shell methods, such as the spinor helicity formalism [11, 12, 13, 14], the tree-
level recursion relations [15, 16] and the (generalized) unitarity methods [17, 18, 19]. While
scattering amplitudes are central physical quantities in quantum field theory, there are
other important objects, such as gauge invariant operators. Computing their anomalous
dimensions and correlation functions has also been an important subject. A question
that one may ask is: can the modern advances of scattering amplitudes be applied to
more general observables such as anomalous dimensions and correlation functions? At
first sight the answer seems to be negative, because unlike amplitudes, gauge invariant
operators are o↵-shell, therefore, the on-shell methods seem not applicable. Fortunately,
this problem can be overcome with the help of form factors.

Form factors are the matrix elements between on-shell asymptotic states and gauge
invariant operators. The explicit definition of a n-point form factor can be given as

FO,n =

Z
d
D
x e

�iq·x
h1 · · ·n|O(x)|0i = (2⇡)D�(D)

⇣
q �

nX

i=1

pi

⌘
h1 · · ·n|O(0)|0i, (1)

where pi are the on-shell momenta of n asymptotic particle states, and O is a local
operator. By Fourier transformation, q =

P
i pi is the o↵-shell momentum carried by the

operator. Therefore, form factors are partially on-shell and partially o↵-shell quantities,
and they provide a natural bridge connecting the worlds of amplitudes and correlations
functions, as illustrated in Figure 1.

In this review we will give an introduction to form factors in N = 4 super-Yang-
Mills theory (SYM). N = 4 SYM has been the primary model for the discovery and the
developments of AdS/CFT correspondence [20, 21, 22]. It has also been a very important
experimental ground for the modern amplitude developments. The idea of unitarity cut
method was first applied to compute one-loop amplitudes in N = 4 SYM in 1994 by Bern,
Dixon, Durban and Kosower [17, 18]. In 2003 Witten’s groundbreaking work provided a

3

Form factors provide a framework to study many operator 
quantities using powerful on-shell amplitude methods.



Outline
Introduction and background

On-shell methods

Tree-level form factors

Sudakov FF and IR divergences

CK duality and double copy

Operator classification and renormalization

Form factor / Wilson line duality



On-shell methods for amplitudes



Scattering amplitudes

In past 30 years, significant progress has been made in 
the studies of scattering amplitudes.

Amplitudes



Feynman diagram

• universal 
• simple rules 
• intuitive picture

Standard textbook method:



Feynman diagram

n-gluon tree amplitudes:
n 4 5 6 7 8 9 10

# graphs 4 25 220 2485 34300 559405 10525900

Practical application can be very complicated.

Loop amplitudes are even harder.
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Surprising simplicity



n-gluon tree amplitudes:
n 4 5 6 7 8 9 10

# graphs 4 25 220 2485 34300 559405 10525900

n-gluon MHV tree amplitudes: [Parke, Taylor, 1986]

1. Introduction

Quantum field theory is the pillar on which modern physics rests. It is an indispensable
tool from condensed matter physics to cosmology to particle physics and its success in de-
scribing nature has only recently again been demonstrated in the discovery of a Higgs-like
boson at the LHC [1,2]. But still, eighty years after quantum field theories have first been
studied, no four-dimensional, interacting quantum field theory has ever been solved ex-
actly. The lack of exact solutions is partly explained by that fact that standard methods for
the perturbative computation of observables using Feynman diagrams work nicely in prin-
ciple, but quickly become cumbersome beyond the simplest examples, making it difficult
to generate exact data. However, the final result is often much simpler than intermedi-
ate expressions. The prime example for this is the Parke-Taylor formula [3], describing a
colour-ordered n-gluon maximally helicity violating (MHV) scattering amplitude1 at tree
level, which, written in spinor helicity variables, is given by

Atree
n (1+, . . . , i−, . . . , j−, . . . , n+) =

⟨ij⟩4

⟨12⟩ · · · ⟨n1⟩ . (1.1)

This formula is valid for any number n of gluons. The simplicity of this one-line formula is
to be compared with the effort of calculating and summing up O(n!) Feynman diagrams,
every single one being more complicated than the final result. This formula begs for
another, simpler description.

Over the last decade new powerful methods were developed that allow the calculation
of scattering amplitudes without resorting to Feynman diagrams. In fact, the proof of the
Parke-Taylor formula Eq.(1.1) is by now textbook material (see, for example, [4]). This
progress is mostly due to calculations performed in a special theory, N = 4 supersym-
metric Yang-Mills theory with gauge group SU(N), which we abbreviate as N = 4SYM.
This theory is conformally invariant even at the quantum level and is currently the best
candidate for being a completely solvable quantum field theory, at least in the planar
limit N → ∞. In fact, the scaling dimension of certain operators in N = 4SYM can by
now be calculated efficiently using integrability techniques at all values of the coupling
constant [5–10] and it would be desirable to understand how this success can be lifted to
more complicated observables.

After scaling dimensions, scattering amplitudes are the simplest quantities character-
ising a theory. They are of course richer objects than operator dimensions because they
are functions of the kinematical invariants and not just numbers, but they still depend
solely on on-shell degrees of freedom. Another observable closely related to scattering
amplitudes are form factors, which are basically scattering amplitudes with operator in-
sertions and therefore mixtures between off-shell and on-shell degrees of freedom. While

1MHV amplitudes describe the scattering of n outgoing gluons with n− 2 gluons having positive helicity
and 2 gluons having negative helicity. Accordingly, amplitudes with k gluons having negative helicities
are called Nk−2MHV.

Surprising simplicity
Practical application can be very complicated.

Written in spinor helicity formalism (Chinese Magic) 
by Xu, Zhang, Chang 1984



     Classical Polylogarithms
                     for
Amplitudes and Wilson Loops

A.B. Goncharov          M. Spradlin          C. Vergu          A. Volovich

=

[Del Duca, Duhr, Smirnov 2010]

Six-gluon MHV amplitudes in N=4 SYM

(heroic computation)

Surprising simplicity



17 pages results

[Del Duca, Duhr, Smirnov 2010]
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H (0;u1)H

(

1, 0, 1;
u2 + u3 − 1

u3 − 1

)

−

7H (0, 0, 0, 0;u1) − 7H (0, 0, 0, 0;u2) − 7H (0, 0, 0, 0;u3) +
3

2
H

(

0, 0, 0, 1;
u1 + u2 − 1

u2 − 1

)

+

3H (0, 0, 0, 1; (u1 + u2)) +
3

2
H

(

0, 0, 0, 1;
u1 + u3 − 1

u1 − 1

)

+ 3H (0, 0, 0, 1; (u1 + u3)) +

3

2
H

(

0, 0, 0, 1;
u2 + u3 − 1

u3 − 1

)

+ 3H (0, 0, 0, 1; (u2 + u3)) +
9

4
H (0, 0, 1, 0;u1) +

9

4
H (0, 0, 1, 0;u2) +

9

4
H (0, 0, 1, 0;u3) −

1

2
H (0, 1, 0, 0;u1) −

1

2
H (0, 1, 0, 0;u2) −

1

2
H (0, 1, 0, 0;u3) +

1

2
H

(

0, 1, 0, 1;
u1 + u2 − 1

u2 − 1

)

+
1

2
H

(

0, 1, 0, 1;
u1 + u3 − 1

u1 − 1

)

+

1

2
H

(

0, 1, 0, 1;
u2 + u3 − 1

u3 − 1

)

+ H (0, 1, 1, 0;u1) + H (0, 1, 1, 0;u2) + H (0, 1, 1, 0;u3) −

1

4
H

(

0, 1, 1, 1;
u1 + u2 − 1

u2 − 1

)

− 1

4
H

(

0, 1, 1, 1;
u1 + u3 − 1

u1 − 1

)

−

1

4
H

(

0, 1, 1, 1;
u2 + u3 − 1

u3 − 1

)

+ H

(

1, 0, 0, 1;
u1 + u2 − 1

u2 − 1

)

+ H

(

1, 0, 0, 1;
u1 + u3 − 1

u1 − 1

)

+

H

(

1, 0, 0, 1;
u2 + u3 − 1

u3 − 1

)

+ 2H (1, 0, 1, 0;u1) + 2H (1, 0, 1, 0;u2) + 2H (1, 0, 1, 0;u3) +

1

4
H

(

1, 1, 0, 1;
u1 + u2 − 1

u2 − 1

)

+
1

4
H

(

1, 1, 0, 1;
u1 + u3 − 1

u1 − 1

)

+

1

4
H

(

1, 1, 0, 1;
u2 + u3 − 1

u3 − 1

)

+
1

2
H (1, 1, 1, 0;u1) +

1

2
H (1, 1, 1, 0;u2) +

1

2
H (1, 1, 1, 0;u3) −

1

24
π2H (0;u3)H

(

1;
1

u123

)

− 1

24
π2H (0;u1)H

(

1;
1

u231

)

− 1

24
π2H (0;u2)H

(

1;
1

u312

)

+

1

8
π2H (0;u2)H

(

1;
1

v123

)

− 1

8
π2H (0;u3)H

(

1;
1

v123

)

+
1

24
π2H (0;u2)H

(

1;
1
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)

−

1

24
π2H (0;u3)H

(
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1
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)

− 1

24
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(
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(

1;
1
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)
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1
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(
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(
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)
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24
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(
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(
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(
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4
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(
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)

− 1
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(
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(
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)

+
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4
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+
1

6
π2H

(

0, 1;
1

v123

)

− 1

4
H (0;u2) H (0;u3)H
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)

+
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)

+
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)

+
1
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π2H

(
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1
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)
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4
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(
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1
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)

+

1

4
H (0, 0;u1)H

(

0, 1;
1
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)

+
1

4
H (0, 0;u3)H

(

0, 1;
1
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)

+
1

6
π2H

(
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1
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)

−

1

4
H (0;u1)H (0;u2)H

(

0, 1;
1
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)

+
1

4
H (0, 0;u1)H

(
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1
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)

+

1
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(
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1
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)

+
1
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(
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1
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)
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4
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(
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)

+

1

4
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(
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1
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)

+
1
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(
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1
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)

+
1

6
π2H

(
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1

v321

)

−

1

2
H (0;u2)H (0;u3)H

(

1, 1;
1

v123

)

+
1

2
H (0, 0;u2)H

(

1, 1;
1

v123

)

+

1

2
H (0, 0;u3)H

(

1, 1;
1

v123

)

+
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24
π2H
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v123

)

− 1

24
π2H

(

1, 1;
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)

−

1

24
π2H

(

1, 1;
1

v213

)

− 1

2
H (0;u1) H (0;u3)H

(

1, 1;
1

v231

)

+
1

2
H (0, 0;u1)H

(

1, 1;
1

v231

)

+

1

2
H (0, 0;u3)H

(

1, 1;
1

v231

)

+
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24
π2H

(
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1
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)

− 1

2
H (0;u1) H (0;u2)H

(

1, 1;
1
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)

+

1

2
H (0, 0;u1)H

(

1, 1;
1

v312

)

+
1

2
H (0, 0;u2)H

(

1, 1;
1

v312

)

+
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π2H

(
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1
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)

−

1

24
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(
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1
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)

+
1

2
H (0;u2)H

(

0, 0, 1;
1

u123

)

+
1

2
H (0;u3)H

(

0, 0, 1;
1
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)

+

1

2
H (0;u1)H

(
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1

u231

)

+
1

2
H (0;u3)H

(
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1
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)

+
1

2
H (0;u1)H

(
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1
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)

+

1

2
H (0;u2)H

(
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1
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)

+
1

4
H (0;u3)H

(
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1

u123

)

+
1

4
H (0;u1)H

(
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1
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)

+

1
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H (0;u2)H

(
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1
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)

+
1
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H (0;u2)H
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−
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1

4
H (0;u2)H

(

0, 1, 1;
1

v132

)

+
1

4
H (0;u3)H

(

0, 1, 1;
1

v132

)

+
1

4
H (0;u1)H

(

0, 1, 1;
1

v213

)

−

1

4
H (0;u3)H

(

0, 1, 1;
1

v213

)

− 1

4
H (0;u1)H

(

0, 1, 1;
1

v231

)

+
1

4
H (0;u3)H

(

0, 1, 1;
1

v231

)

+

1

4
H (0;u1)H

(

0, 1, 1;
1

v312

)

− 1

4
H (0;u2)H

(

0, 1, 1;
1

v312

)

− 1

4
H (0;u1)H

(

0, 1, 1;
1

v321

)

+

1

4
H (0;u2)H

(

0, 1, 1;
1

v321

)

+
1

4
H (0;u3)H

(

1, 0, 1;
1

u123

)

+
1

4
H (0;u1)H

(

1, 0, 1;
1

u231

)

+

1

4
H (0;u2)H

(

1, 0, 1;
1

u312

)

+
1

4
H (0;u2)H

(

1, 0, 1;
1

v123

)

− 1

4
H (0;u3)H

(

1, 0, 1;
1

v123

)

−

1

4
H (0;u2)H

(

1, 0, 1;
1

v132

)

+
1

4
H (0;u3)H

(

1, 0, 1;
1

v132

)

+
1

4
H (0;u1)H

(

1, 0, 1;
1

v213

)

−

1

4
H (0;u3)H

(

1, 0, 1;
1

v213

)

− 1

4
H (0;u1)H

(

1, 0, 1;
1

v231

)

+
1

4
H (0;u3)H

(

1, 0, 1;
1

v231

)

+

1

4
H (0;u1)H

(

1, 0, 1;
1

v312

)

− 1

4
H (0;u2)H

(

1, 0, 1;
1

v312

)

− 1

4
H (0;u1)H

(

1, 0, 1;
1

v321

)

+

1

4
H (0;u2)H

(

1, 0, 1;
1

v321

)

+ H (0;u2)H
(

1, 1, 1;
1

v123

)

− H (0;u3)H
(

1, 1, 1;
1

v123

)

−

H (0;u1)H
(

1, 1, 1;
1

v231

)

+ H (0;u3)H
(

1, 1, 1;
1

v231

)

+ H (0;u1)H
(

1, 1, 1;
1

v312

)

−

H (0;u2)H
(

1, 1, 1;
1

v312

)

− 3

2
H
(

0, 0, 0, 1;
1

u123

)

− 3

2
H
(

0, 0, 0, 1;
1

u231

)

−

3

2
H
(

0, 0, 0, 1;
1

u312

)

− 3H
(

0, 0, 0, 1;
1

v132

)

− 3H
(

0, 0, 0, 1;
1

v213

)

− 3H
(

0, 0, 0, 1;
1

v321

)

−

1

2
H
(

0, 0, 1, 1;
1

u123

)

− 1

2
H
(

0, 0, 1, 1;
1

u231

)

− 1

2
H
(

0, 0, 1, 1;
1

u312

)

−

1

2
H
(

0, 1, 0, 1;
1

u123

)

− 1

2
H
(

0, 1, 0, 1;
1

u231

)

− 1

2
H
(

0, 1, 0, 1;
1

u312

)

+

1

4
H
(

0, 1, 1, 1;
1

v123

)

+
1

4
H
(

0, 1, 1, 1;
1
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)

+ ζ3H (0;u1) + ζ3H (0;u2) + ζ3H (0;u3) +

5

2
ζ3H (1;u1) +

5

2
ζ3H (1;u2) +

5

2
ζ3H (1;u3) +

1

2
ζ3H

(

1;
1

u123

)

+
1

2
ζ3H

(

1;
1
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+

1

2
ζ3H

(

1;
1
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2
H
(
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1
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H
(
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1
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H
(

1, 0, 0, 1;
1
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+

1

4
ζ3H
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1
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1

v132
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+
1
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ζ3H

(
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+
1

4
ζ3H

(
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1
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)

+
1

4
ζ3H

(

1;
1
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)

+

1

4
ζ3H

(

1;
1
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)

+
1

4
H
(

0, 1, 1, 1;
1

v213

)

+
1

4
H
(
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1
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)

+
1

4
H
(
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1
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)

+

1
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H
(
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1
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+
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(
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1
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1
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(
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1
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+
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(
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4
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R(2)
6,WL(u1, u2, u3) = (H.1)

1
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1

1 − u1
,
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; 1

)

+
1

24
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1
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,

1
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)

+
1
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1
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,

1
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+

1
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+
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)

+
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+
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(
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(
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(
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+
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(
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(
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(
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(
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(
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(
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(
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(
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(
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(
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(
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+
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(
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“multiple(Goncharov)-polylogrithm function”

复杂的四重积分！



[Goncharov, Spradlin, Vergu, Volovich 2010]

a line result in terms of classical polylogarithms!

17 pages =

A much simpler form
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Classical Polylogarithms for Amplitudes and Wilson Loops

A. B. Goncharov,1 M. Spradlin,2 C. Vergu,2 and A. Volovich2
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We present a compact analytic formula for the two-loop six-particle maximally helicity violating
remainder function (equivalently, the two-loop lightlike hexagon Wilson loop) in N = 4 supersym-
metric Yang-Mills theory in terms of the classical polylogarithm functions Lik with cross-ratios of
momentum twistor invariants as their arguments. In deriving our formula we rely on results from
the theory of motives.

INTRODUCTION

The past few years have witnessed revolutionary ad-
vances in our understanding of the structure of scattering
amplitudes, especially in N = 4 supersymmetric Yang-
Mills theory (SYM). It is easy to argue that the seeds
of modern progress were sown already in the 1980s with
the discovery of the Parke-Taylor formula for the sim-
plest nontrivial amplitudes: tree-level maximally helicity
violating (MHV) gluon scattering. The mere existence
of such a simple formula for a quantity which otherwise
would have been prohibitively difficult to calculate us-
ing traditional Feynman diagram methods signalled the
tantalizing possibility that a great vista of unanticipated
structure in scattering amplitudes awaited exploration.

In contrast to the situation at tree level, it is fair to
say that recent progress at loop level has mostly been
evolutionary rather than revolutionary, driven primarily
by faster computers, improved algorithms (both analytic
and numeric), and software for multiloop calculations
which has been made publicly available. Yet we hope
that a great new vista of unexplored structure awaits us
also at loop level in SYM theory.

This paper is concerned with the planar two-loop six-
particle MHV amplitude [1, 2], which in a sense is the
simplest nontrivial SYM loop amplitude. The known in-
frared and collinear behavior of general amplitudes, con-
veniently encapsulated in the ABDK/BDS ansatz [3, 4],
determines the n-particle MHV amplitude at each loop
order L ≥ 2 up to an additive finite function of kinematic

invariants called the remainder function R(L)
n . Given the

presumption of dual conformal invariance [5, 6] for SYM
amplitudes (not yet proven, but supported by all avail-

able evidence [1, 3, 4, 7, 8]), R(L)
n can depend on confor-

mal cross-ratios only. Since there are no cross-ratios for

n = 4, 5, the first nontrivial remainder function is R(2)
6 .

The same function R(2)
6 is also believed [9–12] to arise

as the expectation value of the two-loop lightlike hexagon
Wilson loop in SYM theory [13, 14] (after appropriate
subtraction of ultraviolet divergences, e.g. [15]). Numer-
ical agreement between the two remainder functions was
established in [1, 14]. In a heroic effort, Del Duca, Duhr,
and Smirnov (DDS) explicitly evaluated the appropriate

Wilson loop diagrams to obtain an analytic expression

for R(2)
6 as a 17-page linear combination of generalized

polylogarithm functions [16, 17] (see also [18]).
The motivation for the present work is the belief that

if SYM theory is really as beautiful and rich as recent
developments indicate, then there must exist a more en-

lightening way of expressing the remainder function R(2)
6 .

Ideally, like the Parke-Taylor formula at tree level, the ex-
pression should provide encouragement and guidance as
we seek deeper understanding of SYM at loop level.

We present our new formula for R(2)
6 in the next sec-

tion and then describe the algorithm by which it was
obtained.

THE REMAINDER FUNCTION R
(2)
6

The remainder function R(2)
6 is usually presented as a

function of the three dual conformal cross-ratios

u1 =
s12s45
s123s345

, u2 =
s23s56
s234s123

, u3 =
s34s61
s345s234

, (1)

of the momentum invariants si···j = (ki + · · · + kj)2,
though we will see shortly that cross-ratios of momen-
tum twistor invariants are more natural variables. In
terms of

x±
i = uix

±, x± =
u1 + u2 + u3 − 1±

√
∆

2u1u2u3
, (2)

where ∆ = (u1 + u2 + u3 − 1)2 − 4u1u2u3, we find

R(2)
6 (u1, u2, u3) =

3
∑

i=1

(

L4(x
+
i , x

−
i )−

1

2
Li4(1− 1/ui)

)

− 1

8

(
3∑

i=1

Li2(1 − 1/ui)

)2

+
1

24
J4 +

π2

12
J2 +

π4

72
. (3)

Here we use the functions

L4(x
+, x−) =

1

8!!
log(x+x−)4

+
3
∑

m=0

(−1)m

(2m)!!
log(x+x−)m(ℓ4−m(x+) + ℓ4−m(x−)) (4)
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the discovery of the Parke-Taylor formula for the sim-
plest nontrivial amplitudes: tree-level maximally helicity
violating (MHV) gluon scattering. The mere existence
of such a simple formula for a quantity which otherwise
would have been prohibitively difficult to calculate us-
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tantalizing possibility that a great vista of unanticipated
structure in scattering amplitudes awaited exploration.
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by faster computers, improved algorithms (both analytic
and numeric), and software for multiloop calculations
which has been made publicly available. Yet we hope
that a great new vista of unexplored structure awaits us
also at loop level in SYM theory.

This paper is concerned with the planar two-loop six-
particle MHV amplitude [1, 2], which in a sense is the
simplest nontrivial SYM loop amplitude. The known in-
frared and collinear behavior of general amplitudes, con-
veniently encapsulated in the ABDK/BDS ansatz [3, 4],
determines the n-particle MHV amplitude at each loop
order L ≥ 2 up to an additive finite function of kinematic

invariants called the remainder function R(L)
n . Given the

presumption of dual conformal invariance [5, 6] for SYM
amplitudes (not yet proven, but supported by all avail-

able evidence [1, 3, 4, 7, 8]), R(L)
n can depend on confor-

mal cross-ratios only. Since there are no cross-ratios for

n = 4, 5, the first nontrivial remainder function is R(2)
6 .

The same function R(2)
6 is also believed [9–12] to arise

as the expectation value of the two-loop lightlike hexagon
Wilson loop in SYM theory [13, 14] (after appropriate
subtraction of ultraviolet divergences, e.g. [15]). Numer-
ical agreement between the two remainder functions was
established in [1, 14]. In a heroic effort, Del Duca, Duhr,
and Smirnov (DDS) explicitly evaluated the appropriate

Wilson loop diagrams to obtain an analytic expression

for R(2)
6 as a 17-page linear combination of generalized
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The motivation for the present work is the belief that

if SYM theory is really as beautiful and rich as recent
developments indicate, then there must exist a more en-

lightening way of expressing the remainder function R(2)
6 .

Ideally, like the Parke-Taylor formula at tree level, the ex-
pression should provide encouragement and guidance as
we seek deeper understanding of SYM at loop level.

We present our new formula for R(2)
6 in the next sec-

tion and then describe the algorithm by which it was
obtained.

THE REMAINDER FUNCTION R
(2)
6

The remainder function R(2)
6 is usually presented as a

function of the three dual conformal cross-ratios

u1 =
s12s45
s123s345

, u2 =
s23s56
s234s123

, u3 =
s34s61
s345s234

, (1)

of the momentum invariants si···j = (ki + · · · + kj)2,
though we will see shortly that cross-ratios of momen-
tum twistor invariants are more natural variables. In
terms of

x±
i = uix

±, x± =
u1 + u2 + u3 − 1±

√
∆

2u1u2u3
, (2)

where ∆ = (u1 + u2 + u3 − 1)2 − 4u1u2u3, we find

R(2)
6 (u1, u2, u3) =

3
∑

i=1

(

L4(x
+
i , x

−
i )−

1

2
Li4(1− 1/ui)

)

− 1

8

(
3∑

i=1

Li2(1 − 1/ui)

)2

+
1

24
J4 +

π2

12
J2 +

π4

72
. (3)

Here we use the functions

L4(x
+, x−) =

1

8!!
log(x+x−)4

+
3
∑

m=0

(−1)m

(2m)!!
log(x+x−)m(ℓ4−m(x+) + ℓ4−m(x−)) (4)

2

and

ℓn(x) =
1

2
(Lin(x) − (−1)n Lin(1/x)) , (5)

as well as the quantity

J =
3
∑

i=1

(ℓ1(x
+
i )− ℓ1(x

−
i )). (6)

Note that in the Euclidean region where all ui > 0, the
x+
i never enter the lower half-plane and the x−

i never
enter the upper half-plane. The expression (3) is valid
in the Euclidean region with the understanding that the
branch cuts of Lin(x

+
i ) and Lin(1/x

−
i ) are taken to lie

below the real axis while the branch cuts of Lin(x
−
i ) and

Lin(1/x
+
i ) are taken to lie above the real axis. (The

quantities x+
i x

−
i appearing as arguments of the logs are

always positive.) In writing (3) extreme care has neces-
sarily been taken to ensure the proper analytic structure.
For example one can easily check that J naively simpli-
fies to 1

2 log(x
−/x+), but this relation only holds in the

regions ∆ > 0 or u1 + u2 + u3 < 1. We caution the
reader that any attempt to use any such naive relations,
including the well-known relation between Lin(1/x) and
Lin(x), without careful consideration of the branch struc-
ture, voids our warranty on (3).
Besides its great simplicity, two notable features of (3)

which set it apart from the DDS formula are manifest
symmetry under any permutation of the ui, and the fact
that the expression is valid and readily evaluated for all
positive ui, in particular also outside the unit cube.

DESCRIPTION OF THE ALGORITHM

A Convenient Choice of Variables

The DDS formula is expressed in terms of the classical
polylogarithms Lik as well as a collection of considerably
more complicated multiparameter generalizations stud-
ied by one of the authors [19] and defined recursively by

G(ak, ak−1, . . . ; z) =

∫ z

0
G(ak−1, . . . ; t)

dt

t− ak
(7)

with G(z) ≡ 1, of which the harmonic polylogarithms
familiar in the physics literature [20] are special cases.
The parameters of the various transcendental functions

which appear in the DDS formula involve not just the
cross-ratios (1), but also the more complicated combi-
nations 1 − ui, (1 − ui)/(1 − ui − uj), ui + uj , u

±
jkl =

1−uj−uk+ul±
√
∆

2(1−uj)ul
, and v±jkl =

uk−ul±
√

(uk+ul)2−4ujukul

2(1−uj)uk
.

This large collection of variables is redundant in an ineffi-
cient way, with many rather complicated algebraic iden-
tities amongst them.

Our computation is greatly facilitated by a judicious
choice of variables which trivializes all of these algebraic
relations. We choose to express the three ui by six vari-
ables zi valued in P1 (with an SL(2,C) redundancy) via

u1 =
z23z56
z25z36

, u2 =
z16z34
z14z36

, u3 =
z12z45
z14z25

, (8)

where zij = zi − zj . One virtue of these coordinates is
that ∆ becomes a perfect square, so that the u±

jkl are

rational functions of the zij . (The v±jkl completely drop
out as explained in the following subsection.)
We anticipate that for general n the best variables for

studying the remainder function will be the momentum
twistors of [21]. Indeed the z variables may be thought
of as a particular simplification of momentum twistors
which is valid for the special case n = 6 via the rela-
tion ⟨abcd⟩ ∝ zabzaczadzbczbdzcd. In terms of momentum
twistors

u1 =
⟨1234⟩⟨4561⟩
⟨1245⟩⟨3461⟩, x+

1 = −⟨1456⟩⟨2356⟩
⟨1256⟩⟨3456⟩, etc. (9)

The Symbol of a Transcendental Function

We define a function Tk of transcendentality degree
k as one which can be written as a linear combination
(with rational coefficients) of k-fold iterated integrals of
the form

Tk =

∫ b

a

d logR1 ◦ · · · ◦ d logRk, (10)

where a and b are rational numbers, Ri(t) are rational
functions with rational coefficients and the iterated inte-
grals are defined recursively by

∫ b

a

d logR1 ◦ · · · ◦ d logRn =

∫ b

a

(∫ t

a

d logR1 ◦ · · · ◦ d logRn−1

)

d logRn(t). (11)

The integrals are taken along paths from a to b. When
the Ri are rational functions in several variables the issue
of local path independence (or homotopy invariance) is

important (see [22]), and we have checked that R(2)
6 has

this property.
A useful quantity associated with Tk is its symbol, an

element of the k-fold tensor product of the multiplicative
group of rational functions modulo constants (see [22,
sec. 3]). The symbol of the function shown in (10) is

symbol(Tk) = R1 ⊗ · · ·⊗Rk, (12)

and this definition is extended to all functions of degree
k by linearity.
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require advanced mathematical tools: “Symbol”

Alexander Goncharov



Lessons from modern amplitudes

Methodologically:Conceptually:

Such simplicity is totally unexpected using traditional Feynman diagrams.

New structures and 
new formulations

 New powerful 
computational methods



Modern on-shell methods

Using simple building blocks to construct more complicated ones:

In past 30 years, significant progress has been made in 
the studies of scattering amplitudes.

“A Renaissance of the S-Matrix Program”



Modern amplitudes methods

S-matrix program

Wheeler 1937 
Heisenberg 1943

S-matrix bootstrap by 
Chew, Mandelstam, etc 
1950s-1960s

Modern amplitudes 
On-shell methods



S-matrix program

“The S-matrix is a Lorentz-invariant analytic function of all 
momentum variables with only those singularities required 
by unitarity.” 

“One should try to calculate S-matrix elements directly, 
without the use of field quantities, by requiring them to 
have some general properties that ought to be valid, .…”  

— Eden et.al, “The Analytic S-matrix”, 1966



S-matrix bootstrap

Figure 1: Unitarity implies the optical theorem.

Unitarity equation. For general final states, one can obtain the generalized optical
theorem, see also Figure 1

� (hf |T |ii � hf |T †
|ii) =

X

X

hf |T †
|XihX|T |ii (2.9)

2.2 Analyticity

S-matrix are analytic functions determined by its singularities. These singularities include
poles and branch cuts. The maximally analyticity of S-matrix requires that all such
singularities are given by the unitarity of S-matrix.

Let us consider the four-scalar amplitudes as an example

A4(p1p2 ! p01p
0
2) = hp01p

0
2|T |p1p2i (2.10)

From the unitarity of S-matrix, one has the equation

hp01p
0
2|p1p2i =

X

X

hp01p
0
2|S

†
|XihX|S|p1p2i (2.11)

or equivalently, similar to the derivation of optical theorem, as

hp01p
0
2|T |p1p2i � hp01p

0
2|T

†
|p1p2i =

X

X

hp01p
0
2|T

†
|XihX|T |p1p2i (2.12)

where |Xi represents all possible on-shell physical states.
If the S-matrix satisfies the symmetry

hp01p
0
2|S|p1p2i = hp1p2|S|p

0
1p

0
2i , (2.13)

the left-hand side of (2.12) is twice the imaginary part the unitarity equation becomes

2 ImA4 = DiscA4 = hp01p
0
2|T |p1p2i�hp01p

0
2|T

†
|p1p2i =

X

X

hp01p
0
2|T

†
|XihX|T |p1p2i (2.14)

See [8] for more discussion on this point.
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Figure 1: Unitarity implies the optical theorem.

Unitarity equation. For general final states, one can obtain the generalized optical
theorem, see also Figure 1

� (hf |T |ii � hf |T †
|ii) =

X

X

hf |T †
|XihX|T |ii (2.9)

2.2 Analyticity
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See [8] for more discussion on this point.

6

matrix program: the unitarity, the analyticity, and the dispersion relations. We explain
how these properties can be used to restrict and compute S-matrix. We will also provide
an example of how to use this strategy to compute a Feynman integral. The modern
on-shell methods are di↵erent in many aspects in the practical applications, as well we
will see in next sections. But fundamentally there is a similarity between the two, since
both are based on the on-shell formalism. Therefore, it is instructive to understand both
methods.

2.1 Unitarity

What is unitarity? Unitarity means that the S-matrix is unitarity, which is a mathe-
matical notation. The physical meaning is the “conservation of probability” in a scattering
process.

1 =
X

f

Pfi =
X

f

|hf |S|ii|2 =
X

f

hi|S†
|fihf |S|ii = hi|S†S|ii (2.1)

since this is true for any |ii, we have1

S†S = 1 = SS† . (2.2)

Alternatively, consider the

| (t)i = e Ht
| (0)i = S| (0)i , (2.3)

since
h (0)| (0)i = h (t)| (t)i = h (0)|S†S| (0)i . (2.4)

which also leads to
S†S = 1 = SS† . (2.5)

Optical theorem. The unitarity of S-matrix has powerful implications. For a free
theory, S-matrix is trivially identity matrix, S = 1. So let us consider the non-trivial part
in theory with interactions. We expand

S = 1 + T (2.6)

where T is called the transfer matrix. Unitarity of S-matrix implies that

� (T � T †) = T †T (2.7)

and
� (hi|T |ii � hi|T †

|ii) =
X

X

|hX|T |ii|2 = �i,tot (2.8)

This is the well-known optical theorem.

1Note that the conservation of probability applies to both summing over the final and initial states
which gives S†S = 1 and SS† = 1 respectively.
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Unitarity:

Figure 3: Dispersion integral.

review the Cauchy formula:

F (z) =
1

2⇡

I

C

dz0

z0 � z
F (z0) (2.19)

where C is a contour in the complex plane that does not enclose any singularity of F (z).
Consider again A4 and suppose there is no pole, one can choose the contour as shown

in Figure 3, and it is straightforward to obtain that

A(s) =
1

2⇡

Z +1

s+

ds0

s0 � s
DiscA(s0) +

1

2⇡

Z
s
�

�1

ds0

s0 � s
DiscA(s0) (2.20)

This illustrate one central part of the S-matrix program:

Unitarity =) Im[A]

Dispersion relation =) A

Another important information that is need to solve the dispersion relation is the asymp-
totic behavior of A, which is the goal of Regge theory. We will not discuss about this
here.

An application for computing Feynman integrals

The above strategy can be used to compute Feynman integrals. As an example, we
consider a simple massless scalar bubble integral:

I2(P
2) =

Z
dDl1
(2⇡)D

1

l2(l � P )2
, (2.21)

and we use dimensional regularization with D = 4� 2✏.
The first step is to apply the unitarity to compute the discontinuity

Disc[I2(P
2)] =

Z
dDl1
(2⇡)D

(�2⇡ )�(l2)(�2⇡ )�((l � P )2) = �
(P 2)�✏

(4⇡)2�2✏

⇡
3
2�✏

�(32 � ✏)
. (2.22)
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Dispersion relation:

(plus possible poles 
and asymptotic 
contributions)



A bubble-integral example

Figure 3: Dispersion integral.
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Another important information that is need to solve the dispersion relation is the asymp-
totic behavior of A, which is the goal of Regge theory. We will not discuss about this
here.

An application for computing Feynman integrals

The above strategy can be used to compute Feynman integrals. As an example, we
consider a simple massless scalar bubble integral:

I2(P
2) =

Z
dDl1
(2⇡)D

1

l2(l � P )2
, (2.21)

and we use dimensional regularization with D = 4� 2✏.
The first step is to apply the unitarity to compute the discontinuity

Disc[I2(P
2)] =

Z
dDl1
(2⇡)D

(�2⇡ )�(l2)(�2⇡ )�((l � P )2) = �
(P 2)�✏
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3
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. (2.22)
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Figure 4: The contour integral for the I2.

In the second step, one can compute the full integral using dispersion relation. We consider
s = P 2 < 0, and the contour can be chosen as shown in Figure 4. One has

I2(s) =
1

2⇡

Z 1

0

dt

t� s
Disc[I2(t)] =

(4⇡)
D
2

(�s)�✏
�(✏)�2(1� ✏)

�(2� 2✏)
(2.23)

where one can use the formula
Z 1

0

dt
tx/2 � 2

t� s
= (�s)

x
2�2 �

�x
2
� 1

�
�
�
2�

x

2

�
. (2.24)

One can easily compute this bubble integral using for example Feynman parametrization
and find the same expression. Such dispersion method has played a role in computing
Feynman integrals in early days, and interested reader can find more examples for two-
loop integrals in [9].

3 Pure Yang-Mills theory

In this lecture we will mainly use amplitudes in the pure YM theory as examples for
introducing the on-shell method. This section will give a brief review of the theory which
will also help to set up some notations.

The action of Yang-Mills theory is

L = �
1

4
F a

µ⌫
F a,µ⌫

�
1

2⇠
(@µAa

µ
)2 + c̄a(�@µDab

µ
)cb , (3.1)

which contains the gluon fields Aa

µ
and the ghost fields ca, c̄a. One can derive the Feynman

rules from the action. For example, the gluon propagator is

µ, a ⌫, bp =
�

p2 + ✏

h
⌘µ⌫ � (1� ⇠)

pµp⌫

p2

i
�ab . (3.2)

We give the full set of Feynman rules in Appendix A.
The four-gluon tree-level amplitude is given by summing all possible Feynman dia-

grams. as shown in Figure 5.
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Step 2: apply dispersion relation
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Cutkosky cutting rule:

Let us compute this integral via S-matrix bootstrap:

Figure 4: The contour integral for the I2.
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Modern amplitudes methods

New ingredients in the modern on-shell methods:

S-matrix program is replaced by the Standard Model since 
late1960s.

• Working at perturbative level 
• Generalized unitarity cuts 
• Use of good variables, e.g. spinor helicity 
• New mathematical functional structures (e.g. symbol) 
• Using simple toy models (N=4 SYM) as testing ground

e.g. tree-level BCFW recursion relations, unitarity-cut methods

Bern, Dixon, Durban, Kosower 1994; Britto, Cachazo, Feng, Witten, 2004



Modern amplitudes methods

In the optical theorem, unitarity can be used to compute 
only the imaginary part.  

How can the modern on-shell methods compute the full 
amplitudes via unitarity cuts?

A question:



One-loop structure

Consider one-loop amplitudes:

What we really want



Unitarity cuts
Using simpler tree-level blocks, one can derive the coefficients 
more efficiently:

[Bern, Dixon, Dunbar, Kosower 1994]

[Britto, Cachazo, Feng 2004]

Cutkosky cutting rule:

Figure 8: One-loop amplitudes expanded in scalar basis.

Figure 9: Quadruple-cut of the one-loop four-gluon amplitude.

is able to determine the complete integrands, and after performing integration, they will
give the full amplitudes.

Moreover, often we want to compute the coe�cients of basis integrals. These coef-
ficients are also rational functions. To determine a given coe�cient, it will be enough
to consider some cut channels rather than the full amplitudes. Once the coe�cients are
obtained, one can multiply them with the basis integrals, and in this way, one recovers
the full amplitudes.

Below we will use explicit examples to manifest these ideas. We mostly focus on the
one-loop examples in pure YM theory. For the higher-loop cases, we will focus on the
N = 4 SYM theory.

5.1 One-loop amplitudes

The massless one-loop amplitudes can be always expanded in the term of a set of scalar
integral basis as shown in Figure 8.

The basis integrals are independent of the specific theory and are also obtained once-
for-all. The truly theory-dependent information is contained in the coe�cients, which are
the main goal of the computation.

5.1.1 Quadruple cuts

Let us first consider the simple quadruple cut for a four-gluon amplitude.

0 = l21 = (l1 � p1)
2 = (l1 � p1 � p2)

2 = (l1 + p4)
2 . (5.2)

The four cut constraints are enough to fix the four-dimensional loop momentum. There
are two solutions

l[1]1 =
[12]

[42]
�1�̃4 , l[2]1 =

h12i

h42i
�4�̃1 , (5.3)

18

generalized multiple cuts



Loop integrands
Both the basis coefficients and integrand are rational functions, 
once they are obtained, one has the information for the full 
amplitudes. 



“On-shell” method

“Modern”on-shell method

Minimal blocks Tree-level Loop-level

3pt Amp 4pt High-point

BCFW CSW

1-loop
High-loop

Integrand

Unitarity-IBP



Towards form factors

form factors
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1 Introduction

Significant developments of scattering amplitudes. Off-shell observables such as dilation
operators and correlation functions.

Fn,O(1, . . . , n) =

∫

d4x e−iq·x ⟨p1 . . . pn|O(x)|0⟩

= δ(4)(
n

∑

i=1

pi − q) ⟨p1 . . . pn|O(0)|0⟩ (1.1)

1

⟨p1p2…pn |0⟩ ⟨𝒪1𝒪2…𝒪n⟩
Scattering amplitude Correlation functions

Partially on-shell, partially off-shell:



Outline
Introduction and background

On-shell methods

Tree-level form factors

Sudakov FF and IR divergences

CK duality and double copy

Operator classification and renormalization

Form factor / Wilson line duality



Tree-level form factors



A warm-up exampleA warm-up

(LSZ reduction)

Scattering amplitudes in massless scalar theory with      interaction:



A warm-up exampleA warm-up

LSZ reduction for the first two fields, but 
only Fourier transformation for the third 

How about LSZ reduction for part of the fields?



A warm-up exampleA warm-up

LSZ reduction for elementary fields, 
Fourier transformation for the operator

More interesting case with operator inserted:

+ (t, u channel like diagrams)



MHV form factor ?MHV form factor?
MHV (color ordered) amplitudes (Parke-Taylor): 

(firstly found by computing Feynman diagrams)

Do we have MHV formula for (color ordered) form factor ?

A four-point example (in N=4):



MHV form factors !MHV form factor

MHV like structure implies the underlying simplicity of form factor !

MHV rules, BCFW recursion relation, unitarity method can be applied 
efficiently.



Minimal tree form factors

Fn,O(1, . . . , n) =

∫

d4x e−iq·x ⟨p1 . . . pn|O(x)|0⟩

= δ(4)(
n

∑

i=1

pi − q) ⟨p1 . . . pn|O(0)|0⟩ (1.2)

We have

O(x) = eiP ·xO(0)e−iP ·x (1.3)

2 Form factor of stress tensor multiplet

2.1 MHV form factor

MHV form factor:

FMHV
n (1, . . . , n) = (2.1)

Feynman diagrams.

Why it is so simple?

(1) Why MHV amplitudes is so simple? Twistor action. Constraints: collinear. (2)
MHV form factor is because that the operator is part of the Lagrangian.

Connection to Higgs amplitudes. All negative helicity gluon form factor.

2.2 Super form factor

Super amplitudes:

AMHV(1, 2, . . . , n) =
δ(4)(

∑n
i=1 pi)δ

(8)(
∑n

i=1 λiηi)

⟨1 2⟩⟨2 3⟩ . . . ⟨n 1⟩ . (2.2)

where the external states are given by Nair’s superfield:

Φ(p, η) = g+(p) + ηAψ̄A(p) +
ηAηB

2
φAB(p) +

ηAηBηD

3!
ϵABCDψ

D(p) + η1η2η3η4g−(p) .

(2.3)

This is based on the super Ward identity:

0 = ⟨0|[Q,Φ1Φ2 . . .Φn]|0⟩ =
n

∑

i=1

⟨0|Φ1 . . . [Q,Φi] . . .Φn]|0⟩ , (2.4)

and

[QAα,Φ(p, η)] = λαηAΦ(p, η) . (2.5)

2

Table 2. Dictionary between operators and on-shell spinors

operator Dµ Fµ⌫

kinematics pµ pµ"⌫ � p⌫"µ

Table 3. Dictionary between operators and on-shell spinors

operator D↵̇↵ f↵� f̄↵̇�̇
spinor �̃↵̇�↵ �↵�� ��̃↵̇�̃�̇

1. First we classify primitive operators which contain no DD contraction.

2. After primitive operators being classified, one can then generate other (non-primitive)

operators by enumerating inequivalent ways of DD pair insertion into primitive ones.

3. While independent operators obtained from inserting DD pairs into primitive ones

already form a set of basis, they are not a good choice since we require descendants to

be included. One can apply identities between descendants and above basis and solve

for part of them in terms of descendants.

4. For length-3 case, we also organize the basis into fabc and dabc sectors, to manifest the

symmetry properties.

5. Finally, to obtain a full basis at a given dimension, one needs to sum operators of

all possible length. For example, for dimension-8 case, operators up to length-4 all

contribute.

2.3 On-shell spinor helicity method

An alternative way to do the classification is to make use of on-shell technique and read

properties of operators from their form factors. We will apply the dictionary relation between

operators and their tree-level minimal form factors and translate all the operator information

into spinor helicity formalism.

Operator-spinor dictionary

A minimal tree-level form factor means the number of external gluons is equal to the length

of the operator. One can establish a dictionary from an operator to its tree-level minimal

form factor [53–55]:

OL , FOL,L(1, . . . , L) , (2.26)

especially each single D and F contained by the operator are mapped to certain spinor

structures, as shown in Table 3.

– 11 –

One can translate any local operator into “on-shell” kinematics !

These are called minimal form factors.



Spinor helicity formalism
Massless momentum:

insert

杨刚

Nc → ∞ with g2 = g2YM/16π
2 fixed

Kij = j(−1)i(j+1)

∫

∞

0

dt

t

Ji(2gt)Jj(2gt)

et − 1

Γcusp = 4g2 −
4π2

3
g4 +

44π4

45
g6 − 8

(

4ζ23 +
73

630
π6
)

+O(g10)

Γcusp = 2g −
3 log 2

2π
+O(1/g)

〈

Tr P exp
(

i

∮

C

dx · A(x)
)〉

∼ (ΛUV)
Γcusp(g,ϑ)

α-representation: G(α) = U(α) + F (α)

F (ℓ)
n =

∑

Γi

∫ ℓ
∏

j=1

dDkj
1

Si

Ci Ni
∏

a Da

pµ → pαα̇ = pµσ
µ
αα̇ =

(

p0 + p3 p1 − ip2
p1 + ip2 p0 − p3

)

pµp
µ = 0 → pαα̇ = λαλ̃α̇

ε(−)
i,αα̇ =

λi ξ̃

[λ̃i ξ̃]
, ε(+)

i,αα̇ =
ξ λ̃i
⟨ξλi⟩

tr(FαβF
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Spinor helicity formalism
For N=4 SYM, the superconformal group is:

On-shell N=4 superfield (for all helicity states):

We have

O(x) = eiP ·xO(0)e−iP ·x (1.2)

2 Form factor of stress tensor multiplet

2.1 MHV form factor

MHV form factor:

FMHV
n (1, . . . , n) = (2.1)

Feynman diagrams.

Why it is so simple?

(1) Why MHV amplitudes is so simple? Twistor action. Constraints: collinear. (2)
MHV form factor is because that the operator is part of the Lagrangian.

Connection to Higgs amplitudes. All negative helicity gluon form factor.

2.2 Super form factor

Super amplitudes:

AMHV(1, 2, . . . , n) =
δ(4)(

∑n
i=1 pi)δ

(8)(
∑n

i=1 λiηi)

⟨1 2⟩⟨2 3⟩ . . . ⟨n 1⟩ . (2.2)

where the external states are given by Nair’s superfield:

Φ(p, η) = g+(p) + ηAψ̄A(p) +
ηAηB

2
φAB(p) +

ηAηBηD

3!
ϵABCDψ

D(p) + η1η2η3η4g−(p) .

(2.3)

This is based on the super Ward identity:

0 = ⟨0|[Q,Φ1Φ2 . . .Φn]|0⟩ =
n

∑

i=1

⟨0|Φ1 . . . [Q,Φi] . . .Φn]|0⟩ , (2.4)

and

[QAα,Φ(p, η)] = λαηAΦ(p, η) . (2.5)

Note that we have chosen a chiral representation. In component states, we obtain

[QAα, g+] = 0 , [QAα, ψ̄B(p)] = −δABλαg+ , [QAα,φBC ] = λα[δAB ψ̄C − δAC ψ̄B] ,

[QAα,ψE ] = −λαφAE , [QAα, g−] = −λαψA . (2.6)
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(Super) MHV amplitudes:

Fn,O(1, . . . , n) =

∫

d4x e−iq·x ⟨p1 . . . pn|O(x)|0⟩

= δ(4)(
n

∑

i=1

pi − q) ⟨p1 . . . pn|O(0)|0⟩ (1.1)

We have

O(x) = eiP ·xO(0)e−iP ·x (1.2)

2 Form factor of stress tensor multiplet

2.1 MHV form factor

MHV form factor:

FMHV
n (1, . . . , n) = (2.1)

Feynman diagrams.

Why it is so simple?

(1) Why MHV amplitudes is so simple? Twistor action. Constraints: collinear. (2)
MHV form factor is because that the operator is part of the Lagrangian.

Connection to Higgs amplitudes. All negative helicity gluon form factor.

2.2 Super form factor

Super amplitudes:

AMHV(1, 2, . . . , n) =
δ(4)(

∑n
i=1 pi)δ

(8)(
∑n

i=1 λiηi)

⟨1 2⟩⟨2 3⟩ . . . ⟨n 1⟩ . (2.2)

where the external states are given by Nair’s superfield:

Φ(p, η) = g+(p) + ηAψ̄A(p) +
ηAηB

2
φAB(p) +

ηAηBηD

3!
ϵABCDψ

D(p) + η1η2η3η4g−(p) .

(2.3)

This is based on the super Ward identity:

0 = ⟨0|[Q,Φ1Φ2 . . .Φn]|0⟩ =
n

∑

i=1

⟨0|Φ1 . . . [Q,Φi] . . .Φn]|0⟩ , (2.4)

2



Gauge invariant operators

Local gauge invariant operators are constructed as traces of 
covariant fields.

Is there a supersymmetric generalization for form factors? We need to understand
the supersymmetric property of the operators.

Super algebra:

[QAα,φBC ] = i
√
2(δABψ

α
C − δACψ

α
B) ,

[QAα,ψBβ ] = δABF
α
β + igYMδ

α
β [φBC ,φ

CA] ,

[QAα, Fβγ] =
√
2δαβ [φ

AB,ψBγ ] + (β ↔ γ) . (2.7)

Chiral multiplet:

T (x, θ−) = eQ
−αθ

−αTr(φ−−φ−−)

= Tr(φ−−φ−−)+

(2.8)

The story here is to generalize the Ward identity to form factors.

2.3 Color-kinematic duality

2.4 A dual description of form factor

Evidences:

One loop duality between form factor and Wilson line. (open question: truncation
v.s. gauge invariance, prescription at higher loops)

Dual MHV diagrams.

Non-planarity. Cylinder picture.

3 Form factor of general operators

3.1 Single trace operators

The single-trace local operators:

O(x) = Tr(W(m1)
1 W(m2)

2 . . .W(mn)
n )(x) , (3.1)

where the letters Wi can be any of the following field

φAB , Fαβ , F̄α̇β̇ , ψ̄α̇A , ψαABC , (3.2)

Furthermore we can dress each letter with covariant derivative

W(m) := DmW , Dαα̇W = ∂αα̇W − igYM[Aαα̇, W] . (3.3)
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In free theory, i.e. gYM = 0, we have

W(n)
i = ∂n Wi . (3.4)

The above construction of operators is rather redundant.

Due to [Dµ, Dν ] = Fµν , it is enough to consider only the symmetric product of Dµ

acting on any field. Furthermore, using equations of motions and Bianchi identities,
for example,

DµFµν = 0 , or DµDµφ = nonderivative-terms , (3.5)

one can git rid of those combination of covariant derivative terms.

3.2 Renormalization and operator mixing

Renormalization constant. Dilatation operators.

Oren = Z · Obar (3.6)

In general the renormalization constant Z is a matrix, such that different operators
are mixed

OA
ren = ZA

BOB
bar . (3.7)

This can be seen from

Renormalization group equation:

logZ(g2, ϵ) =
1

2ϵ

∫ g2 γ(t)

t
dt , (3.8)

or equivalently

γ =
∞
∑

ℓ=1

g2γ(ℓ) = 2ϵg2
∂

∂g2
logZ . (3.9)

For the case of non-eigenstates, one has the matrix version

δD =
∞
∑

ℓ=1

g2δD(ℓ) = 2ϵg2Z−1 ∂

∂g2
Z . (3.10)

Expanding to two-loop order we obtain:

δD(1) = 2ϵZ(1) , δD(2) = 4ϵ
(

Z(2) − 1

2
Z(1) · Z(1)

)

. (3.11)
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Operator in terms of Oscillators
The operators may be represented through states of 
oscillators as follows:3.3 Oscillator picture

F̄α̇β̇ −−−−→ b†α̇b†β̇ |0⟩
ψ̄α̇A −−−−→ b†α̇d†A|0⟩
φAB −−−−→ d†Ad†B|0⟩
ψαABC −−−−→ a†αd†Ad†Bd†C |0⟩
Fαβ −−−−→ a†αa†βd†1d†2d†3d†4|0⟩
Dαα̇ −−−−→ a†αb†α̇|0⟩

3.4 Form factor picture

General dictionary between operators and minimal tree form factors:

F̄α̇β̇ λ̃α̇λ̃β̇

ψ̄α̇A λ̃α̇ηA

φAB ηAηB

ψαABC ∼ ψD
α λαηAηBηC

Fαβ λαλβη1η2η3η4

Dαα̇ = ∂αα̇ λαλ̃α̇ (3.12)

F̄α̇β̇
g+−−−−→ λ̃α̇λ̃β̇

ψ̄α̇A
ψ̄α̇A−−−−−→ λ̃α̇ηA

φAB
φAB−−−−−→ ηAηB

ψαABC
ψαABC−−−−−−−→ λαηAηBηC

Fαβ
g
−−−−−→ λαλβη1η2η3η4

Dαα̇ −−−−→ λαλ̃α̇

Note that Fαβ corresponds to out-going negative helicity gluon state, and Fα̇β̇ to
out-going positive helicity gluon state. This can be seen as follows. First, we decompose
the field strength Fµν as self-dual and anti-self-dual parts:

Fµν → ϵα̇β̇Fαβ + ϵαβF̄α̇β̇ , (3.13)

and more explicitly

Fαβ = ϵα̇β̇
(

∂αα̇Aββ̇ − ∂ββ̇Aαα̇

)

, Fα̇β̇ = ϵαβ
(

∂αα̇Aββ̇ − ∂ββ̇Aαα̇

)

. (3.14)

Next, we recall that the polarisation vectors of gluon are given as:

ε−αα̇ =
λαξ̃α̇

[λ ξ̃]
, ε+αα̇ =

ξαλ̃α̇

⟨ξ λ̃⟩
. (3.15)
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3.3 Oscillator picture

F̄α̇β̇ −−−−→ b†α̇b†β̇ |0⟩
ψ̄α̇A −−−−→ b†α̇d†A|0⟩
φAB −−−−→ d†Ad†B|0⟩
ψαABC −−−−→ a†αd†Ad†Bd†C |0⟩
Fαβ −−−−→ a†αa†βd†1d†2d†3d†4|0⟩
Dαα̇ −−−−→ a†αb†α̇|0⟩

tr(FαβF
αβ) → a†α1 a†β1 (d†

1)
4a†2αa

†
2β(d

†
2)

4|0⟩ (3.12)

3.4 Form factor picture

General dictionary between operators and minimal tree form factors:

F̄α̇β̇
g+−−−−→ λ̃α̇λ̃β̇

ψ̄α̇A
ψ̄α̇A−−−−−→ λ̃α̇ηA

φAB
φAB−−−−−→ ηAηB

ψαABC
ψαABC−−−−−−−→ λαηAηBηC

Fαβ
g
−−−−−→ λαλβη1η2η3η4

Dαα̇ −−−−→ λαλ̃α̇

The correspondence to the oscillator picture is simply

a† ∼ λ , b† ∼ λ̃ , d† ∼ η (3.13)

However, the interpretation changes significantly.

tr(FαβF
αβ) → λα1λ

β
1λ2αλ2β(η1)

4(η2)
4 = ⟨1 2⟩2(η1)4(η2)4 (3.14)

tr(F̄ β̇
α̇ F̄ γ̇

β̇
F̄ α̇
γ̇ ) → λ̃α̇1 λ̃1β̇λ̃

β̇
2 λ̃2γ̇ λ̃

γ̇
3 λ̃3α̇ = [1 2][2 3][3 1] (3.15)

tr(F̄α̇β̇F̄
α̇β̇) → λ̃α̇1 λ̃

β̇
1 λ̃2α̇λ̃2β̇ = [1 2]2 (3.16)

tr(F β
α F γ

β F α
γ ) → λα1λ1βλ

β
2λ2γλ

γ
3λ3α(η1)

4(η2)
4(η3)

4 = ⟨1 2⟩⟨2 3⟩⟨3 1⟩(η1)4(η2)4(η3)4

(3.17)

Note that Fαβ corresponds to out-going negative helicity gluon state, and Fα̇β̇ to
out-going positive helicity gluon state. This can be seen as follows. First, we decompose
the field strength Fµν as self-dual and anti-self-dual parts:

Fµν → ϵα̇β̇Fαβ + ϵαβF̄α̇β̇ , (3.18)
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Operators and on-shell kinematics
In terms of spinor helicity variables:

3.3 Oscillator picture

3.4 Form factor picture
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Note that Fαβ corresponds to out-going negative helicity gluon state, and Fα̇β̇ to out-
going positive helicity gluon state. This can be seen as follows. First, we decompose
the field strength Fµν as self-dual and anti-self-dual parts:

Fµν → ϵα̇β̇Fαβ + ϵαβF̄α̇β̇ , (3.14)

and more explicitly

Fαβ = ϵα̇β̇
(

∂αα̇Aββ̇ − ∂ββ̇Aαα̇

)

, Fα̇β̇ = ϵαβ
(

∂αα̇Aββ̇ − ∂ββ̇Aαα̇

)

. (3.15)
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3.3 Oscillator picture
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φAB −−−−→ d†Ad†B|0⟩
ψαABC −−−−→ a†αd†Ad†Bd†C |0⟩
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g+−−−−→ λ̃α̇λ̃β̇

ψ̄α̇A
ψ̄α̇A−−−−−→ λ̃α̇ηA

φAB
φAB−−−−−→ ηAηB

ψαABC
ψαABC−−−−−−−→ λαηAηBηC

Fαβ
g
−−−−−→ λαλβη1η2η3η4

Dαα̇ −−−−→ λαλ̃α̇

The rule is simply

a† ∼ λ , b† ∼ λ̃ , d† ∼ η (3.12)

Note that Fαβ corresponds to out-going negative helicity gluon state, and Fα̇β̇ to
out-going positive helicity gluon state. This can be seen as follows. First, we decompose
the field strength Fµν as self-dual and anti-self-dual parts:

Fµν → ϵα̇β̇Fαβ + ϵαβF̄α̇β̇ , (3.13)

and more explicitly

Fαβ = ϵα̇β̇
(

∂αα̇Aββ̇ − ∂ββ̇Aαα̇

)

, Fα̇β̇ = ϵαβ
(

∂αα̇Aββ̇ − ∂ββ̇Aαα̇

)

. (3.14)

Next, we recall that the polarisation vectors of gluon are given as:

ε−αα̇ =
λαξ̃α̇

[λ ξ̃]
, ε+αα̇ =

ξαλ̃α̇

⟨ξ λ̃⟩
. (3.15)

Finally, note that in the Feynman diagram computation, after Wick contraction and
LSZ reduction, Aαα̇ in (3.14) is effectively replaced by polarisation vectors. Replacing
also ∂αα̇ by λαλ̃α̇, we reproduce the relation given in (3.12). Similar argument applies
for fermions.

5

Compare to the oscillator picture:



Operators and form factors
Applying the rules:

3.3 Oscillator picture

3.4 Form factor picture

General dictionary between operators and minimal tree form factors:

F̄α̇β̇ λ̃α̇λ̃β̇

ψ̄α̇A λ̃α̇ηA

φAB ηAηB
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α λαηAηBηC

Fαβ λαλβη1η2η3η4

Dαα̇ = ∂αα̇ λαλ̃α̇ (3.12)
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Note that Fαβ corresponds to out-going negative helicity gluon state, and Fα̇β̇ to out-
going positive helicity gluon state. This can be seen as follows. First, we decompose
the field strength Fµν as self-dual and anti-self-dual parts:

Fµν → ϵα̇β̇Fαβ + ϵαβF̄α̇β̇ , (3.14)

and more explicitly

Fαβ = ϵα̇β̇
(

∂αα̇Aββ̇ − ∂ββ̇Aαα̇

)

, Fα̇β̇ = ϵαβ
(

∂αα̇Aββ̇ − ∂ββ̇Aαα̇

)

. (3.15)
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The RHS exactly reproduce the (minimal) form factor results:
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1 Introduction

Significant developments of scattering amplitudes. Off-shell observables such as dilation
operators and correlation functions.

Fn,O(1, . . . , n) =

∫

d4x e−iq·x ⟨p1 . . . pn|O(x)|0⟩ = δ(4)(
n

∑

i=1

pi − q) ⟨p1 . . . pn|O(0)|0⟩

(1.1)

1

3.3 Oscillator picture

F̄α̇β̇ −−−−→ b†α̇b†β̇ |0⟩
ψ̄α̇A −−−−→ b†α̇d†A|0⟩
φAB −−−−→ d†Ad†B|0⟩
ψαABC −−−−→ a†αd†Ad†Bd†C |0⟩
Fαβ −−−−→ a†αa†βd†1d†2d†3d†4|0⟩
Dαα̇ −−−−→ a†αb†α̇|0⟩

3.4 Form factor picture

General dictionary between operators and minimal tree form factors:

F̄α̇β̇
g+−−−−→ λ̃α̇λ̃β̇

ψ̄α̇A
ψ̄α̇A−−−−−→ λ̃α̇ηA

φAB
φAB−−−−−→ ηAηB

ψαABC
ψαABC−−−−−−−→ λαηAηBηC

Fαβ
g
−−−−−→ λαλβη1η2η3η4

Dαα̇ −−−−→ λαλ̃α̇

The correspondence to the oscillator picture is simply

a† ∼ λ , b† ∼ λ̃ , d† ∼ η (3.12)

However, the interpretation changes significantly.

tr(F̄αβF
αβ) → λα1λ

β
1λ2αλ2β(η1)

4(η2)
4 = ⟨1 2⟩2(η1)4(η2)4 (3.13)

tr(F̄ β̇
α̇ F̄ γ̇

β̇
F̄ α̇
γ̇ ) → λ̃α̇1 λ̃1β̇λ̃

β̇
2 λ̃2γ̇ λ̃

γ̇
3 λ̃3α̇ = [1 2][2 3][3 1] (3.14)

tr(F̄α̇β̇F̄
α̇β̇) → λ̃α̇1 λ̃

β̇
1 λ̃2α̇λ̃2β̇ = [1 2]2 (3.15)

tr(F β
α F γ

β F α
γ ) → λα1λ1βλ

β
2λ2γλ

γ
3λ3α(η1)

4(η2)
4(η3)

4 = ⟨1 2⟩⟨2 3⟩⟨3 1⟩(η1)4(η2)4(η3)4

(3.16)

Note that Fαβ corresponds to out-going negative helicity gluon state, and Fα̇β̇ to
out-going positive helicity gluon state. This can be seen as follows. First, we decompose
the field strength Fµν as self-dual and anti-self-dual parts:

Fµν → ϵα̇β̇Fαβ + ϵαβF̄α̇β̇ , (3.17)

and more explicitly

Fαβ = ϵα̇β̇
(

∂αα̇Aββ̇ − ∂ββ̇Aαα̇

)

, Fα̇β̇ = ϵαβ
(

∂αα̇Aββ̇ − ∂ββ̇Aαα̇

)

. (3.18)
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Note that Fαβ corresponds to out-going negative helicity gluon state, and Fα̇β̇ to
out-going positive helicity gluon state. This can be seen as follows. First, we decompose
the field strength Fµν as self-dual and anti-self-dual parts:
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Fn,O(1, . . . , n) =

∫

d4x e−iq·x ⟨p1 . . . pn|O(x)|0⟩

= δ(4)(
n

∑

i=1

pi − q) ⟨p1 . . . pn|O(0)|0⟩ (1.2)

We have

O(x) = eiP ·xO(0)e−iP ·x (1.3)

2 Form factor of stress tensor multiplet

2.1 MHV form factor

MHV form factor:

FMHV
n (1, . . . , n) = (2.1)

Feynman diagrams.

Why it is so simple?

(1) Why MHV amplitudes is so simple? Twistor action. Constraints: collinear. (2)
MHV form factor is because that the operator is part of the Lagrangian.

Connection to Higgs amplitudes. All negative helicity gluon form factor.

2.2 Super form factor

Super amplitudes:

AMHV(1, 2, . . . , n) =
δ(4)(

∑n
i=1 pi)δ

(8)(
∑n

i=1 λiηi)

⟨1 2⟩⟨2 3⟩ . . . ⟨n 1⟩ . (2.2)

where the external states are given by Nair’s superfield:

Φ(p, η) = g+(p) + ηAψ̄A(p) +
ηAηB

2
φAB(p) +

ηAηBηD

3!
ϵABCDψ

D(p) + η1η2η3η4g−(p) .

(2.3)

This is based on the super Ward identity:

0 = ⟨0|[Q,Φ1Φ2 . . .Φn]|0⟩ =
n

∑

i=1

⟨0|Φ1 . . . [Q,Φi] . . .Φn]|0⟩ , (2.4)

and

[QAα,Φ(p, η)] = λαηAΦ(p, η) . (2.5)

2
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Applications of form factors
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Figure 1: Master integrals for the planar two-loop minimal form factors.
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Figure 2: Complete set of unitarity cuts for the planar two-loop form factors.

where master integrals Ii correspond to the topology and labeling given in Fig. 1. The master
coefficients ci are what to be computed. The spanning set of cuts used to fix all coefficients
are given in Fig. 2. Note that the two-loop minimal form factors of length-3 operators have
no sub-leading-color contribution, thus the set of planar cuts are enough to fix the full results.
More details can be found in [6].

4 Results and analysis

The master integrals in Fig. 1 are known in terms of 2d harmonic polylogarithms [30, 31].
Together with IBP coefficients, the form factors can be written in explicit functional form,
from which one can extract the wanted physical information.

The bare form factors contain divergences and can be schematically expanded as:

Loop form factor= (Universal IR div.)+ (UV div.)+ (Finite part) , (17)

where the infrared (IR) divergences depend only on the configuration of external on-shell
states, while the UV divergences are related to the operator and coupling renormalization.

Operator renormalization

In dimensional regularization, both IR and UV divergences are regularized by ✏ = (4� D)/2,
and it may seem non-trivial to disentangle the two divergences. Fortunately, this problem can
be easily solved, thanks to the universal structure of IR divergences. In particular, the two-loop
IR can be obtained by the Catani form [32], which is determined by the one-loop form factor
together with some universal functions independent of operartors.

After subtracting IR divergences, the obtained UV divergences can be eliminated by per-
forming operator renormalization. The renormalization constant Z in general takes a matrix
form as:

OR,i = Z j
i OB, j , (18)

since different operators in the same basis can generally mix with each other under renormal-
ization. From the renormalization constant, one can further define the dilation operator as

D= �d log Z
d logµ

. (19)
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RenormalizationSudakov form factor EFT amplitudes

Scattering Amplitudes Correlation Functions

Form Factors

O

O1

O2 O3

Figure 1: Form factors provide a bridge between amplitudes and correlation functions.
By imposing on-shell unitarity cuts (indicated by the red dash lines), the amplitudes are
building blocks in form factors, and so are form factors in correlation functions.

It should be fair to say that among these developments, one of the most important ideas is
the use of on-shell methods, such as the spinor helicity formalism [11, 12, 13, 14], the tree-
level recursion relations [15, 16] and the (generalized) unitarity methods [17, 18, 19]. While
scattering amplitudes are central physical quantities in quantum field theory, there are
other important objects, such as gauge invariant operators. Computing their anomalous
dimensions and correlation functions has also been an important subject. A question
that one may ask is: can the modern advances of scattering amplitudes be applied to
more general observables such as anomalous dimensions and correlation functions? At
first sight the answer seems to be negative, because unlike amplitudes, gauge invariant
operators are o↵-shell, therefore, the on-shell methods seem not applicable. Fortunately,
this problem can be overcome with the help of form factors.

Form factors are the matrix elements between on-shell asymptotic states and gauge
invariant operators. The explicit definition of a n-point form factor can be given as

FO,n =

Z
d
D
x e

�iq·x
h1 · · ·n|O(x)|0i = (2⇡)D�(D)

⇣
q �

nX

i=1

pi

⌘
h1 · · ·n|O(0)|0i, (1)

where pi are the on-shell momenta of n asymptotic particle states, and O is a local
operator. By Fourier transformation, q =

P
i pi is the o↵-shell momentum carried by the

operator. Therefore, form factors are partially on-shell and partially o↵-shell quantities,
and they provide a natural bridge connecting the worlds of amplitudes and correlations
functions, as illustrated in Figure 1.

In this review we will give an introduction to form factors in N = 4 super-Yang-
Mills theory (SYM). N = 4 SYM has been the primary model for the discovery and the
developments of AdS/CFT correspondence [20, 21, 22]. It has also been a very important
experimental ground for the modern amplitude developments. The idea of unitarity cut
method was first applied to compute one-loop amplitudes in N = 4 SYM in 1994 by Bern,
Dixon, Durban and Kosower [17, 18]. In 2003 Witten’s groundbreaking work provided a

3
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IR divergences
Infrared structure of amplitudes:

Following refs. [26, 30], we expand K[g], γ[g]
K , and G[g] in powers of αs,

K[g](αs, ϵ) =
∞
∑

l=1

1

2lϵ
al γ̂(l)

K , (4.24)

γ[g]
K

(

ᾱs

(µ2

µ̃2
,αs, ϵ

))

=
∞
∑

l=1

al
(µ2

µ̃2

)lϵ

γ̂(l)
K , (4.25)

G[g]
(

−1, ᾱs

(µ2

ξ2
,αs, ϵ

)

, ϵ
)

=
∞
∑

l=1

al
(µ2

ξ2

)lϵ

Ĝ(l)
0 , (4.26)

where a is defined in eq. (4.8) and the hats are a reminder that the leading-Nc dependence

has also been removed in eqs. (4.24), (4.25) and (4.26). That is, the perturbative coefficients

(defined with expansion parameter αs/(2π)) have a leading-color dependence on Nc of,

γ(l)
K = γ̂(l)

K N l
c , G(l)

0 = Ĝ(l)
0 N l

c . (4.27)

We can suppress the [g] label because the N = 4 MHV amplitudes are all related by

supersymmetry Ward identities [57], so that the corresponding functions for external gluinos,

etc., are the same as for gluons. Equation (4.24) follows from solving eqs. (2.12) and (2.13)

of ref. [30] in the conformal case (β ≡ 0). In this case, K[g] contains only single poles in ϵ,

which are simply related to γ[g]
K .

The integral over G is very simple,

∫ −Q2

0

dξ2

ξ2
G[g] = −

∞
∑

l=1

al

lϵ

( µ2

−Q2

)lϵ
Ĝ(l)

0 . (4.28)

The first integral over γK gives,

∫ µ2

ξ2

dµ̃2

µ̃2
γ[g]

K =
∞
∑

l=1

al

lϵ

[(µ2

ξ2

)lϵ
− 1
]

γ̂(l)
K . (4.29)

Adding the K[g] term to 1/2 of eq. (4.29), using eq. (4.24), we see that the “−1” is

cancelled. Then the integral over ξ is properly regulated, and evaluates to

−
1

2

∞
∑

l=1

al

(lϵ)2

( µ2

−Q2

)lϵ
γ̂(l)

K . (4.30)

Combining this result with eq. (4.28) gives

M[gg→1]
(Q2

µ2
,αs(µ), ϵ

)

= exp

[

−
1

4

∞
∑

l=1

al
( µ2

−Q2

)lϵ( γ̂(l)
K

(lϵ)2
+

2Ĝ(l)
0

lϵ

)

]

. (4.31)
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FIG. 5: Infrared structure of leading-color scattering amplitudes for particles in the adjoint rep-

resentation. The straight lines represent hard external states, while the curly lines carry soft or

collinear virtual momenta. At leading color, soft exchanges are confined to wedges between the

hard lines.

constant everywhere. Thus the leading-color IR structure of n-point amplitudes in MSYM

may be rewritten as,

Mn =
n
∏

i=1

[

M[gg→1]

(

si,i+1

µ2
,αs, ϵ

)]1/2

× hn (ki, µ,αs, ϵ) , (4.21)

where hn is no longer a color-space vector.

For a general theory, the Sudakov form factor at scale Q2 can be written as [30]

M[gg→1]
(Q2

µ2
,αs(µ), ϵ

)

= exp

{

1

2

∫ −Q2

0

dξ2

ξ2

[

K[g](αs(µ), ϵ) + G[g]
(

−1, ᾱs

(µ2

ξ2
,αs(µ), ϵ

)

, ϵ
)

+
1

2

∫ µ2

ξ2

dµ̃2

µ̃2
γ[g]

K

(

ᾱs

(µ2

µ̃2
,αs(µ), ϵ

))]

}

, (4.22)

where γ[g]
K denotes the soft or (Wilson line) cusp anomalous dimension, which will produce

a 1/ϵ2 pole after integration. The function K[g] is a series of counterterms (pure poles in ϵ),

while G[g] includes non-singular dependence on ϵ before integration, and produces a 1/ϵ pole

after integration.

In MSYM, αs(µ) is a constant, and the running coupling ᾱs(µ2/µ̃2,αs, ϵ) in 4 − 2ϵ di-

mensions has only trivial (engineering) dependence on the scale,

ᾱs

(µ2

µ̃2
,αs(µ), ϵ

)

= αs ×
(µ2

µ̃2

)ϵ(

4πe−γ
)ϵ

. (4.23)

This simple dependence makes it very easy to perform the integrals over ξ and µ̃.
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Sudakov form factor + finite]
Leading IR singularity -> Cusp anomalous dimension

figure from L. Dixon 1105.0771

For modern dim-reg representation, see:  
Magnea and Sterman 1990; 
Catani 1998,  
Sterman and Tejeda-Yeomans 2002 
Bern, Dixon, Smirnov 2005



Sudakov form factor

Leading IR singularity -> Cusp anomalous dimension

FL−loop
tr(F2),2 (1g,2g)

log f = ∑ g2l(log f )(l) = − ∑
l

g2l(−q2)−lϵ[
γ(l)cusp
(2lϵ)2 +

𝒢(l)
coll
2lϵ

+ Fin(l)] + 𝒪 (ϵ)

Logarithm behavior is well-understood:
For dim-reg representation, see:  
Magnea and Sterman 1990; 
Sterman and Tejeda-Yeomans 2002 
Bern, Dixon, Smirnov 2005

log F2(1,2) ≃ −
∞

∑
l=1

g2l(
γ(l)

cusp

ϵ2 +
𝒢(l)

coll
ϵ )(−q2)−lϵ + 𝒪(ϵ0)

Non-planar four-loop CAD in N = 4 SYM

Gang Yang

Abstract: The light-like cusp anomalous dimension (CAD) is an important and widely us-
able physical quantity, with applications ranging from string theory to flavour physics. In
particular, it determines the leading infrared divergences in scattering amplitudes. While
the CAD has been known to all order in N=4 SYM based on the AdS/CFT correspon-
dence and integrability since 2006, the non-planar correction starts at four loops and was
unknown until very recently. There has also been a conjecture, the so-called quadratic
Casimir scaling, claiming that the non-planar corrections would be zero in general gauge
theories (see e.g. 0903.1126). In this talk, I will describe how this non-trivial four-loop
non-planar computation was achieved in N = 4 SYM. This provides for the first time the
leading order non-planar result, which explicitly shows the Casimir scaling conjecture is
not true.

1 Introduction

2 Sudakov form factor in N = 4 SYM

F =

∫

d4x e−ix·q⟨p1, p2|O(x)|0⟩ . (1)

3 Integrand: color-kinematics duality

4 Integration: number theory

5 Results and error analysis

γcusp = 8g2 − 16ζ2g
4 + 176ζ4g

6 +
(

+ γ(4)
cusp,P + γ(4)

cusp,NP

)

g8 +O(g10) , (2)

(3)

1



Loop form factors

(N=4 SYM case)

F
(0)
4 A

(0)
6

p1

p2

l1

l2

l3

l4

Figure 6. A quadruple-cut for the two-point three-loop form factor.

The results have been summarized including the color and symmetry factors in Table 3.

The full form factor result can be obtained as

F (3)
2 = s212F

(0)
2

∑

σ2

e
∑

i=a

1

Si
Ci Ii . (4.13)

Note that the graph (f) has zero color factor and therefore does not contribute to the final

result of the form factor. However, it is necessarily involved in solving the Jacobi relations.

Table 3. The result for the two-point three-loop form factor.

Basis Numerator factor Color factor Symmetry factor

(a) s212 8N3
c δa1a2 2

(b) s212 4N3
c δa1a2 4

(c) s212 4N3
c δa1a2 4

(d) (p2 − p1) · ℓ− p1 · p2 2N3
c δa1a2 2

(e) −(p2 − p1) · ℓ+ p1 · p2 2N3
c δa1a2 1

(f) (p2 − p1) · ℓ− p1 · p2 0 2

The result we obtain by applying color-kinematic duality seems quite different from that

in [22]. However, it is a simple check that the results are equivalent, by using the identities

given in section 3 of [22] between different integrals. Our result is presented in a much simpler

form which involves only trivalent graphs. The numerical integer factors which have no easy

interpretation in [22] are also naturally explained here by the color and symmetry factors.

– 19 –



Wilson line computation
Web graphs via non-abelian exponential theorem: [Gatheral 1983; Frenkel and Taylor 1984]



Ctri + Cbub

The basis coefficient can be computed by cuts:

Ctri + Cbub

ℱ(1)
2 (1,2)

s12-cut
= ∫ dPS2 ℱ(0)

2 (−l1, − l2)𝒜(0)
4 (1,2,l2, l1)

Unitarity computation

F(1)
2 =



ℱ(1)
2 (1,2)

s12-cut
= ∫ dPS2 ℱ(0)

2 (−l1, − l2)𝒜(0)
4 (1,2,l2, l1)

= ℱ(0)
2 (1,2) i∫ dPS2

⟨l1l2⟩⟨12⟩
⟨l1p1⟩⟨l22⟩= ℱ(0)

2 (1,2) i∫ dPS2
−s12

(l1 + p1)2

Unitarity computation

Ctri + Cbub

Ctri = − s12 , Cbub = 0

𝒪 = tr(ϕ2
12)



(log f )(1) = f (1) = (−2s)I(1)
3 = (−s)−ϵ[ − 2

ϵ2 + 𝒪(ϵ0)]

γ(1)
cusp = 8 , 𝒢(1)

coll = 0

Loop form factors



(log f )(2) = f (2) − 1
2 ( f (1))2 = s2(4I(2)

PL + I(2)
CL) − 1

2 ((−2s)I(1)
3 )2

γ(2)
cusp = − 16ζ2 , G(2)

coll = − 4ζ3

= (−s)−2ϵ[ ζ2
ϵ2 + ζ3

ϵ
+ 𝒪(ϵ0)]

Loop form factors



Color structure
Up to three loops, only quadratic Casimir appears:

Known to all order in N=4 SYM
[Beisert, Eden, Staudacher 2006]

insert

杨刚

Nc → ∞ with g2 = g2YM/16π
2 fixed

Kij = j(−1)i(j+1)

∫

∞

0

dt

t

Ji(2gt)Jj(2gt)

et − 1

Γcusp = 4g2 −
4π2

3
g4 +

44π4

45
g6 − 8

(

4ζ23 +
73

630
π6
)

+O(g10)

Γcusp = 2g −
3 log 2

2π
+O(1/g)

1

insert

杨刚

Nc → ∞ with g2 = g2YM/16π
2 fixed

Kij = j(−1)i(j+1)

∫

∞

0

dt

t

Ji(2gt)Jj(2gt)

et − 1

Γcusp = 4g2 −
4π2

3
g4 +

44π4

45
g6 − 8

(

4ζ23 +
73

630
π6
)

+O(g10)

Γcusp = 2g −
3 log 2

2π
+O(1/g)

1

海森堡自旋链的Bethe equation：

eipjL =
∏

k ̸=j

eiδ(pj ,pk) , eiδ(p,q) =
cot(p2)− cot( q2) + 2i

cot(p2)− cot( q2)− 2i
. (14)

或者，通过引入rapidity

u =
1

2
cot(

p

2
) , (15)

方程变成简单的代数方程

(

uj + i/2

uj − i/2

)L

=
∏

k ̸=j

uj − uk + i

uj − uk − i
. (16)

及周期性条件（也称为零动量条件）对应于

∏

j

eipj = 1 ↔
∏

j

uj + i/2

uj − i/2
= 1 . (17)

下午看完了整个五个lecture。最好他提到了一般的Bethe ansatz，特别提到了群论
中的Chevalley表示方法。从这个表示方法很容易推广到整个PSU(2, 2|4)群。他的讲义
中还有关于经典弦的可积性，但没有时间介绍了。

BES求解cusp反常量纲的方法。定义矩阵：

Kij = 2j(−1)i(j+1)

∫ ∞

0

dt

t

Ji(2gt)Jj(2gt)

et − 1
. (18)

然后

Γcusp = 4g2
(

1

1 +K

)

11

. (19)

弱耦合这可以微扰展开。

Juli, 2015

⋄ Mittwoch 01. Sonnig. Berlin

上午修改SL(2)计算，发现了一个不很明显的错误。在作数值展开的时候，我只展
开到有限项，这对于计算一圈平方的结果给出的单极点项是错误的！我是在尝试得到
解析结果时，发现结果和数值的不一致才发现这一错误的，不然隐藏得可够深的呢！
但纠正了这个错误后，我发现BPS（length-3，magnon-1）的情形仍然不对。这时却是
犯了一个粗心的愚蠢错误，公式输入错了。最终，BPS的结果完全一致。同时对于其
他Density的结果，在求和为形状因子以后，也给出了自洽的结果。这些说明了最复杂
的两圈约化和计算过程是可靠的！终于从之前的黑暗看到了光亮！！
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insert

杨刚

Nc → ∞ with g2 = g2YM/16π
2 fixed

Kij = j(−1)i(j+1)

∫

∞

0

dt

t

Ji(2gt)Jj(2gt)

et − 1

Γcusp = 4g2 −
4π2

3
g4 +

44π4

45
g6 − 8

(

4ζ23 +
73

630
π6
)

+O(g10)

Γcusp = 2g −
3 log 2

2π
+O(1/g)

1

• Planar (Large Nc) limit is relatively well understood:
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Abstract

A closed formula is obtained for the infrared singularities of dimensionally regularized,
massless gauge-theory scattering amplitudes with an arbitrary number of legs and loops.
It follows from an all-order conjecture for the anomalous-dimension matrix of n-jet oper-
ators in soft-collinear effective theory. We show that the form of this anomalous dimen-
sion is severely constrained by soft-collinear factorization, non-abelian exponentiation,
and the behavior of amplitudes in collinear limits. Using a diagrammatic analysis, we
demonstrate that these constraints imply that to three-loop order the anomalous dimen-
sion involves only two-parton correlations, with the possible exception of a single color
structure multiplying a function of conformal cross ratios depending on the momenta of
four external partons, which would have to vanish in all two-particle collinear limits. We
suggest that such a function does not appear at three-loop order, and that the same is
true in higher orders. Our formula predicts Casimir scaling of the cusp anomalous di-
mension to all orders in perturbation theory, and we explicitly check that the constraints
exclude the appearance of higher Casimir invariants at four loops. Using known results
for the quark and gluon form factors, we derive the three-loop coefficients of the 1/ϵn

pole terms (with n = 1, . . . , 6) for an arbitrary n-parton scattering amplitude in massless
QCD. This generalizes Catani’s two-loop formula proposed in 1998.

Becher and Neubert (JHEP 2009)

Casimir scaling conjecture

An explicit four-loop 
computation is needed.



Casimir scaling conjecture

the non-planar corrections is zero to all orders in perturbative 
theory, based on lower loop results and effective theory (SCET) 
arguments.

Conjecture on quadratic Casimir scaling:

[Becher, Neubert 2009]

break down at strong coupling
expected to be violated

[Armoni 2006]

[Alday, Maldacena 2009]

break down through instanton corrections [Korchemsky 2017]

An explicit perturbative computation is highly desired.

see also [Gardi, Magnea 2009]

Counter arguments:



Why non-planar is difficult
Leading order is at four loops!

We need to do an “honest”  four-loop computation:

Integrability methods is not applicable (yet)

At four-loop, there is a new quartic Casimir which contains non-planar part:

- both integrand and integrals are very complicated



Traditional approach

- generate an integrand, e.g. by Feynman graphs
- simplify the integrand, e.g. PV, IBP reduction methods
- compute the master integrals analytically or numerically 

Three-loop Sudakov form factors in QCD were known since 
2009:

Table 2. The result for the two-point two-loop form factor.

Basis Numerator factor Color factor Symmetry factor

(a) 1 4N2
c δ

a1a2 2

(b) 1 2N2
c δ

a1a2 4

4.2 Two-point three-loop form factor

As a more non-trivial example, the two-point form factor at three loops is calculated next by

the procedure outlined above. This result has been computed by unitarity methods in [22].

First, by generating topologies we can find there are six trivalent diagrams, as shown in

Figure 5.8.

q
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(a) (b) (c)

q
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(d) (e) (f)

q
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ℓ q
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ℓ q
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p2

ℓ

Figure 5. The integrals for the two-point three-loop form factor.

By applying the color-kinematic relation to this set of trivalent diagrams, a set of equa-

tions can be obtained for the numerators. It turns out that one can choose the single integral

(d) as the master integral. One can then make an ansatz for the numerator of this master

integral by applying the following three constraints.

1. From the power counting property, the numerator should depend only linearly on the

loop momentum ℓ and there should be no dependence on other loop momenta. A general

ansatz is therefore given as (note that we have factorized a whole factor s212)

Nansatz
d (p1, p2, ℓ) = α1ℓ · p1 + α2ℓ · p2 + α3p1 · p2 , (4.3)

8There is one bubble-like graph containing a two-point tree leg which turns out not contribute. For simplicity

we do not include it here. In the four-loop construction, such graphs are as shown in Figure 10.
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[Baikov, Chetyrkin, Smirnov, Smirnov, Steinhauser 2009], …



Sudakov form factor

Four-loop computation is much more challenging.
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Figure 1. Integral topologies that contribute only to the planar form factor at four loops.
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Figure 2. Sample integral topologies that contribute to the non-planar form factor at four loops.

2.2 Integrand and integral relations

The full four-loop Sudakov form factor including the non-planar part in N = 4 SYM was

obtained as a linear combination of a number of four-loop integrals in [35] based on colour-

kinematics duality [79, 80]. The explicit form of the integrals for the problem at hand can be

found in [35]. There are 34 distinct cubic integral topologies, each with 12 internal lines, that

contribute to the four-loop form factor. They are labelled (1) – (34) in [35] and we provide

them in figures 1 – 3 for convenience and further reference throughout the present paper.

The four-loop integrals take the generic form as

I = (−q2)2+4ϵe4ϵγE
∫

dDl1
iπD/2

. . .
dDl4
iπD/2

N(li, pj)
∏12

k=1Dk

, (2.7)

where Di are twelve propagators and N(li, pj) are dimension-four numerators in terms of

– 6 –

- Integrand

- Integration



Four-loop integrand  
with NO Feynman diagrams

Four-loop form factor integrand was obtained by: 
color-kinematics duality and unitarity:

[Boels, Kniehl, Tarasov, GY 2012]
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not unique, and an explicit choice for each topology is given in Appendix C of [25] [xxx given

also in this paper??]. A given numerator can be expressed uniquely into the chosen basis.
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non-planar

compact form and with only quadratic loop 
momenta in the numerator.

Table 5 (continued). The result for the two-point four-loop form factor.

Graph Numerator factor Color factor
Symmetry

factor

(14) −N13 2N4
c δa1a2 1

(15) −N13 0 1

(16) N13 0 1

(17)

−(ℓ3 · p1)(ℓ5 · (p1 + 5p2))

+(ℓ3 · p2)(ℓ5 · (3p1 − p2))

+(p1 · p2)
[

2(ℓ3 · ℓ5) + 2ℓ4 · (p1 − p2)

−3ℓ5 · (p1 − p2)
]

+ 1
7(α1 + 1)×

(ℓ3 · p12 − p1 · p2)(ℓ5 · (7p1 − p2))

2N4
c δa1a2 1

(18) −N17 0 2

(19)

(ℓ3 · p1)
[

ℓ5 · (p1 + 5p2)− ℓ6 · (p1 − 3p2)
]

−(ℓ3 · p2)
[

ℓ5 · (3p1 − p2) + ℓ6 · (5p1 + p2)
]

−(p1 · p2)
[

2ℓ3 · (p1 − p2 + ℓ5 − ℓ6)

−3(ℓ5 + ℓ6) · (p1 − p2)
]

−1
7(α1 + 1)(ℓ3 · p12 − p1 · p2)
×[ℓ5 · (7p1 − p2) + ℓ6 · (p1 − 7p2)]

2N4
c δa1a2 1

(20) N19 0 2

(21)

−(ℓ3 · p1)2 − (ℓ3 · p2)2 − 6(ℓ3 · p1)(ℓ3 · p2)
+(p1 · p2)

[

2(ℓ3 · ℓ3) + 4(ℓ3 · p1) + p1 · p2
]

+(α1 + 1)
[

(ℓ3 · p12 − p1 · p2)2

−2
7(ℓ3 · (ℓ3 − p12) + p1 · p2)(p1 · p2)

]

(2N4
c + 24N2

c ) δa1a2 2

– 29 –

N21 =



Four-loop integrand  
with NO Feynman diagrams

Four-loop form factor integrand was obtained by: 
color-kinematics duality and unitarity:

[Boels, Kniehl, Tarasov, GY 2012]
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where Di are twelve propagators and N(li, pj) are dimension four numerators in terms of

Lorentz products of the four independent loop and two independent external on-shell mo-

menta. For each topology, one needs to pick six additional propagators (i.e. six irreducible

numerators) to form a complete basis, and we label them Dk, k = 13, . . . , 18. Such a choice is

not unique, and an explicit choice for each topology is given in Appendix C of [25] [xxx given

also in this paper??]. A given numerator can be expressed uniquely into the chosen basis.
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where Di are twelve propagators and N(li, pj) are dimension four numerators in terms of

Lorentz products of the four independent loop and two independent external on-shell mo-

menta. For each topology, one needs to pick six additional propagators (i.e. six irreducible

numerators) to form a complete basis, and we label them Dk, k = 13, . . . , 18. Such a choice is

not unique, and an explicit choice for each topology is given in Appendix C of [25] [xxx given

also in this paper??]. A given numerator can be expressed uniquely into the chosen basis.
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where Di are twelve propagators and N(li, pj) are dimension four numerators in terms of

Lorentz products of the four independent loop and two independent external on-shell mo-

menta. For each topology, one needs to pick six additional propagators (i.e. six irreducible

numerators) to form a complete basis, and we label them Dk, k = 13, . . . , 18. Such a choice is

not unique, and an explicit choice for each topology is given in Appendix C of [25] [xxx given

also in this paper??]. A given numerator can be expressed uniquely into the chosen basis.

– 5 –

[GY 2016]Full five-loop integrand has also been obtained.   >200 topologies

non-planar
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“Our formula predicts Casimir scaling of the cusp anomalous 
dimension to all orders in perturbation theory, and we 
explicitly check that the constraints exclude the appearance of 
higher Casimir invariants at four loops.” 
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Conclusion & Outlook

Introduction

Computing 4-Loop Non-planar CADConstructing CK duality at 5 Loops

Modern amplitude techniques allow new computations which would be 
impossible using traditional Feynman diagram methods. Based on these and 
using Sudakov form factor in N=4 SYM,  we provide answers to two challenging 
problems:

Basic 
properties of 

Sudakov 
form factor 
in N=4 SYM

The key new idea that lead us to the final solution is to choose a nice set of 
basis integrals, the Uniform transcendentality (UT) integrals:

Unitarity CutsCK dualityFour 
Master 
Graphs

Color-Kinematics duality means that there exists a representation for an amplitude or 
form factor, such that its color factors and momentum factors satisfy same Jacobian 
relations. Take the 4-gluon tree amplitude as an example:

Problem 1
Color-Kinematics (CK) duality [3] indicates a deep 
connection between kinematic and color structures in 
gauge theories:

Problem 2
Cusp Anomalous dimension (CAD) characterizes the leading 
IR divergences of amplitudes. The computation of its non-
planar correction is a notorious long-standing problem, 
where the first possible correction starts at 4-loop, due to the 
appearance of a new group invariant — quartic Casimir d44:

Color-Kinematics Duality @ 5-Loop Quadratic Casimir Scaling Conjecture

To test quadratic Casimir scaling conjecture, we need to evaluate the four-
loop form factor integrals. After the complicated integration-by-part (IBP) 
reduction, the IBP masters turn out to be very hard to compute even using 
powerful computer clusters.

 In [5], Becher and Neubert conjectured that: 

It is important to test this conjecture which requires an 
explicit computation.

1)  Does color-kinematics duality exist at 5 loops?   YES! 
2)  Is the quadratic Casimir scaling conjecture correct?  NO! 

Sudakov 
From Factor

p1

p2

q

Here, we solve two challenging problems 
using Sudakov form factor in N=4 super 
Yang-Mills (N=4 SYM, which is the 
maximally supersymmetric cousin of QCD) :

The first problem has close connection to the 
study of quantum gravity, while the second is 
important for understanding general IR 
structure in gauge theory.

1) Does Color-Kinematics duality exist at 
5-loop? [1]

2)  Is quadratic Casimir scaling conjecture      
-    correct? [2] The duality has been constructed at 4-loop [4], which 

provides also a first 4-loop gravity amplitude result. 
However, despite significant efforts, a five-loop 
realization was unsuccessful. One natural question is: 
would the duality only exist up to four loops?

Gauge Color Spacetime Kinematics

Gravity

[3] Z. Bern, J. J. M. Carrasco, H. Johansson, "New Relations for Gauge-Theory 
Amplitudes", Phys.Rev. D78, 085011 (2008).
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The minimal scattering-like observable that contains
the cusp anomalous dimension is the Sudakov form fac-
tor. In maximally supersymmetric Yang-Mills theory one
can use a correlator of a member of the stress-tensor mul-
tiplet with two on-shell massless states. The first com-
putation of the two-loop correction to the Sudakov form
factor in N = 4 SYM appeared in [28]. The three-loop
correction to the QCD result was studied in a series of
papers [29–33]. In [34] these results were fine-tuned for
the form factor in N = 4 SYM to the three-loop order.
The integrand for the four-loop Sudakov form factor in
N = 4 SYM was derived in [35] based on the duality
between color and kinematics, and its reduction to mas-
ter integrals was presented in [36]. Various other cal-
culations of four-loop corrections in QCD were recently
reported [37–42]. For the five-loop integrand in N = 4
SYM see [43].

REVIEW

Form factor and cusp anomalous dimension

The Sudakov form factor involves only a single scale
q2 which is the Lorentzian norm of the sum of the two
massless momenta, i.e. q2 = (p1 + p2)2 with p21 = p22 =
0. Dimensional analysis and maximal supersymmetry fix
the form factor F (l) at l loops to be given by

F
(l) = F

treeg2l(�q2)�l✏F (l) , (1)

where the coupling constant is normalised as g2 =
g2
YM

(4⇡)2 (4⇡e
��E)✏. For a classical Lie-group with Lie-

algebra [T a, T b] = ifabc T c and structure constants fabc,
gauge invariance dictates the color structure to be given
by Casimir invariants. Up to three-loop order, only pow-
ers (CA)l of the quadratic Casimir appear, for which
facdf bcd = CA�ab holds. At four loops the quartic invari-
ant d44 = dabcdA dabcdA /NA appears in addition to (CA)4,
with NA the number of generators of the group and

dabcdA =
1

6
[f↵a

�f
�b

�f
�c

�f
�d

↵ + perms.(b, c, d)] . (2)

Starting from six loops, even higher group invariants ap-
pear, see e.g. [35]. In SU(Nc), NA = N2

c � 1, CA = Nc

and d44 = N2
c /24 (N

2
c + 36) hold.

The form factor has no ultraviolet (UV) divergences
since the operator is protected, leaving only IR diver-
gences. If dimensional regularization with D = 4 � 2✏
is used to regulate the latter, F (l) is a purely numerical
function of gauge group invariants and ✏. This function is

related to the cusp anomalous dimension �(l)
cusp at l loops

by [5, 44–47],

(logF )(l) = �


�(l)
cusp

(2l✏)2
+

G
(l)
coll

2l✏
+ Fin(l)

�
+O (✏) . (3)

At l loops the planar part / N l
c of F (l) has leading di-

vergence / 1/✏2l. This function needs to be expanded
down to ✏�2 to extract the l-loop CAD, and also higher
terms in the Laurent expansion in ✏ from lower-loop con-
tributions are required. As mentioned, the first occur-
rence of non-planar (i.e. subleading-color) corrections to
the CAD is at four loops, due to the appearance of the
quartic Casimir invariant d44. This invariant therefore
breaks quadratic Casimir scaling explicitly. The relation
between form factor and cusp anomalous dimension for
the non-planar part at four loops is

h
F (4)

i

NP
= �

�(4)
cusp, NP

(8✏)2
+O

�
✏�1

�
, (4)

i.e. [F (4)]NP has only a double pole in ✏. Individual in-
tegrals that contribute to [F (4)]NP will however typically
show the full 1/✏8 divergence. The general CAD is be-
lieved to be expressible as a rational-coe�cient polyno-
mial of Riemann Zeta values ⇣n, and their multi-index
generalizations, such as multiple zeta values (MZVs) and
Euler sums, see e.g. [48]. MZVs are denoted by ⇣n1,n2,...

and have a transcendentality degree which is the sum
of their indices,

P
i ni. At l loops, the planar CAD in

N = 4 SYM has uniform transcendentality degree 2l�2.
At four loops for instance, the planar CAD in N = 4
SYM has been computed [12–14] to be

�(4)
cusp,P = �1752⇣6 � 64⇣23 . (5)

We will provide strong evidence that also the non-planar
CAD is of uniform transcendentality six at four loops.

In QCD, the known CAD has the same maximal tran-
scendentality degree as in N = 4, but also contains lower
transcendentality degree constants. The maximal tran-
scendentality coe�cients match between planar N = 4
and QCD, an observation known as the maximal tran-
scendentality principle [16, 17].

Integrands, integrals, integral relations

The non-planar part of the Sudakov form factor in
N = 4 SYM was obtained as a linear combination
of a number of four-loop integrals in [35] using color-
kinematics duality [49, 50]. The integrals take the generic
form

I = (q2)2
Z

dDl1 . . . d
Dl4

N(li, pj)Q12
k=1 Dk

, (6)

where Di are propagators and the numerators N(li, pj)
are quadratic polynomials of Lorentz products of the four
independent loop and two independent external on-shell
momenta. The explicit expressions of these integrals can
be found in [35]. There are 14 distinct integral topologies

Cusp Anomalous dimension (CAD)

Diagram-expansion 
up to 3 loops

Let me also briefly introduce the basic relations that we will use, namely the dual
Jacobi relations. They play a central role in our five-loop construction. Once the
gauge theories is obtained, it is straightforward to obtain the gravity results. If we
consider the difference of complexity of the two theories, this is a rather remarkable
facts.

First important character is that it contains both planar and non-planar parts.
The second character is that it allows to obtain gravity from gauge theories for

free.
I would like to emphasize that so far the existence of this duality for general loop

level is still a conjecture. One has to check it by explicit constructions. There is no
such a proof which can say that as long as you try hard enough, you will get the
solution, not even in principle.

2 Five-loop construction

Now let us look at the construction at five loops. Since the construction details is
technical, I will outline the main steps.

p21 = p22 = 0, q2 = (p1 + p2)2 ̸= 0

3 Summary and outlook

The color-kinematics duality reveals a very deep connection between gauge theories
and gravity theories. In gauge theory
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Definition Logarithmic behavior
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��E)✏. For a classical Lie-group with Lie-

algebra [T a, T b] = ifabc T c and structure constants fabc,
gauge invariance dictates the color structure to be given
by Casimir invariants. Up to three-loop order, only pow-
ers (CA)l of the quadratic Casimir appear, for which
facdf bcd = CA�ab holds. At four loops the quartic invari-
ant d44 = dabcdA dabcdA /NA appears in addition to (CA)4,
with NA the number of generators of the group and
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Starting from six loops, even higher group invariants ap-
pear, see e.g. [35]. In SU(Nc), NA = N2

c � 1, CA = Nc

and d44 = N2
c /24 (N

2
c + 36) hold.

For SU(N) : CA = N d44 =
N2(N2 + 36)
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The form factor has no ultraviolet (UV) divergences

since the operator is protected, leaving only IR diver-
gences. If dimensional regularization with D = 4 � 2✏
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vergence / 1/✏2l. This function needs to be expanded
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terms in the Laurent expansion in ✏ from lower-loop con-
tributions are required. As mentioned, the first occur-
rence of non-planar (i.e. subleading-color) corrections to
the CAD is at four loops, due to the appearance of the
quartic Casimir invariant d44. This invariant therefore
breaks quadratic Casimir scaling explicitly. The relation
between form factor and cusp anomalous dimension for
the non-planar part at four loops is
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CAD is of uniform transcendentality six at four loops.

In QCD, the known CAD has the same maximal tran-
scendentality degree as in N = 4, but also contains lower
transcendentality degree constants. The maximal tran-
scendentality coe�cients match between planar N = 4
and QCD, an observation known as the maximal tran-
scendentality principle [16, 17].

Integrands, integrals, integral relations

The non-planar part of the Sudakov form factor in
N = 4 SYM was obtained as a linear combination
of a number of four-loop integrals in [35] using color-
kinematics duality [49, 50]. The integrals take the generic
form

I = (q2)2
Z

dDl1 . . . d
Dl4

N(li, pj)Q12
k=1 Dk

, (6)

where Di are propagators and the numerators N(li, pj)
are quadratic polynomials of Lorentz products of the four
independent loop and two independent external on-shell
momenta. The explicit expressions of these integrals can
be found in [35]. There are 14 distinct integral topologies
that contribute to the non-planar CAD, labelled (21) –
(34) in [35], each with 12 internal lines. We will see below
that only 10 of them, (21) – (30) as shown in Fig. ??,
contribute to the non-planar form factor if a basis of uni-
formly transcendental integrals is used.

Integrands are only identified up to terms that inte-
grate to zero. Infinitesimal linear reparametrizations of
the loop momenta generate such terms, which are known
as integration-by-parts (IBP) identities [51, 52]. With
these identities the form factor was simplified in [36] us-
ing the Reduze code [53]. A particular subset of these
relations, dubbed ‘rational IBP’ relations and obtained
in [54], will play an important role for the problem at
hand. Note that integral relations due to graph sym-
metries are a particular subset of the rational IBP rela-
tions. Although simpler integrals emerged in [36] com-
pared to [35], these have largely evaded integration so far
due to their overwhelming complexity. The obstacle to
computing the CAD is therefore to find a complete set of
integrals which are simple enough to integrate.
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function of gauge group invariants and ✏. This function is

related to the cusp anomalous dimension �(l)
cusp at l loops

by [5, 44–47],

(logF )(l) = �


�(l)
cusp

(2l✏)2
+

G
(l)
coll

2l✏
+ Fin(l)

�
+O (✏) . (3)

At l loops the planar part / N l
c of F (l) has leading di-

vergence / 1/✏2l. This function needs to be expanded
down to ✏�2 to extract the l-loop CAD, and also higher
terms in the Laurent expansion in ✏ from lower-loop con-
tributions are required. As mentioned, the first occur-
rence of non-planar (i.e. subleading-color) corrections to
the CAD is at four loops, due to the appearance of the
quartic Casimir invariant d44. This invariant therefore
breaks quadratic Casimir scaling explicitly. The relation
between form factor and cusp anomalous dimension for
the non-planar part at four loops is

h
F (4)

i

NP
= �

�(4)
cusp, NP

(8✏)2
+O

�
✏�1

�
, (4)

i.e. [F (4)]NP has only a double pole in ✏. Individual in-
tegrals that contribute to [F (4)]NP will however typically
show the full 1/✏8 divergence. The general CAD is be-
lieved to be expressible as a rational-coe�cient polyno-
mial of Riemann Zeta values ⇣n, and their multi-index
generalizations, such as multiple zeta values (MZVs) and
Euler sums, see e.g. [48]. MZVs are denoted by ⇣n1,n2,...

and have a transcendentality degree which is the sum
of their indices,

P
i ni. At l loops, the planar CAD in

N = 4 SYM has uniform transcendentality degree 2l�2.
At four loops for instance, the planar CAD in N = 4
SYM has been computed [12–14] to be

�(4)
cusp,P = �1752⇣6 � 64⇣23 . (5)

We will provide strong evidence that also the non-planar
CAD is of uniform transcendentality six at four loops.

In QCD, the known CAD has the same maximal tran-
scendentality degree as in N = 4, but also contains lower
transcendentality degree constants. The maximal tran-
scendentality coe�cients match between planar N = 4
and QCD, an observation known as the maximal tran-
scendentality principle [16, 17].

Integrands, integrals, integral relations

The non-planar part of the Sudakov form factor in
N = 4 SYM was obtained as a linear combination
of a number of four-loop integrals in [35] using color-
kinematics duality [49, 50]. The integrals take the generic
form

I = (q2)2
Z

dDl1 . . . d
Dl4

N(li, pj)Q12
k=1 Dk

, (6)

where Di are propagators and the numerators N(li, pj)
are quadratic polynomials of Lorentz products of the four
independent loop and two independent external on-shell
momenta. The explicit expressions of these integrals can
be found in [35]. There are 14 distinct integral topologies
that contribute to the non-planar CAD, labelled (21) –
(34) in [35], each with 12 internal lines. We will see below
that only 10 of them, (21) – (30) as shown in Fig. ??,
contribute to the non-planar form factor if a basis of uni-
formly transcendental integrals is used.

Integrands are only identified up to terms that inte-
grate to zero. Infinitesimal linear reparametrizations of
the loop momenta generate such terms, which are known
as integration-by-parts (IBP) identities [51, 52]. With
these identities the form factor was simplified in [36] us-
ing the Reduze code [53]. A particular subset of these
relations, dubbed ‘rational IBP’ relations and obtained
in [54], will play an important role for the problem at
hand. Note that integral relations due to graph sym-
metries are a particular subset of the rational IBP rela-
tions. Although simpler integrals emerged in [36] com-
pared to [35], these have largely evaded integration so far
due to their overwhelming complexity. The obstacle to
computing the CAD is therefore to find a complete set of
integrals which are simple enough to integrate.

YM         YM⊗

ℱ(l) = ℱtree
∞
∑
l=1

g2l(−q2)−lϵF (l)ℱ = ∫ d4x e−iq⋅x⟨p1, p2 |𝒪(x) |0⟩

L-loop L=1 L=2 L=3 L=4

Color Factor CA C2
A C3

A C4
A , d44

[4] Z. Bern et.al., "Simplifying Multiloop Integrands and Ultraviolet Divergences of 
Gauge Theory and Gravity Amplitudes", Phys.Rev. D85, 105014 (2012).
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Another important tool is the on-shell unitarity method [6], 
which requires loop form factors to have consistent 
discontinuities by cutting propagators. On the cut, the loop 
quantity factorizes into a product of tree-level or lower- loop 
results. The form factors are guarantee to be correct once 
they satisfy all cut constraints.

L-loop L=1 L=2 L=3 L=4 L=5
# of topologies 1 2 6 34 306

# of masters 1 1 1 2 4

Final 5-loop integrand

ℱ5-loop
2 = F tree

2
306
∑
i=1 ∫

L
∏

j
dDℓj

1
Si

Ci Ni
∏αi

P2αi

Four master 
graphs @    
5-loop:

Ten 4-loop 
non-planar 
topologies

When expanding in terms of UT basis, the integrand becomes remarkably 
simple: the full non-planar 4-loop form factor can be written in terms of only 
23 UT integrals. Importantly, each of them are much simpler to evaluate.

Since some of integrals are evaluated numerically, a careful error analysis is 
mandatory, which is carried out in details in [2]. Recently, our result was 
nicely confirmed by an independent computation of Henn et.al. [7].

Finally, from form factor result we extract the 4-loop non-planar CAD:

γ(4)
cusp, NP = − 3072 × (1.60 ± 0.19) 1

N 2c

Sudakov Form Factor in N=4 SYM 
Up To Five Loops
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q
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the results are known, our techniques illustrate the existence and the power of the duality.

4.1 Two-point two-loop form factor

As a warm-up exercise, we consider first the two-loop two-point form factor. This result has

been computed by Feynman graph methods in [14].

(a)

q

p1

p2

(b)

q

p1

p2

Figure 4. The integrals for the two-point two-loop form factor.

First, by equation (2.20) the two-point form factor in N = 4 SYM is trivially dependent

of the inserted operator through a tree factor, as long as it’s in the stress-energy tensor

multiplet. This tree factor is factored out, as will be done in every two-point calculation in

this article.

By the rules introduced in the previous section, there are only two trivalent graphs to

consider as shown in Figure 4: a planar ladder and a non-planar ladder diagram. The Jacobi

relations simply tell us that the numerators of both integrals are the same.

By the power counting constraint explained in the previous section, we find that the

numerator should be independent of loop momenta. Hence by the kinematics of the problem

the numerator should be proportional to a power of s12, which will be absorbed into the

whole kinematic factor K2 = s2
12
F

(0)

2
. The numerator is then a purely numerical constant.

This numerical constant can be easily fixed by considering any (color-stripped) unitarity cut,

which turns out to be one. At the same time, this unitarity cut verifies that nothing has been

missed in the construction. In this simple example it is not hard to explicitly compute and

verify all possible unitarity cuts, verifying that the result is physical.

The results including the color and symmetry factors are summarized in Table 2. The

full form factor result can be obtained as

F
(2)

2
= K2

X

�2

bX

i=a

1

Si
Ci Ii (4.1)

= N2

c �
a1a2 s212F

(0) (4 Ia + Ib) , (4.2)

which reproduces exactly the known result [14]. Note that the color and symmetry factors

are responsible for the numerical integer factors, which are 4 and 1 for planar and non-planar

graphs respectively.
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Table 2. The result for the two-point two-loop form factor.

Basis Numerator factor Color factor Symmetry factor

(a) 1 4N2
c �

a1a2 2

(b) 1 2N2
c �

a1a2 4

4.2 Two-point three-loop form factor

As a more non-trivial example, the two-point form factor at three loops is calculated next by

the procedure outlined above. This result has been computed by unitarity methods in [22].

First, by generating topologies we can find there are six trivalent diagrams, as shown in

Figure 5.8.

q

p1

p2

(a) (b) (c)

q

p1

p2

q

p1

p2

(d) (e) (f)

q

p1

p2

` q

p1

p2

` q

p1

p2

`

Figure 5. The integrals for the two-point three-loop form factor.

By applying the color-kinematic relation to this set of trivalent diagrams, a set of equa-

tions can be obtained for the numerators. It turns out that one can choose the single integral

(d) as the master integral. One can then make an ansatz for the numerator of this master

integral by applying the following three constraints.

1. From the power counting property, the numerator should depend only linearly on the

loop momentum ` and there should be no dependence on other loop momenta. A general

ansatz is therefore given as (note that we have factorized a whole factor s2
12
)

Nansatz

d (p1, p2, `) = ↵1` · p1 + ↵2` · p2 + ↵3p1 · p2 , (4.3)

8
There is one bubble-like graph containing a two-point tree leg which turns out not contribute. For simplicity

we do not include it here. In the four-loop construction, such graphs are as shown in Figure 10.
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[6] Z. Bern, L. J. Dixon, D. C. Dunbar, and D. A. Kosower, Nucl.Phys. B425, 217 
(1994); R. Britto, F. Cachazo, and B. Feng, Nucl.Phys. B725, 275 (2005).

[5] T. Becher, M. Neubert, "On the Structure of Infrared Singularities of Gauge-
Theory Amplitudes", JHEP 0906, 081 (2009).

A 1-loop UT integral: = − 1
ϵ2 + 1

2 ζ2 + 7
3 ζ3ϵ + 47

16 ζ4ϵ2 + 𝒪(ϵ3)

I (a) = [(ℓ3 − p1)2]2 ,

I (b) = (ℓ3 − p1)2 [ℓ2
4 + ℓ2

6 − ℓ2
3 + (ℓ3 − ℓ4 + p1)2 + (ℓ3 − ℓ6 − p1)2] ,

I (c) = [(ℓ3 − p1)2]2 ,

I (d ) = (ℓ3 − p1)2 [(q − ℓ3 − ℓ5)2 + (ℓ5 + p2)2] .

Examples of 
four-loop UT 
numerators:

Importantly, the duality allows to construct gravity 
amplitudes as the “square” of Yang-Mills amplitudes, 
once the latter is organized to respect the duality:

Color factors

Cs = Ct + Cu
Jacobian identity

Momentum factors

Ns = Nt + Nu
dual Jacobian relationA4 = CsNs

s
+ Ct Nt

t
+ CuNu

u

The main procedure can be summarized as follows:

5-loop 
Ansatz with 
306 graphs

It would be very interesting to study CK duality at six loops, and also obtain the  
analytic result of non-planar CAD, which are both not yet available.

Unitarity-cut

[7] J. Henn, et.al. "Matter dependence of the four-loop cusp anomalous dimension", 
arXiv:1901.03693.

The 5-loop form factor in terms of 306 integrals satisfies the complete CK duality, 
suggesting the duality exists more generally. Through double copy, our result should 
contain 5-loop supergravity information, which would be interesting to study further.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

which is non-zero, showing explicitly that the quadratic Casimir scaling 
conjecture is not true.

Large number of diagrams Very few “master” diagrams

“Our formula predicts Casimir scaling of the cusp anomalous 
dimension to all orders in perturbation theory, and we 
explicitly check that the constraints exclude the appearance of 
higher Casimir invariants at four loops.” 

double-copy

CK-duality
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At loop level, a generalization of the above relations provides very strong constraints 
for the integrand. Hundreds of diagrams can be determined by only very few diagrams, 
which we call the master graphs.

Sudakov form factor is a key observable to 
understand the infrared (IR) divergences of 
amplitudes, as well as the factorization 
property of QCD.
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Conclusion & Outlook

Introduction

Computing 4-Loop Non-planar CADConstructing CK duality at 5 Loops

Modern amplitude techniques allow new computations which would be 
impossible using traditional Feynman diagram methods. Based on these and 
using Sudakov form factor in N=4 SYM,  we provide answers to two challenging 
problems:

Basic 
properties of 

Sudakov 
form factor 
in N=4 SYM

The key new idea that lead us to the final solution is to choose a nice set of 
basis integrals, the Uniform transcendentality (UT) integrals:

Unitarity CutsCK dualityFour 
Master 
Graphs

Color-Kinematics duality means that there exists a representation for an amplitude or 
form factor, such that its color factors and momentum factors satisfy same Jacobian 
relations. Take the 4-gluon tree amplitude as an example:

Problem 1
Color-Kinematics (CK) duality [3] indicates a deep 
connection between kinematic and color structures in 
gauge theories:

Problem 2
Cusp Anomalous dimension (CAD) characterizes the leading 
IR divergences of amplitudes. The computation of its non-
planar correction is a notorious long-standing problem, 
where the first possible correction starts at 4-loop, due to the 
appearance of a new group invariant — quartic Casimir d44:

Color-Kinematics Duality @ 5-Loop Quadratic Casimir Scaling Conjecture

To test quadratic Casimir scaling conjecture, we need to evaluate the four-
loop form factor integrals. After the complicated integration-by-part (IBP) 
reduction, the IBP masters turn out to be very hard to compute even using 
powerful computer clusters.

 In [5], Becher and Neubert conjectured that: 

It is important to test this conjecture which requires an 
explicit computation.

1)  Does color-kinematics duality exist at 5 loops?   YES! 
2)  Is the quadratic Casimir scaling conjecture correct?  NO! 

Sudakov 
From Factor

p1

p2

q

Here, we solve two challenging problems 
using Sudakov form factor in N=4 super 
Yang-Mills (N=4 SYM, which is the 
maximally supersymmetric cousin of QCD) :

The first problem has close connection to the 
study of quantum gravity, while the second is 
important for understanding general IR 
structure in gauge theory.

1) Does Color-Kinematics duality exist at 
5-loop? [1]

2)  Is quadratic Casimir scaling conjecture      
-    correct? [2] The duality has been constructed at 4-loop [4], which 

provides also a first 4-loop gravity amplitude result. 
However, despite significant efforts, a five-loop 
realization was unsuccessful. One natural question is: 
would the duality only exist up to four loops?

Gauge Color Spacetime Kinematics

Gravity

[3] Z. Bern, J. J. M. Carrasco, H. Johansson, "New Relations for Gauge-Theory 
Amplitudes", Phys.Rev. D78, 085011 (2008).
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The minimal scattering-like observable that contains
the cusp anomalous dimension is the Sudakov form fac-
tor. In maximally supersymmetric Yang-Mills theory one
can use a correlator of a member of the stress-tensor mul-
tiplet with two on-shell massless states. The first com-
putation of the two-loop correction to the Sudakov form
factor in N = 4 SYM appeared in [28]. The three-loop
correction to the QCD result was studied in a series of
papers [29–33]. In [34] these results were fine-tuned for
the form factor in N = 4 SYM to the three-loop order.
The integrand for the four-loop Sudakov form factor in
N = 4 SYM was derived in [35] based on the duality
between color and kinematics, and its reduction to mas-
ter integrals was presented in [36]. Various other cal-
culations of four-loop corrections in QCD were recently
reported [37–42]. For the five-loop integrand in N = 4
SYM see [43].

REVIEW

Form factor and cusp anomalous dimension

The Sudakov form factor involves only a single scale
q2 which is the Lorentzian norm of the sum of the two
massless momenta, i.e. q2 = (p1 + p2)2 with p21 = p22 =
0. Dimensional analysis and maximal supersymmetry fix
the form factor F (l) at l loops to be given by

F
(l) = F

treeg2l(�q2)�l✏F (l) , (1)

where the coupling constant is normalised as g2 =
g2
YM

(4⇡)2 (4⇡e
��E)✏. For a classical Lie-group with Lie-

algebra [T a, T b] = ifabc T c and structure constants fabc,
gauge invariance dictates the color structure to be given
by Casimir invariants. Up to three-loop order, only pow-
ers (CA)l of the quadratic Casimir appear, for which
facdf bcd = CA�ab holds. At four loops the quartic invari-
ant d44 = dabcdA dabcdA /NA appears in addition to (CA)4,
with NA the number of generators of the group and

dabcdA =
1

6
[f↵a

�f
�b

�f
�c

�f
�d

↵ + perms.(b, c, d)] . (2)

Starting from six loops, even higher group invariants ap-
pear, see e.g. [35]. In SU(Nc), NA = N2

c � 1, CA = Nc

and d44 = N2
c /24 (N

2
c + 36) hold.

The form factor has no ultraviolet (UV) divergences
since the operator is protected, leaving only IR diver-
gences. If dimensional regularization with D = 4 � 2✏
is used to regulate the latter, F (l) is a purely numerical
function of gauge group invariants and ✏. This function is

related to the cusp anomalous dimension �(l)
cusp at l loops

by [5, 44–47],

(logF )(l) = �


�(l)
cusp

(2l✏)2
+

G
(l)
coll

2l✏
+ Fin(l)

�
+O (✏) . (3)

At l loops the planar part / N l
c of F (l) has leading di-

vergence / 1/✏2l. This function needs to be expanded
down to ✏�2 to extract the l-loop CAD, and also higher
terms in the Laurent expansion in ✏ from lower-loop con-
tributions are required. As mentioned, the first occur-
rence of non-planar (i.e. subleading-color) corrections to
the CAD is at four loops, due to the appearance of the
quartic Casimir invariant d44. This invariant therefore
breaks quadratic Casimir scaling explicitly. The relation
between form factor and cusp anomalous dimension for
the non-planar part at four loops is

h
F (4)

i

NP
= �

�(4)
cusp, NP

(8✏)2
+O

�
✏�1

�
, (4)

i.e. [F (4)]NP has only a double pole in ✏. Individual in-
tegrals that contribute to [F (4)]NP will however typically
show the full 1/✏8 divergence. The general CAD is be-
lieved to be expressible as a rational-coe�cient polyno-
mial of Riemann Zeta values ⇣n, and their multi-index
generalizations, such as multiple zeta values (MZVs) and
Euler sums, see e.g. [48]. MZVs are denoted by ⇣n1,n2,...

and have a transcendentality degree which is the sum
of their indices,

P
i ni. At l loops, the planar CAD in

N = 4 SYM has uniform transcendentality degree 2l�2.
At four loops for instance, the planar CAD in N = 4
SYM has been computed [12–14] to be

�(4)
cusp,P = �1752⇣6 � 64⇣23 . (5)

We will provide strong evidence that also the non-planar
CAD is of uniform transcendentality six at four loops.

In QCD, the known CAD has the same maximal tran-
scendentality degree as in N = 4, but also contains lower
transcendentality degree constants. The maximal tran-
scendentality coe�cients match between planar N = 4
and QCD, an observation known as the maximal tran-
scendentality principle [16, 17].

Integrands, integrals, integral relations

The non-planar part of the Sudakov form factor in
N = 4 SYM was obtained as a linear combination
of a number of four-loop integrals in [35] using color-
kinematics duality [49, 50]. The integrals take the generic
form

I = (q2)2
Z

dDl1 . . . d
Dl4

N(li, pj)Q12
k=1 Dk

, (6)

where Di are propagators and the numerators N(li, pj)
are quadratic polynomials of Lorentz products of the four
independent loop and two independent external on-shell
momenta. The explicit expressions of these integrals can
be found in [35]. There are 14 distinct integral topologies

Cusp Anomalous dimension (CAD)

Diagram-expansion 
up to 3 loops

Let me also briefly introduce the basic relations that we will use, namely the dual
Jacobi relations. They play a central role in our five-loop construction. Once the
gauge theories is obtained, it is straightforward to obtain the gravity results. If we
consider the difference of complexity of the two theories, this is a rather remarkable
facts.

First important character is that it contains both planar and non-planar parts.
The second character is that it allows to obtain gravity from gauge theories for

free.
I would like to emphasize that so far the existence of this duality for general loop

level is still a conjecture. One has to check it by explicit constructions. There is no
such a proof which can say that as long as you try hard enough, you will get the
solution, not even in principle.

2 Five-loop construction

Now let us look at the construction at five loops. Since the construction details is
technical, I will outline the main steps.

p21 = p22 = 0, q2 = (p1 + p2)2 ̸= 0

3 Summary and outlook

The color-kinematics duality reveals a very deep connection between gauge theories
and gravity theories. In gauge theory
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pear, see e.g. [35]. In SU(Nc), NA = N2

c � 1, CA = Nc

and d44 = N2
c /24 (N

2
c + 36) hold.

For SU(N) : CA = N d44 =
N2(N2 + 36)

24
The form factor has no ultraviolet (UV) divergences

since the operator is protected, leaving only IR diver-
gences. If dimensional regularization with D = 4 � 2✏
is used to regulate the latter, F (l) is a purely numerical
function of gauge group invariants and ✏. This function is

related to the cusp anomalous dimension �(l)
cusp at l loops

by [5, 44–47],

(logF )(l) = �


�(l)
cusp

(2l✏)2
+

G
(l)
coll

2l✏
+ Fin(l)

�
+O (✏) . (3)
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c of F (l) has leading di-

vergence / 1/✏2l. This function needs to be expanded
down to ✏�2 to extract the l-loop CAD, and also higher
terms in the Laurent expansion in ✏ from lower-loop con-
tributions are required. As mentioned, the first occur-
rence of non-planar (i.e. subleading-color) corrections to
the CAD is at four loops, due to the appearance of the
quartic Casimir invariant d44. This invariant therefore
breaks quadratic Casimir scaling explicitly. The relation
between form factor and cusp anomalous dimension for
the non-planar part at four loops is
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i.e. [F (4)]NP has only a double pole in ✏. Individual in-
tegrals that contribute to [F (4)]NP will however typically
show the full 1/✏8 divergence. The general CAD is be-
lieved to be expressible as a rational-coe�cient polyno-
mial of Riemann Zeta values ⇣n, and their multi-index
generalizations, such as multiple zeta values (MZVs) and
Euler sums, see e.g. [48]. MZVs are denoted by ⇣n1,n2,...

and have a transcendentality degree which is the sum
of their indices,

P
i ni. At l loops, the planar CAD in

N = 4 SYM has uniform transcendentality degree 2l�2.
At four loops for instance, the planar CAD in N = 4
SYM has been computed [12–14] to be

�(4)
cusp,P = �1752⇣6 � 64⇣23 . (5)

We will provide strong evidence that also the non-planar
CAD is of uniform transcendentality six at four loops.

In QCD, the known CAD has the same maximal tran-
scendentality degree as in N = 4, but also contains lower
transcendentality degree constants. The maximal tran-
scendentality coe�cients match between planar N = 4
and QCD, an observation known as the maximal tran-
scendentality principle [16, 17].

Integrands, integrals, integral relations

The non-planar part of the Sudakov form factor in
N = 4 SYM was obtained as a linear combination
of a number of four-loop integrals in [35] using color-
kinematics duality [49, 50]. The integrals take the generic
form

I = (q2)2
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dDl1 . . . d
Dl4

N(li, pj)Q12
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, (6)

where Di are propagators and the numerators N(li, pj)
are quadratic polynomials of Lorentz products of the four
independent loop and two independent external on-shell
momenta. The explicit expressions of these integrals can
be found in [35]. There are 14 distinct integral topologies
that contribute to the non-planar CAD, labelled (21) –
(34) in [35], each with 12 internal lines. We will see below
that only 10 of them, (21) – (30) as shown in Fig. ??,
contribute to the non-planar form factor if a basis of uni-
formly transcendental integrals is used.

Integrands are only identified up to terms that inte-
grate to zero. Infinitesimal linear reparametrizations of
the loop momenta generate such terms, which are known
as integration-by-parts (IBP) identities [51, 52]. With
these identities the form factor was simplified in [36] us-
ing the Reduze code [53]. A particular subset of these
relations, dubbed ‘rational IBP’ relations and obtained
in [54], will play an important role for the problem at
hand. Note that integral relations due to graph sym-
metries are a particular subset of the rational IBP rela-
tions. Although simpler integrals emerged in [36] com-
pared to [35], these have largely evaded integration so far
due to their overwhelming complexity. The obstacle to
computing the CAD is therefore to find a complete set of
integrals which are simple enough to integrate.
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Another important tool is the on-shell unitarity method [6], 
which requires loop form factors to have consistent 
discontinuities by cutting propagators. On the cut, the loop 
quantity factorizes into a product of tree-level or lower- loop 
results. The form factors are guarantee to be correct once 
they satisfy all cut constraints.

L-loop L=1 L=2 L=3 L=4 L=5
# of topologies 1 2 6 34 306

# of masters 1 1 1 2 4

Final 5-loop integrand

ℱ5-loop
2 = F tree

2
306
∑
i=1 ∫

L
∏

j
dDℓj

1
Si

Ci Ni
∏αi

P2αi

Four master 
graphs @    
5-loop:

Ten 4-loop 
non-planar 
topologies

When expanding in terms of UT basis, the integrand becomes remarkably 
simple: the full non-planar 4-loop form factor can be written in terms of only 
23 UT integrals. Importantly, each of them are much simpler to evaluate.

Since some of integrals are evaluated numerically, a careful error analysis is 
mandatory, which is carried out in details in [2]. Recently, our result was 
nicely confirmed by an independent computation of Henn et.al. [7].

Finally, from form factor result we extract the 4-loop non-planar CAD:

γ(4)
cusp, NP = − 3072 × (1.60 ± 0.19) 1

N 2c

Sudakov Form Factor in N=4 SYM 
Up To Five Loops
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the results are known, our techniques illustrate the existence and the power of the duality.

4.1 Two-point two-loop form factor

As a warm-up exercise, we consider first the two-loop two-point form factor. This result has

been computed by Feynman graph methods in [14].

(a)

q

p1

p2

(b)

q

p1

p2

Figure 4. The integrals for the two-point two-loop form factor.

First, by equation (2.20) the two-point form factor in N = 4 SYM is trivially dependent

of the inserted operator through a tree factor, as long as it’s in the stress-energy tensor

multiplet. This tree factor is factored out, as will be done in every two-point calculation in

this article.

By the rules introduced in the previous section, there are only two trivalent graphs to

consider as shown in Figure 4: a planar ladder and a non-planar ladder diagram. The Jacobi

relations simply tell us that the numerators of both integrals are the same.

By the power counting constraint explained in the previous section, we find that the

numerator should be independent of loop momenta. Hence by the kinematics of the problem

the numerator should be proportional to a power of s12, which will be absorbed into the

whole kinematic factor K2 = s2
12
F

(0)

2
. The numerator is then a purely numerical constant.

This numerical constant can be easily fixed by considering any (color-stripped) unitarity cut,

which turns out to be one. At the same time, this unitarity cut verifies that nothing has been

missed in the construction. In this simple example it is not hard to explicitly compute and

verify all possible unitarity cuts, verifying that the result is physical.

The results including the color and symmetry factors are summarized in Table 2. The

full form factor result can be obtained as

F
(2)

2
= K2

X

�2

bX

i=a

1

Si
Ci Ii (4.1)

= N2

c �
a1a2 s212F

(0) (4 Ia + Ib) , (4.2)

which reproduces exactly the known result [14]. Note that the color and symmetry factors

are responsible for the numerical integer factors, which are 4 and 1 for planar and non-planar

graphs respectively.
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Table 2. The result for the two-point two-loop form factor.

Basis Numerator factor Color factor Symmetry factor

(a) 1 4N2
c �

a1a2 2

(b) 1 2N2
c �

a1a2 4

4.2 Two-point three-loop form factor

As a more non-trivial example, the two-point form factor at three loops is calculated next by

the procedure outlined above. This result has been computed by unitarity methods in [22].

First, by generating topologies we can find there are six trivalent diagrams, as shown in

Figure 5.8.
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q
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p2

` q
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p2

` q
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`

Figure 5. The integrals for the two-point three-loop form factor.

By applying the color-kinematic relation to this set of trivalent diagrams, a set of equa-

tions can be obtained for the numerators. It turns out that one can choose the single integral

(d) as the master integral. One can then make an ansatz for the numerator of this master

integral by applying the following three constraints.

1. From the power counting property, the numerator should depend only linearly on the

loop momentum ` and there should be no dependence on other loop momenta. A general

ansatz is therefore given as (note that we have factorized a whole factor s2
12
)

Nansatz

d (p1, p2, `) = ↵1` · p1 + ↵2` · p2 + ↵3p1 · p2 , (4.3)

8
There is one bubble-like graph containing a two-point tree leg which turns out not contribute. For simplicity

we do not include it here. In the four-loop construction, such graphs are as shown in Figure 10.
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A 1-loop UT integral: = − 1
ϵ2 + 1

2 ζ2 + 7
3 ζ3ϵ + 47

16 ζ4ϵ2 + 𝒪(ϵ3)

I (a) = [(ℓ3 − p1)2]2 ,

I (b) = (ℓ3 − p1)2 [ℓ2
4 + ℓ2

6 − ℓ2
3 + (ℓ3 − ℓ4 + p1)2 + (ℓ3 − ℓ6 − p1)2] ,

I (c) = [(ℓ3 − p1)2]2 ,

I (d ) = (ℓ3 − p1)2 [(q − ℓ3 − ℓ5)2 + (ℓ5 + p2)2] .

Examples of 
four-loop UT 
numerators:

Importantly, the duality allows to construct gravity 
amplitudes as the “square” of Yang-Mills amplitudes, 
once the latter is organized to respect the duality:

Color factors

Cs = Ct + Cu
Jacobian identity

Momentum factors

Ns = Nt + Nu
dual Jacobian relationA4 = CsNs

s
+ Ct Nt

t
+ CuNu

u

The main procedure can be summarized as follows:

5-loop 
Ansatz with 
306 graphs

It would be very interesting to study CK duality at six loops, and also obtain the  
analytic result of non-planar CAD, which are both not yet available.

Unitarity-cut

[7] J. Henn, et.al. "Matter dependence of the four-loop cusp anomalous dimension", 
arXiv:1901.03693.

The 5-loop form factor in terms of 306 integrals satisfies the complete CK duality, 
suggesting the duality exists more generally. Through double copy, our result should 
contain 5-loop supergravity information, which would be interesting to study further.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

which is non-zero, showing explicitly that the quadratic Casimir scaling 
conjecture is not true.
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A UT integrals

A.1 UT integrals with 12 lines

For the UT integrals we use the parametrizaton in terms of loop momenta from [48] and the

normalisation used by FIESTA, i.e. we work in D = 4− 2ϵ-dimensional Minkowskian space-

time and our integration measure is eϵγE dDℓ/(iπD/2) per loop. Moreover, we set (p1+p2)2 =

−1 and suppress the fact that the ϵ-expansion continues in all equations. Below we give our

numerical results as well as the PSLQ up to ϵ−4 order.

Topology 21
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q

p1
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× [(ℓ3 − p1)
2]2

=
1

576ϵ8
+
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2
3

ϵ2

+
89593
864 ζ3ζ4 +

3419
45 ζ2ζ5 − 169789

4032 ζ7
ϵ

. (A.1)

The integral I(21)1 is known analytically from [108]. Our numerical results obtained by MB

and FIESTA agree with the analytical one well within error bars.
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. (A.3)
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Topology 22
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Topology 25
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Topology 28

I(28)9 =
q

p1

p2

ℓ3

ℓ4

ℓ5
ℓ6
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]
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Topology 29
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I(29)10,PSLQ =− 1
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Topology 30

I(30)11 =
q

p1

p2

ℓ3

ℓ4

ℓ5

ℓ6

× (ℓ3 − ℓ4 − p2)
2 [(p1 − ℓ4)

2 + (ℓ3 − ℓ4)
2 − (ℓ3 − p1)
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0.00347222
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ϵ
. (A.22)

This result was obtained with MB. FIESTA performs poorly in this topology.

I(30)11,PSLQ =
1

288ϵ8
− ζ2

32ϵ6
− 187ζ3

864ϵ5
− 403ζ4

288ϵ4
+O(ϵ−3) . (A.23)

A.2 UT integrals with 11 lines

Topology 27

I(27)12 =
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ℓ4

ℓ5

ℓ6

× 1

2
(ℓ3 − ℓ4)

2
[

2 (ℓ4 − p2)
2 + (ℓ6 − p1)

2

−(ℓ4 − ℓ6)
2 − ℓ24 + ℓ25 + 2 (p1 + p2)

2
]
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0.0303819
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− 0.00000002(87)
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ϵ4
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ϵ3
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ϵ2
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ϵ
. (A.24)

This result is obtained by combining FIESTA and MB results.

I(27)12,PSLQ =
35

1152ϵ8
− 73ζ2

192ϵ6
− 1015ζ3

432ϵ5
− 4069ζ4

576ϵ4
+O(ϵ−3) . (A.25)

Topology 28
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ϵ2
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ϵ
, (A.26)

I(28)13,PSLQ =− 13

1152ϵ8
+

35ζ2
192ϵ6

+
305ζ3
432ϵ5

+
461ζ4
576ϵ4

+O(ϵ−3) . (A.27)
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Plus 12 simpler 11- and 10-line integrals



Four-loop non-planar cusp AD
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Figure 1. Integral topologies that contribute only to the planar form factor at four loops.
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Figure 2. Sample integral topologies that contribute to the non-planar form factor at four loops.
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Figure 3. Integral topologies that do not have dLog numerators.

where Di are twelve propagators and N(li, pj) are dimension four numerators in terms of

Lorentz products of the four independent loop and two independent external on-shell mo-

menta. For each topology, one needs to pick six additional propagators (i.e. six irreducible

numerators) to form a complete basis, and we label them Dk, k = 13, . . . , 18. Such a choice is

not unique, and an explicit choice for each topology is given in Appendix C of [25] [xxx given

also in this paper??]. A given numerator can be expressed uniquely into the chosen basis.
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• Four-loop integration took five years (using UT basis ):

Boels, Huber, GY  2017

non-zero. We will argue below that there is no evidence for systematically underestimated

error bars in our calculation.

Translating the result of the order ϵ−2 of the non-planar form factor into a result for the

sought-after non-planar four-loop CAD yields for gauge group SU(Nc)

γ(4)cusp, NP = −3072 × (1.56 ± 0.21)
1

N2
c
, (5.7)

where the prefactor 3072 = 2×24×64 is the normalisation stemming from the permutational

sum, the colour factor [35], and the denominator of (2.5), respectively. Compared to the

planar result γ(4)cusp,P = −1752ζ6 − 64ζ23 ∼ −1875, we observe that the non-planar CAD has

the same sign. If we use Nc = 3, its value becomes γ(4)cusp, NP ∼ −532 ± 72, i.e. the planar

contribution is a factor of 3 – 4 larger.

New in table 1 is the result at order ϵ−1. This contains the non-planar four-loop collinear

anomalous dimension:

G(4)
coll, NP = −384× (−16.6 ± 6.8)

1

N2
c
. (5.8)

Interestingly, compared to the four-loop planar collinear AD result, G(4)
coll, P = −1240.9(3) [78],

we observe that the non-planar central value result +(6374 ± 2611)/N2
c indicates the sign is

different. Note that our result is in tension with a vanishing result at the 2.4σ level. A major

error within the integrals comes from one particular integral topology, topology 27, which

contributes ∼ 6 to the error budget with the next biggest contribution at ∼ 2. This is an

obvious area of potential improvement for the numerics. However, the resources required are

fairly large. It would certainly be interesting though to confirm the sign of the result. We

mention that the linear summed error is obtained as −17.082 ± 18.8834.

5.3.1 Rationalisation

Since the used integrals pass all applied UT checks, their ϵ-expansion is expected to be

UT. Assuming that MZVs are sufficient and no genuine Euler sums occur, for the orders

ϵ{−8,−6,−5,−4} it is expected that the numerical coefficients can be written as a rational number

times {1, ζ2, ζ3, ζ4}. Hence, by dividing the numerical result by the appropriate MZV constant,

a numerical result is obtained which should be expressible as a rational number7. For the

case at hand, we typically have five to six digits available and the found integers have on

the order of three digits in numerator and denominator. This indicates that the obtained

rational numbers are reasonable, which gets supported by the fact that their contribution in

the final result of the non-planar form factor cancels exactly. In appendices A the results of

the rationalisation are listed.

For ϵ{−3,−2} the UT property still holds, but at these orders there are two MZVs of

transcendentality 5 and 6 respectively. For weight 5 these could for instance be taken to

be ζ2ζ3 and ζ5, and one can attempt a solution with the PSLQ algorithm [130], for instance

7xxxx??
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Non-planar four-loop CAD in N = 4 SYM

Gang Yang

Abstract: The light-like cusp anomalous dimension (CAD) is an important and widely us-
able physical quantity, with applications ranging from string theory to flavour physics. In
particular, it determines the leading infrared divergences in scattering amplitudes. While
the CAD has been known to all order in N=4 SYM based on the AdS/CFT correspon-
dence and integrability since 2006, the non-planar correction starts at four loops and was
unknown until very recently. There has also been a conjecture, the so-called quadratic
Casimir scaling, claiming that the non-planar corrections would be zero in general gauge
theories (see e.g. 0903.1126). In this talk, I will describe how this non-trivial four-loop
non-planar computation was achieved in N = 4 SYM. This provides for the first time the
leading order non-planar result, which explicitly shows the Casimir scaling conjecture is
not true.

1 Introduction

2 Sudakov form factor in N = 4 SYM

3 Integrand: color-kinematics duality

4 Integration: number theory

5 Results and error analysis

γcusp = 8g2 − 16ζ2g
4 + 176ζ4g

6 +
(

+ γ(4)
cusp,P + γ(4)

cusp,NP

)

g8 +O(g10) , (1)

(2)

Translating the result of the order ϵ−2 of the non-planar form factor into a result for
the sought-after non-planar four-loop CAD yields for gauge group SU(Nc)

γ(4)
cusp, NP = −3072× (1.56± 0.21)

1

N2
c

, (3)

1

As mentioned above, physics dictates that the coefficients of orders ϵ{−8,−7,−6,−5,−4,−3}

vanish in the final result, which is numerically indeed the case and provides a strong con-

sistency check of our computation. The coefficients of order ϵ−7 must even vanish in each

of the 23 UT integrals separately. The orders ϵ{−8,−6,−5,−4,−3} are in most cases non-zero in

individual integrals but cancel in the final result. As described below, the precision of the

orders ϵ{−8,−6,−5,−4} is good enough to translate the reported numbers into small rational

multiples of {1, ζ2, ζ3, ζ4}. After doing so, these orders also vanish analytically in the final

result of the nonplanar form factor.

As can be seen from table 1, the first non-zero term is at order ϵ−2. The result 1.60±0.19

has a statistical significance to deviate from zero of 8.4σ. Adding individual uncertainties

linearly to account for potential systematic effects would yield 1.60 ± 0.58; still significantly

non-zero.7 We will argue below that there is no evidence for systematically underestimated

error bars in our calculation.

Translating the result of the order ϵ−2 of the nonplanar form factor into a result for the

sought-after nonplanar four-loop CAD yields for gauge group SU(Nc)

γ(4)cusp, NP = −3072 × (1.60 ± 0.19)
1

N2
c
, (5.7)

where the prefactor 3072 = 2×24×64 is the normalisation stemming from the permutational

sum, the colour factor [42], and the denominator of (2.5), respectively. Compared to the

planar result γ(4)cusp,P = −1752ζ6 − 64ζ23 ∼ −1875, we observe that the nonplanar CAD has

the same sign. If we use Nc = 3, its value becomes γ(4)cusp, NP ∼ −546 ± 65, i.e. the planar

contribution is a factor of 3 – 4 larger.

The result at order ϵ−1 is also given in table 1. This contains the nonplanar four-loop

collinear anomalous dimension:

G(4)
coll, NP = −384× (−17.98 ± 3.25)

1

N2
c
, (5.8)

where the prefactor 384 = 2× 24 × 8 has the similar origin as γ(4)cusp, NP above. Interestingly,

compared to the four-loop planar collinear AD result, G(4)
coll, P = −1240.9(3) [89], we observe

that the nonplanar central value result +(6904±1248)/N2
c indicates the sign is different; it is

also different from the sign of the nonplanar cusp AD above. This is a new feature comparing

to all known planar results in which collinear AD always has same sign as cusp AD.8 Note that

our result is in tension with a vanishing result at the 5.5σ level. The largest contribution to

the error budget within the integrals at this order comes from I(27)8 , which contributes ∼ 1.86,

followed by four integrals which contribute between 0.95 and 1 each, whereas all others are

below 0.75. We mention that the linearly summed error is obtained as −17.98 ± 11.89.

7Note that these numbers are slightly improved compared to those in [15].
8One should also keep in mind that unlike cusp AD, collinear AD is scheme dependent, thus the sign may

change in different schemes.
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Casimir scaling conjecture is wrong



Non-trivial consistency check

where R = F,A denotes the fundamental or adjoint representation, with [T a
F ]ij = [T a]ij

and [T a
A]bc = −ifabc. The values of the relevant Casimir invariants in the case of gauge

group SU(Nc) read CF = NA/(2Nc), CA = Nc, and dabcdA dabcdA /NA = N2
c /24 (N

2
c +36). Here,

NA = (N2
c −1) is the number of generators of SU(Nc). The colour structure of the form factor

at l loops in N = 4 SYM theory with matter in the adjoint representation is simply (CA)l up

to l = 3. Starting from four loops, the quartic Casimir invariant arises in addition, and hence

in SU(Nc) gauge theory one has, besides the planar (i.e. N l
c leading-colour) contribution

a non-planar (i.e. N l−2
c subleading-colour) correction. Starting from six loops, even higher

group invariants appear [35].

The planar form factor has leading divergence ∝ 1/ϵ2l at l-loop order. To compute the

CAD, this function needs to be expanded down to ϵ−2 at l loops, combined together with

higher terms in the Laurent expansion in ϵ from lower-loop contributions. As mentioned

above, the first non-planar correction starts at four loops, due to the appearance of a quartic

Casimir invariant. The non-planar part of the four-loop form factor takes the following form

F (4)
NP = −

γ(4)cusp, NP

(8ϵ)2
−

G(4)
coll,NP

8ϵ
− Fin(4)NP +O(ϵ) . (2.5)

In particular, it has only a double pole in ϵ since, upon taking the logarithm in (2.2), this

piece cannot mix with any planar contribution from lower loops. We emphasise that individual

integrals that contribute to F (4)
NP will typically have the full 1/ϵ8 divergence. The cancellation

of these higher-order poles in the final result therefore provides a very strong constraint as

well as a non-trivial consistency check of the computation.

The form factor exhibits a Laurent expansion in the dimensional regularisation parameter

ϵ. In this expansion, each term is expected to be a rational-coefficient polynomial of Riemann

Zeta values ζn, or their multi-index generalizations, ζn1,n2,..., known as multiple zeta values

(MZVs) (see e.g. [66]), although more general objects such as Euler sums can appear in

principle. However, as mentioned earlier, any analytically known piece of the form factor

does not go beyond MZVs. The MZVs have a transcendentality degree which is the sum of

their indices,
∑

i ni. Also, the regularisation parameter ϵ is assigned transcendentality −1.

In N = 4 SYM, the finite part of the form factor is expected to have (maximal) uniform

transcendentality, which at l loops is 2l, and which suggests that the CAD at l loops is of

uniform transcendental weight 2l − 2. Indeed, the planar CAD at four loops in N = 4 SYM

has transcendentality six and was computed as [75–77]

(log F )(4)P = −

⎡

⎣

−1752ζ6 − 64ζ23
(8ϵ)2

+
G(4)
coll,P

8ϵ

⎤

⎦+O(ϵ0) . (2.6)

We will provide strong evidence that also the non-planar form factor and in particular the

CAD are of uniform transcendentality at four loops. A numerical result of the planar four-loop

collinear anomalous dimension G(4)
coll,P was obtained in [78].
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Topology 29

I(29)10 =
q

p1

p2

ℓ3

ℓ4

ℓ6

× 1

2

[

ℓ23 − ℓ24 − (ℓ4 − ℓ3 − p1)
2
]

[ℓ6 · (ℓ6 − ℓ4 + ℓ3 − p2)]

= − 0.000868056

ϵ8
+

0.0000000005

ϵ7
− 0.00285575(22)

ϵ6
− 0.0090438(31)

ϵ5
+

0.714516(37)

ϵ4

+
10.2737(4)

ϵ3
+

76.5178(52)

ϵ2
, (A.19)

I(29)10,PSLQ =− 1

1152ϵ8
− ζ2

576ϵ6
− 13ζ3

1728ϵ5
+

169ζ4
256ϵ4

+O(ϵ−3) . (A.20)

Topology 30

I(30)11 =
q

p1

p2

ℓ3

ℓ4

ℓ5

ℓ6

× (ℓ3 − ℓ4 − p2)
2 [(p1 − ℓ4)

2 + (ℓ3 − ℓ4)
2 − (ℓ3 − p1)

2]

=
0.00347222

ϵ8
− 0.05140419

ϵ6
− 0.2601674

ϵ5
− 1.5145009

ϵ4
− 17.34721164(4)

ϵ3
− 133.31287(3)

ϵ2
.

(A.21)

This result was obtained with MB. FIESTA performs poorly in this topology.

I(30)11,PSLQ =
1

288ϵ8
− ζ2

32ϵ6
− 187ζ3

864ϵ5
− 403ζ4

288ϵ4
+O(ϵ−3) . (A.22)

A.2 UT integrals with 11 lines

Topology 27

I(27)12 =
q

p1

p2

ℓ3

ℓ4

ℓ5

ℓ6

× 1

2
(ℓ3 − ℓ4)

2
[

2 (ℓ4 − p2)
2 + (ℓ6 − p1)

2 − (ℓ4 − ℓ6)
2 − ℓ24 + ℓ25 + 2 (p1 + p2)

2
]

=
0.0303819

ϵ8
− 0.00000002(87)

ϵ7
− 0.625419(9)

ϵ6
− 2.82423(9)

ϵ5
− 7.64488(87)

ϵ4

− 22.7148(82)

ϵ3
+

0.160(47)

ϵ2
, (A.23)

This result is obtained by combining FIESTA and MB results.

I(27)12,PSLQ =
35

1152ϵ8
− 73ζ2

192ϵ6
− 1015ζ3

432ϵ5
− 4069ζ4

576ϵ4
+O(ϵ−3) . (A.24)
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All poles up to        order should cancel !

(a) (b)

Figure 6. Scatterplot of the relative error of FIESTA results compared to PSLQ results for ϵ{−6,−5,−4}

orders. (a) Plot of cases FIESTA error

IPSLQ−IFIESTA
> 0. (b) Plot of cases FIESTA error

IFIESTA−IPSLQ
> 0. A log plot is used for

vertical axis, and all ratios larger than 200 are not shown in the figures. We can see that all ratios are
larger than one, which suggests that the FIESTA errors are overestimated. Besides, we find that the
deviation of FIESTA results from PSLQ results are both positive and negative, which indicates that
there is no systematic errors.

namely,
FIESTA errork

Ik,PSLQ − Ik,FIESTA
, (5.9)

where k labels the 23 integrals in section 4.1. The results are plotted in figure 6. Two panels

are provided for positive and negative deviations separately. Note that for all 23 integrals,

all absolute ratios are larger than one, corresponding to reported FIESTA errors larger than

the discrepancy between PSLQ result and numerical integration. Moreover, by comparing

figure 6(a) and figure 6(b), it is clear there is no definite sign of the deviation: positive and

negative deviations are about as like. If this would have been different, this might have

indicated a systematic error.

Finally, physics provides a strong cross-check of the numerics. The leading coefficient of

the non-planar form factor should be of order ϵ−2, while the individual integral generically

contribute from order ϵ−8. Hence, in the sum there should be numerical cancellations between

the integrals to give zero for the first six orders of expansion, down to ϵ−3. With the errors

added in quadrature and the result for the sum of the central value, one can compare to

the exact answer, 0, for these coefficients. These results are contained in table 1 and clearly

indicate an overestimated error as well, giving further support for our error analysis.

In total, the above analysis shows that the errors reported by FIESTA are stable and

in general overestimated the errors for the form factor integrals in the present study. This

strongly indicates that the final error for CAD are not underestimated and there is no need to

manually inflate the reported errors. Conservatively, we will interpret the FIESTA reported

error as the standard deviation of a Gaussian error. For a true single standard deviation in

a Gaussian error, one would expect deviations from the true result to exceed the standard
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added in quadrature and the result for the sum of the central value, one can compare to
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indicate an overestimated error as well, giving further support for our error analysis.

In total, the above analysis shows that the errors reported by FIESTA are stable and

in general overestimated the errors for the form factor integrals in the present study. This
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manually inflate the reported errors. Conservatively, we will interpret the FIESTA reported

error as the standard deviation of a Gaussian error. For a true single standard deviation in

a Gaussian error, one would expect deviations from the true result to exceed the standard
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5

TABLE I. Non-planar form factor result and errors. The ✏�8 entry is a✏icted with a rounding error.

✏ order �8 �7 �6 �5 �4 �3 �2

result �3.8⇥ 10�8 +4.4⇥ 10�9 �1.2⇥ 10�6 �1.2⇥ 10�5 +3.5⇥ 10�6 + 0.0007 +1.56

uncertainty ±7.9⇥ 10�9 ±5.7⇥ 10�7 ±1.0⇥ 10�5 ±1.2⇥ 10�4 ±1.5⇥ 10�3 ± 0.0186 ±0.21

Altogether, this comparison involves more than seventy
data points. The fluctuations for all integrals used are
within the reported FIESTA uncertainties, in many cases
by over an order of magnitude.

The uncertainties will be conservatively interpreted as
the standard deviation of a Gaußian distribution, and
errors are added in quadrature. Our results show no evi-
dence of systematic e↵ects in the FIESTA errors: devia-
tions to other results include both positive and negative
signs. A hypothetical systematic error will be modelled
by adding uncertainties from individual UT integrals lin-
early. In conclusion, there is no need to manually inflate
the reported uncertainties. Further details will be pro-
vided in [61].

Results

Our results for the non-planar four-loop form factor up
to an overall factor are summarised in table I. The first
six orders in the ✏-expansion must vanish by equation(4).
The ✏�7 coe�cient should vanish for each integral, and
indeed does well within error bars. The coe�cients of
✏�{8,6,5,4,3} can be non-zero in individual integrals but
must cancel in the linear combination of the form factor,
which is indeed the case, both using direct numerics (see
table I) as well as the obtained analytic expressions.

The non-trivial coe�cient for the non-planar form fac-
tor at order ✏�2 yields the sought-after non-planar four-
loop CAD:

�(4)
cusp, NP = �3072⇥ (1.56± 0.21)

1

N2
c

, (13)

where 3072 = 2⇥24⇥64 is the normalization factor aris-
ing from the permutational sum, the color factor [35], and
the denominator of (4), respectively. The significance of
a deviation from zero is 7.4�. This is the second major
result of this paper. Adding individual uncertainties lin-
early would yield 1.56± 0.62; still significantly non-zero.

Compared to the planar result (5): �(4)
cusp,P ⇠ �1875,

we see that the non-planar CAD has the same sign. If

Nc = 3 is used, its central value becomes �(4)
cusp, NP ⇠

�532, i.e. the planar contribution is a factor of 3 – 4
larger.

DISCUSSION

In this article we present the first computation of
the non-planar correction to the cusp anomalous dimen-
sion in the maximally supersymmetric Yang-Mills theory,
which starts at four loops.

While integrating a generic set of four-loop form fac-
tor master integral remains quite challenging, a key idea
leading to the present result is to express the form factor
in a basis of uniformly transcendental integrals, which
can be constructed algorithmically. While a generic inte-
gral contains mixed transcendentality degrees, the UT in-
tegrals contain only numbers of fixed (maximal forN = 4
SYM) transcendentality in each order of the ✏ expansion.
What is interesting and deserves further study is the em-
pirical observation that such simplicity is inherited in
sector decomposition, where each sector is no longer UT
separately. Once a good set of (candidate) UT basis inte-
grals is determined, the full form factor can be expressed
in this basis by using a simple subset of the IBP relations
or, in principle, directly by unitarity cuts. In the case at
hand, our results provide strong evidence for the max-
imal transcendentality of the four-loop non-planar form
factor in N = 4 SYM. In particular this implies that the
four-loop CAD can be written as a rational linear sum of
weight-six transcendental numbers.

The UT basis finding algorithm is widely applicable.
An immediate interesting application of already obtained
results would be to four-loop propagator integrals in
QCD, see e.g. [78]. A UT basis in QCD would always
involve pre-factors with non-negative powers of ✏, sim-
plifying computations potentially drastically, see [79] for
similar ideas.

Based on the UT basis, a numerical computation has
also yielded the first information on the value of the non-
planar CAD in N = 4, which is statistically significantly
non-zero. In particular, our result shows that quadratic
Casimir scaling breaks down at four loops in this the-
ory and is therefore not expected to hold in any other
theory such as QCD. Direct further research directions
include improving precision at order 1/✏2 and comput-
ing further orders in the ✏-expansion which contain the
so-called collinear anomalous dimension. Computing the
four-loop non-planar CAD analytically, also in other the-
ories such as QCD, is a prime further goal.

I(26)6,PSLQ =− 25

576ϵ8
+

313ζ2
288ϵ6

+
1241ζ3
216ϵ5

− 3671ζ4
288ϵ4

+O(ϵ−3) . (A.12)

I(26)7 =
q

p1

p2

ℓ3
ℓ4

ℓ5

ℓ6

×
{

4 [(ℓ4 − ℓ5)(ℓ3 − ℓ4 + ℓ5 − p1)] [(ℓ4 − ℓ6)(ℓ3 − ℓ4 + ℓ6 − p2)]
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, (A.13)

I(26)7,PSLQ =
1
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+
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144ϵ6

+
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216ϵ5

+
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+O(ϵ−3) . (A.14)

Topology 27
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I(27)8,PSLQ = − 1
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+

5ζ2
24ϵ6

+
55ζ3
48ϵ5

+
49ζ4
128ϵ4

+O(ϵ−3) , (A.16)

Topology 28

I(28)9 =
q

p1

p2

ℓ3
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ℓ6

× (ℓ3 − ℓ4 − p2)
2
[

(ℓ3 − ℓ4)
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− 3.56367(64)

ϵ4

− 60.6800(73)

ϵ3
− 182.180(84)

ϵ2
, (A.17)

I(28)9,PSLQ = − 1
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+
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288ϵ6

+
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144ϵ5
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+O(ϵ−3) . (A.18)
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Results

Table 1. Nonplanar form factor result and errors. The prefactor 48/N2
c in (4.2) is not included.

ϵ order −8 −7 −6 −5

result −3.8× 10−8 +4.4× 10−9 −1.2× 10−6 −1.2× 10−5

uncertainty – ±5.7× 10−7 ±1.0× 10−5 ±1.2× 10−4

ϵ order −4 −3 −2 −1

result +3.5× 10−6 + 0.0007 +1.60 −17.98

uncertainty ±1.5× 10−3 ± 0.0186 ±0.19 ± 3.25

have typically used several 100 million sampling points per integral in the Monte Carlo-based

numerical integration algorithms. This requires large computing resources.

In the course of computation several tricks were used to speed up computation and

to control the arising errors. The sector decomposition programs involve choices of how

to regularise the integrals, which are encapsulated in different strategies for resolving the

singularities. This is a feature of which the problem at hand benefits a lot since the occurring

integrals are complicated multivariate expressions. Whenever it finishes, FIESTA’s “strategy

X” typically leads to smallest sector counts which we will take to be a proxy for the ease

of integration. In cases where this strategy fails for one or more sectors, one can split the

computation into those sectors treated with strategy X and a remainder tackled with “strategy

S”. This can be done using the option “SectorCoefficients” in FIESTA. A further trick to

use is that of graph symmetries. These can be used to gather exponents of several sectors

into a single one, with a numerical pre-factor counting the number of sectors related to the

base sector. For choosing the base sector, one first runs FIESTA on all sectors, selecting

representatives which have the smallest sector count as a proxy for simplicity.

Note it is very important to verify that the integral in question has the explicit graph

symmetry used; otherwise a wrong result may be the consequence. Here the UT properties

of the integrals offer some protection: if an error with respect to graph symmetries is made

during computation, the obtained final result is typically not UT and this manifests itself for

instance by a non-vanishing ϵ−7 coefficient. Moreover, in these cases the numerical value of

the coefficients tends to grow very fast with increasing orders of ϵ. In addition, if a graph

symmetry is misused one cannot rationalise the coefficients of the ϵ expansion as described

below.

5.3 Nonplanar cusp and collinear anomalous dimensions

We gather the numerical results for all integrals needed for the nonplanar part of the Sudakov

form factor in appendix A. When combined to give the Sudakov form factor, the results are

gathered in table 1. Errors are added in quadrature, see below for the rationale behind this.

Due to the high precision of the computation at order ϵ−8, there is no sensible reported error

in FIESTA. Note that in table 1 the prefactor 48/N2
c in (4.2) is not included.
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Indeed, cancellation for all poles up to      order

(a) (b)

Figure 6. Scatterplot of the relative error of FIESTA results compared to PSLQ results for ϵ{−6,−5,−4}

orders. (a) Plot of cases FIESTA error

IPSLQ−IFIESTA
> 0. (b) Plot of cases FIESTA error

IFIESTA−IPSLQ
> 0. A log plot is used for

vertical axis, and all ratios larger than 200 are not shown in the figures. We can see that all ratios are
larger than one, which suggests that the FIESTA errors are overestimated. Besides, we find that the
deviation of FIESTA results from PSLQ results are both positive and negative, which indicates that
there is no systematic errors.

namely,
FIESTA errork

Ik,PSLQ − Ik,FIESTA
, (5.9)

where k labels the 23 integrals in section 4.1. The results are plotted in figure 6. Two panels

are provided for positive and negative deviations separately. Note that for all 23 integrals,

all absolute ratios are larger than one, corresponding to reported FIESTA errors larger than

the discrepancy between PSLQ result and numerical integration. Moreover, by comparing

figure 6(a) and figure 6(b), it is clear there is no definite sign of the deviation: positive and

negative deviations are about as like. If this would have been different, this might have

indicated a systematic error.

Finally, physics provides a strong cross-check of the numerics. The leading coefficient of

the non-planar form factor should be of order ϵ−2, while the individual integral generically

contribute from order ϵ−8. Hence, in the sum there should be numerical cancellations between

the integrals to give zero for the first six orders of expansion, down to ϵ−3. With the errors

added in quadrature and the result for the sum of the central value, one can compare to

the exact answer, 0, for these coefficients. These results are contained in table 1 and clearly

indicate an overestimated error as well, giving further support for our error analysis.

In total, the above analysis shows that the errors reported by FIESTA are stable and

in general overestimated the errors for the form factor integrals in the present study. This

strongly indicates that the final error for CAD are not underestimated and there is no need to

manually inflate the reported errors. Conservatively, we will interpret the FIESTA reported

error as the standard deviation of a Gaussian error. For a true single standard deviation in

a Gaussian error, one would expect deviations from the true result to exceed the standard
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The full form factor result is:



Results

Table 1. Nonplanar form factor result and errors. The prefactor 48/N2
c in (4.2) is not included.

ϵ order −8 −7 −6 −5

result −3.8× 10−8 +4.4× 10−9 −1.2× 10−6 −1.2× 10−5

uncertainty – ±5.7× 10−7 ±1.0× 10−5 ±1.2× 10−4

ϵ order −4 −3 −2 −1

result +3.5× 10−6 + 0.0007 +1.60 −17.98

uncertainty ±1.5× 10−3 ± 0.0186 ±0.19 ± 3.25

have typically used several 100 million sampling points per integral in the Monte Carlo-based

numerical integration algorithms. This requires large computing resources.

In the course of computation several tricks were used to speed up computation and

to control the arising errors. The sector decomposition programs involve choices of how

to regularise the integrals, which are encapsulated in different strategies for resolving the

singularities. This is a feature of which the problem at hand benefits a lot since the occurring

integrals are complicated multivariate expressions. Whenever it finishes, FIESTA’s “strategy

X” typically leads to smallest sector counts which we will take to be a proxy for the ease

of integration. In cases where this strategy fails for one or more sectors, one can split the

computation into those sectors treated with strategy X and a remainder tackled with “strategy

S”. This can be done using the option “SectorCoefficients” in FIESTA. A further trick to

use is that of graph symmetries. These can be used to gather exponents of several sectors

into a single one, with a numerical pre-factor counting the number of sectors related to the

base sector. For choosing the base sector, one first runs FIESTA on all sectors, selecting

representatives which have the smallest sector count as a proxy for simplicity.

Note it is very important to verify that the integral in question has the explicit graph

symmetry used; otherwise a wrong result may be the consequence. Here the UT properties

of the integrals offer some protection: if an error with respect to graph symmetries is made

during computation, the obtained final result is typically not UT and this manifests itself for

instance by a non-vanishing ϵ−7 coefficient. Moreover, in these cases the numerical value of

the coefficients tends to grow very fast with increasing orders of ϵ. In addition, if a graph

symmetry is misused one cannot rationalise the coefficients of the ϵ expansion as described

below.

5.3 Nonplanar cusp and collinear anomalous dimensions

We gather the numerical results for all integrals needed for the nonplanar part of the Sudakov

form factor in appendix A. When combined to give the Sudakov form factor, the results are

gathered in table 1. Errors are added in quadrature, see below for the rationale behind this.

Due to the high precision of the computation at order ϵ−8, there is no sensible reported error

in FIESTA. Note that in table 1 the prefactor 48/N2
c in (4.2) is not included.

– 23 –

The full form factor result is:

• Four-loop non-planar cusp AD:

As mentioned above, physics dictates that the coefficients of orders ϵ{−8,−7,−6,−5,−4,−3}

vanish in the final result, which is numerically indeed the case and provides a strong con-

sistency check of our computation. The coefficients of order ϵ−7 must even vanish in each

of the 23 UT integrals separately. The orders ϵ{−8,−6,−5,−4,−3} are in most cases non-zero in

individual integrals but cancel in the final result. As described below, the precision of the

orders ϵ{−8,−6,−5,−4} is good enough to translate the reported numbers into small rational

multiples of {1, ζ2, ζ3, ζ4}. After doing so, these orders also vanish analytically in the final

result of the nonplanar form factor.

As can be seen from table 1, the first non-zero term is at order ϵ−2. The result 1.60±0.19

has a statistical significance to deviate from zero of 8.4σ. Adding individual uncertainties

linearly to account for potential systematic effects would yield 1.60 ± 0.58; still significantly

non-zero.7 We will argue below that there is no evidence for systematically underestimated

error bars in our calculation.

Translating the result of the order ϵ−2 of the nonplanar form factor into a result for the

sought-after nonplanar four-loop CAD yields for gauge group SU(Nc)

γ(4)cusp, NP = −3072 × (1.60 ± 0.19)
1

N2
c
, (5.7)

where the prefactor 3072 = 2×24×64 is the normalisation stemming from the permutational

sum, the colour factor [42], and the denominator of (2.5), respectively. Compared to the

planar result γ(4)cusp,P = −1752ζ6 − 64ζ23 ∼ −1875, we observe that the nonplanar CAD has

the same sign. If we use Nc = 3, its value becomes γ(4)cusp, NP ∼ −546 ± 65, i.e. the planar

contribution is a factor of 3 – 4 larger.

The result at order ϵ−1 is also given in table 1. This contains the nonplanar four-loop

collinear anomalous dimension:

G(4)
coll, NP = −384× (−17.98 ± 3.25)

1

N2
c
, (5.8)

where the prefactor 384 = 2× 24 × 8 has the similar origin as γ(4)cusp, NP above. Interestingly,

compared to the four-loop planar collinear AD result, G(4)
coll, P = −1240.9(3) [89], we observe

that the nonplanar central value result +(6904±1248)/N2
c indicates the sign is different; it is

also different from the sign of the nonplanar cusp AD above. This is a new feature comparing

to all known planar results in which collinear AD always has same sign as cusp AD.8 Note that

our result is in tension with a vanishing result at the 5.5σ level. The largest contribution to

the error budget within the integrals at this order comes from I(27)8 , which contributes ∼ 1.86,

followed by four integrals which contribute between 0.95 and 1 each, whereas all others are

below 0.75. We mention that the linearly summed error is obtained as −17.98 ± 11.89.

7Note that these numbers are slightly improved compared to those in [15].
8One should also keep in mind that unlike cusp AD, collinear AD is scheme dependent, thus the sign may

change in different schemes.
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Boels, Huber, GY 2017

γ(4)
cusp,NP = − 3072 × ( 3

8 ζ2
3 + 31

140 ζ3
2) 1

N2c
= − 3072 × 1.52 1

N2c

• Analytic result in 2019: Huber, von Manteuffel, Panzer, Schabinger, GY 2019;  
Henn, Korchemsky, Mistlberger 2019
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KLT relation

3.2 The KLT Relations in Field Theory

The fact that the KLT relations hold for the extensive variety of compactified
string models [97, 98, 99, 100, 101, 102] implies that they should also be generally
true in field theories of gravity. For the cases of four- and five-particle scattering
amplitudes, in the field theory limit the KLT relations [7] reduce to:

M tree
4 (1, 2, 3, 4) = −is12A

tree
4 (1, 2, 3, 4)Atree

4 (1, 2, 4, 3) , (10)

M tree
5 (1, 2, 3, 4, 5) = is12s34A

tree
5 (1, 2, 3, 4, 5)Atree

5 (2, 1, 4, 3, 5)

+ is13s24A
tree
5 (1, 3, 2, 4, 5)Atree

5 (3, 1, 4, 2, 5) , (11)

where the Mn’s are tree-level amplitudes in a gravity theory, the An’s are color-
stripped tree-level amplitudes in a gauge theory and sij ≡ (ki + kj)2. In these
equations the polarization and momentum labels are suppressed, but the label
“j = 1, . . . , n” is kept to distinguish the external legs. The coupling constants
have been removed from the amplitudes, but are reinserted below in Eqs. (12)
and (13). An explicit generalization to n-point field theory gravity amplitudes
may be found in appendix A of Ref. [36]. The KLT relations before the field
theory limit is taken may, of course, be found in the original paper [7].

The KLT equations generically hold for any closed string states, using their
Fock space factorization into pairs of open string states. Although not obvious,
the gravity amplitudes (10) and (11) have all the required symmetry under
interchanges of identical particles. (This is easiest to demonstrate in string
theory by making use of an SL(2, Z) symmetry on the string world sheet.)

In the field theory limit the KLT equations must hold in any dimension,
because the gauge theory amplitudes appearing on the right-hand-side have
no explicit dependence on the space-time dimension; the only dependence is
implicit in the number of components of momenta or polarizations. Moreover,
if the equations hold in, say, ten dimensions, they must also hold in all lower
dimensions since one can truncate the theory to a lower dimensional subspace.

The amplitudes on the left-hand side of Eqs. (10) and (11) are exactly the
scattering amplitudes that one obtains via standard gravity Feynman rules [64,
65, 54]. The gauge theory amplitudes on the right-hand-side may be computed
via standard Feynman rules available in any modern textbook on quantum field
theory [57, 58]. After computing the full gauge theory amplitude, the color-
stripped partial amplitudes An appearing in the KLT relations (10) and (11),
may then be obtained by expressing the full amplitudes in a color trace ba-
sis [103, 104, 105, 55, 56]:

Atree
n (1, 2, . . . n) = g(n−2)

∑

σ

Tr (T aσ(1) · · ·T aσ(n))Atree
n (σ(1), . . . , σ(n)) ,

(12)
where the sum runs over the set of all permutations, but with cyclic rotations
removed and g as the gauge theory coupling constant. The An partial ampli-
tudes that appear in the KLT relations are defined as the coefficients of each of

13

Field theory limit

x

KLT works at tree level. New ideas are needed for loop level.



An intriguing duality between color and kinematic factors for 
gauge amplitudes was discovered in 2008:

Duality

Color factor Kinematic factor

⟨i j⟩ = ϵαβλαi λ
β
j , [i j] = ϵα̇β̇λ

α
i λ

β
j

O(x) = tr(FαβF
βγψγAφBCψ̄Dα̇ . . .)

PSU(2, 2|4) α, α̇|A A = 1, 2, 3, 4
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ℓ
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1
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1
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[Bern, Carrasco, Johansson 2008]

Gauge symmetry Spacetime symmetry

Color-kinematics duality

(conjecture)



Example: 4-pt amplitude
The simplest example to understand the colour-kinematics duality is to consider

four-point gluon tree amplitudes.
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Fig. 1: Trivalent graphs of four-point tree amplitudes.

A special representation is given in terms of three trivalent graphs in Fig. 1,

Atree
4 (1, 2, 3, 4) =

cs ns

s
+

ct nt

t
+

cu nu

u
, (2.1)

where ni’s are kinematic factors and ci’s are colour factors given by the product of

structure constants f̃abc associated to each trivalent vertex, more explicitly,

cs = f̃a1a2bf̃ ba3a4 , ct = f̃a2a3bf̃ ba4a1 , cu = f̃a1a3bf̃ ba2a4 . (2.2)

The colour-kinematics duality requires that the numerators should satisfy the same

Jacobi relation of colour factors,

cs = ct + cu ⇒ ns = nt + nu . (2.3)

For more general tree-level amplitudes, the existence of such a representation has

been proved in [?].

The more remarkable and mysterious fact is that it also works at loop level. An

L-loop amplitudes can be represent as a sum over trivalent graphs,

A(L)
n =

∑

Γi

∫ L
∏

j

dDℓj
1

Si

CiNi
∏

aDa
. (2.4)

For every propagator of a trivalent graph, one can take it as s channel and perform

t, u-channel transformation, as in Fig. 2, to generate two other graphs. The duality

requires that the numerators of these three graphs should satisfy the Jacobi relation

as the colour factors,

Ci = Cj + Ck ⇒ Ni = Nj +Nk . (2.5)
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For every propagator of a trivalent graph, one can take it as s channel and perform
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Fig. 1: Trivalent graphs of four-point tree amplitudes.

A special representation is given in terms of three trivalent graphs in Fig. 1,
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Jacobi identity dual Jacobi relation

A4(1,2,3,4) = csns

s
+ ctnt

t
+ cunu

u

× S



CK duality at loop level

Jacobi identity dual Jacobi relation

A(ℓ) ∼ ∑
i

∫
Ci × Ni

∏D

Ck = Ci − Cj Nk = Ni − Nj

= Sum of many trivalent topologies
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BCJ  Gravity loop integrands are free! 

 If you have a set of duality satisfying numerators. 
                                  To get:  
  

simply take 

color factor        kinematic numerator 

gauge theory         gravity theory 

Gravity loop integrands follow from gauge theory! 

Ideas conjectured to generalize to loops:  

ck           nk 

color factor 

kinematic 
numerator (k) (i) (j) 



If the gauge amplitude satisfies CK duality, one can directly 
construct gravity amplitude：

M4(1,2,3,4) = nsns

s
+ ntnt

t
+ nunu

u
A4(1,2,3,4) = csns

s
+ ctnt

t
+ cunu

u

From YM to gravity

na → na + δa ,
δa = na |εi→pi



If the gauge amplitude satisfies CK duality, one can directly 
construct gravity amplitude：

M4(1,2,3,4) = nsns
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+ ntnt

t
+ nunu

u
A4(1,2,3,4) = csns

s
+ ctnt

t
+ cunu

u

From YM to gravity

Gauge invariance

ni → ni + δi , ∑
i

ci δi

Di
= 0

δi = ni |εj→pj

∑
i

ni δi

Di
= 0

ci = cj + ck ni = nj + nk

εμν
i → εμν

i + p(μ
i qν)εμ

i → εμ
i + pμ

i

Diffeomorphism invariance
CK-duality



GravityGauge x Gauge
CK-duality

M4(1,2,3,4) = nsns

s
+ ntnt

t
+ nunu

u
A4(1,2,3,4) = csns

s
+ ctnt

t
+ cunu

u

It can be generalized to high loops:
A(ℓ) ∼ ∑

i
∫

Ci × Ni

∏D
M(ℓ) ∼ ∑

i
∫

Ni × Ni

∏D

Double copy
If the gauge amplitude satisfies CK duality, one can directly 
construct gravity amplitude：



By studying the simpler gauge theory, one may understand 
the far more complicated gravity theory.

CK-duality v.s. Double-copy

CK-duality
Color factor Kinematic factor

Gravity (Gauge theory)^2

(conjecture)

Double-copy

Within gauge theory



How to construct 
color-kinematics duality ?

CK-duality Unitarity cuts



CK-duality

Compact ansatz of 
the loop integrand

Strategy of loop computation

Cs = Ct + Cu Ns = Nt + Nu
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FIG. 1. Trivalent graphs for four-point tree amplitudes.

REVIEW AND STRATEGY

Before discussing three-loop form factors, we briefly re-
view the color-kinematics duality, and an instructive ex-
ample is the four-gluon tree amplitude. It is always pos-
sible to represent the amplitude in terms of three cubic
graphs shown in Fig. 1,

A(0)
4 =

CsNs

s
+

CtNt

t
+

CuNu

u
, (2)

where Ci are color factors as products of structure con-
stants f̃abc for each trivalent vertex, andNi are kinematic
numerators that contain physical information. The color-
kinematics duality requires that the numerators should
satisfy the Jacobi relation of color factors as [1]

Cs = Ct + Cu ) Ns = Nt +Nu . (3)

As shown in Fig. 2, each internal propagator (not di-
rectly connected to the q-leg) is associated to a four-point
tree sub-graph, and loop integrals that contain s, t, u-
channel sub graphs are related by color Jacobi relation.
CK duality asks that their numerators also satisfy the
same Jacobi relations as (3). Because of the duality re-
lation applies to multiple number of propagators, the
numerators of di↵erent topologies are interlocked with
each other, and the CK-dual integrand is thus highly
constrained.

Due to color Jacobi relation, one can make a deforma-
tion of the numerator without changing the amplitude
result:

Ns ! Ns+s�, Nt ! Nt� t�, Nu ! Nu�u� , (4)

which is called a generalized gauge transformation (GT)
[2].

Before discuss the details of the construction, we
present the final form of the CK-dual integrand of 3-loop
3-point form factors:

F (3)
O2,3

= F
(0)
O2,3

X

�3

X

i

Z 3Y

j=1

d
D
`j

1

Si

Ci NiQ
↵i

P 2
↵i

, (5)

where sum over �3 is due to the permutation of external
on-shell momenta pi, i = 1, 2, 3. The symmetry factors
Si remove the overcounts from the automorphism sym-
metries of the graphs.

ts ua

b

d

c

a

b c

d
a d

b c

FIG. 2. Loop graphs related by Jacobi relation.

FIG. 3. Trivalent topologies for the form factor of tr(�2).

CK-DUAL SOLUTIONS

Now we construct the full-color three-loop integrands for
the three-point form factors. First we consider the form
factor of of the stress-tensor supermultiplet, which, with-
out loss of generality, can be simply chosen as tr(�2).

Three-loop form factor of tr(�2)

The first step is to construct an ansatz based on the
CK duality. There are 29 trivalent topologies to con-
sider, as given in Fig. 3. Using Jacobi relations, one can
choose two planar topologies as master integrals, which
are shown in Fig. 4.
Master graphs and zone-variable labeling of master nu-

merators has been listed in Figure. 4. The nice UV be-
havior provides constraint on the power-counting of loop
momenta. For N3, xa, xc can appear at most once, so
both (x2

ai)
1
, (x2

ci)
1, with i = 1, 2, 3, 4, and (x2

ac)
1 are al-

lowed; any term containing xb or containing more than
one xa or xc, such as (x2

ac)
1
, (x2

a0)
1 are forbidden. For

N2, only xb can appear and can appear at most twice, so
only x

2
bi can appear and can appear with power 2, 1, 0.

The total number of parameters are 316.
Given the ansatz, we now apply various constraints

to solve the parameters in the ansatz. We first demand
that each numerator respects the automorphism symme-
tries of the graph. With this only 105 parameters is
obtained. One can see that the symmetries provide a
strong constraint and can substantially reduce the num-
ber of parameters. Next we apply unitarity cut to solve
the remaining parameters. Since the total number of
these parameters is reasonably small (only about 100),
one can directly utilize the most constraining cuts, i.e.
the quadruple cuts in Fig. 5. With these two cuts, there

ℱ(ℓ) ∼ ∑
i

∫
Ci × Ni

∏D



CK-duality

Unitarity cuts

Strategy of loop computation

Compact ansatz of 
the loop integrand

Loop-ansatz |cut = ∏ tree-blocks

Solving linear equations



CK-duality

Unitarity cuts

Strategy of loop computation

Compact ansatz of 
the loop integrand

Loop-ansatz |cut = ∏ tree-blocks

Solving linear equations

Main challenge:  it is a priori not known whether the solution exists

Conjecture !



Still a conjecture at loop level, relying on explicit constructions.

Proved at tree-level:
• String Monodromy relation 
• BCFW recursion

Bjerrum-Bohr et.al 2009;  Stieberger 2009 
Mafra, Schlotterer and Stieberger 2011
Feng, Huang, Jia 2010

Color-kinematics duality



For N=4 SYM, there are high loop examples that manifest 
global CK-dual Jacobi relations:

• 4-loop 4-point amplitude in N=4

GY 2016

Bern, Carrasco, Dixon, Johansson, Roiban, 2012

Loop-level CK duality

• 5-loop Sudakov form factor in N=4

• 4-loop three-point form factor in N=4
Lin, GY, Zhang, 2112.09123



3-loop Sudakov form factor

Table 2. The result for the two-point two-loop form factor.

Basis Numerator factor Color factor Symmetry factor

(a) 1 4N2
c δ

a1a2 2

(b) 1 2N2
c δ

a1a2 4

4.2 Two-point three-loop form factor

As a more non-trivial example, the two-point form factor at three loops is calculated next by

the procedure outlined above. This result has been computed by unitarity methods in [22].

First, by generating topologies we can find there are six trivalent diagrams, as shown in

Figure 5.8.
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Figure 5. The integrals for the two-point three-loop form factor.

By applying the color-kinematic relation to this set of trivalent diagrams, a set of equa-

tions can be obtained for the numerators. It turns out that one can choose the single integral

(d) as the master integral. One can then make an ansatz for the numerator of this master

integral by applying the following three constraints.

1. From the power counting property, the numerator should depend only linearly on the

loop momentum ℓ and there should be no dependence on other loop momenta. A general

ansatz is therefore given as (note that we have factorized a whole factor s212)

Nansatz
d (p1, p2, ℓ) = α1ℓ · p1 + α2ℓ · p2 + α3p1 · p2 , (4.3)

8There is one bubble-like graph containing a two-point tree leg which turns out not contribute. For simplicity

we do not include it here. In the four-loop construction, such graphs are as shown in Figure 10.
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3-loop Sudakov form factor

master integral

[Boels, Kniehl, Tarasov, GY 2013]

• Generate all topologies (no-triangle property)

G. Yang Sci. China-Phys. Mech. Astron. July (2020) Vol. 63 No. 7 270001-17

(a) (b) (c)

(d) (e) (f)

Figure 15 (Color online) The six topologies, labelled by (a)-(f) respectively, for the three-loop Sudakov form factor.

(b) (e)(e)

Figure 16 (Color online) From Graph (b), one can perform t and u channel transformation for the propagator s, which generates two new graphs that has the
same topology as graph (e). By color-kinematics duality, the numerator of graph (b) is equal to the sum of two numerators of graph (e), as given in eq. (83).

(4) Check unitarity cuts. We need to check if the above
ansatz satisfies the unitarity cuts:

F (3)|cut =
∑

cubic graphs
∣∣∣∣
cuts
=

∑

helicities

F tree
∏

I

Atree
I . (91)

One of the most constraining cuts is the quadruple-cut shown
in Figure 17. On one side, it is given by the product of tree
results:
∫ 4∏

i=1

d4ηli

[
F (0),MHV

4 (−l1,−l2,−l3,−l4)

×A(0),NNMHV
6 (p1, p2, l4, l3, l2, l1)

+ F (0),NMHV
4 (−l1,−l2,−l3,−l4)

×A(0),NMHV
6 (p1, p2, l4, l3, l2, l1)

+ F (0),NNMHV
4 (−l1,−l2,−l3,−l4)

×A(0),MHV
6 (p1, p2, l4, l3, l2, l1)

]
, (92)

where the tree building blocks of non-MHV cases can be ob-
tained using MHV rules [24]. On the other side, from the
ansatz in terms of cubic integrals, one obtains a sum of 29
cut diagrams. The equivalence of two sides provides a rather
non-trivial check of the result.

Figure 17 (Color online) A quadruple-cut for the three-loop Sudakov form
factor.

The full form factor result can be finally obtained as:

F̂ (3)
2 = F (0)

2

∑

σ2

e∑

i=a

1
S i

Ci Ii , (93)

where the various factors are summarized in Table 3. Note
that the graph (f) has zero color factor and therefore does not
contribute to the final result of the form factor, but it is nec-
essarily involved in solving the Jacobi relations. This result
is consistent with the result in ref. [132] first computed using
pure unitarity method. With the aid of color-kinematics du-
ality, the computation here is more straightforward. We can
also note that there is no non-planar correction at three loops.

At higher loops The above procedure has been success-
fully applied to construct Sudakov form factors at four and
five loops [50,51]. We summarize the number of cubic graphs
and master integrals in Table 4. The corresponding master
graphs are shown in Figure 18. We would like stress that
the number of masters is 2 at four loops and 4 at five loops,
which are remarkably small numbers comparing to the total
numbers of cubic graphs that contribute to the results. In this

Table 3 The factors for the three-loop Sudakov form factor

Graph Numerator factor Color factor Symmetry factor

(a) s3
12 8 N3

c δ
a1a2 2

(b) s3
12 4 N3

c δ
a1a2 4

(c) s3
12 4 N3

c δ
a1a2 4

(d) [(p2 − p1) · l − p1 · p2]s2
12 2 N3

c δ
a1a2 2

(e) [−(p2 − p1) · l + p1 · p2]s2
12 2 N3

c δ
a1a2 1

(f) [(p2 − p1) · l − p1 · p2]s2
12 0 2

• Find master numerator via CK duality
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fully applied to construct Sudakov form factors at four and
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Table 3 The factors for the three-loop Sudakov form factor
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(a) s3
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(b) s3
12 4 N3

c δ
a1a2 4

(c) s3
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c δ
a1a2 4
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c δ
a1a2 2
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12 2 N3

c δ
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12 0 2
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Figure 13 (Color online) Trivalent graphs of the two-loop Sudakov form factor.

(a) (b) (c)

Figure 14 (Color online) Three graphs that are related by color-kinematics duality. (a), (b) and (c) contain s-, u- and t-channel subgraphs, respectively.

Table 2 The various factors for the two-loop Sudakov form factor

Graph Numerator factor Color factor Symmetry factor

(a) s2
12 4 N2

c δ
a1a2 2

(b) s2
12 2 N2

c δ
a1a2 4

obtained in eq. (74). Note that the computation with color-
kinematics duality is for the form factor with full color depen-
dence, and one can see that there is no non-planar correction
in the two-loop case.

We would like to mention that in the above construction,
we have made a few assumptions such as the no-triangle
property and the good UV behavior of the numerators. These
may not always work. In practice, one can always make these
assumptions as a first try, and as long as the ansatz passes the
unitarity checks, the result is correct. If not, one can then
consider to relax these assumptions.
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dual Jacobi relations associated to the propagators indicated
by red color in Figure 15, and one obtains the following five
relations:

Na
D1
= Nb , Na

D2
= Nc , Nd

D3
= −Ne , Nd

D4
= Nf , (82)

Nb(p1, p2, l)
D5
= Ne(p1, p2, l) + Ne(p1, p2, p1 + p2 − l) . (83)

The most non-trivial relation is the last relation eq. (83).
It can be understood using Figure 16. Note that both t and
u-channel graphs are topologically equivalent to graph (e),
therefore, their numerators are both given in terms of Ne. By
solving the eqs. (82) and (83), all numerators can be related
to one single numerator, either Nd or Ne or Nf . We choose

graph (d) as the master graph, since it is both planar and most
symmetric. This will make it simpler to construct an ansatz
for its numerator.

(3) Construct ansatz of master numerators. We construct
an ansatz for Nd by applying the following constraints:
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(80), the numerator should depend linearly on the loop mo-
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A general ansatz can be given as:

Nansatz
d (p1, p2, l) = (x1 l · p1 + x2 l · p2 + x3 p1 · p2)s2

12 , (84)

which contains three parameters xi, i = 1, 2, 3.
b) We require further that the numerator satisfies the sym-
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x2 = −x1 . (87)

c) We consider further the simple constraint of the maxi-
mal cuts, where all propagators are taken on-shell. In such
case the numerator should match the “rung rule” numerator
(l − p1)2s2

12 [131]:
[
Nd(p1, p2, l) − (l − p1)2s2

12
]∣∣∣∣

maximal cut
= 0 . (88)

This fixes the remaining two parameters as:

x1 = −1, x3 = −1 . (89)

Thus, by applying the above simple constraints we arrive
at a unique solution for the master numerator:

Nansatz
d = [(p2 − p1) · l − p1 · p2]s2

12 . (90)

Given this numerator, one can write down an ansatz for the
full form factor.
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4.2 Two-point three-loop form factor

As a more non-trivial example, the two-point form factor at three loops is calculated next by

the procedure outlined above. This result has been computed by unitarity methods in [22].

First, by generating topologies we can find there are six trivalent diagrams, as shown in

Figure 5.8.
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By applying the color-kinematic relation to this set of trivalent diagrams, a set of equa-

tions can be obtained for the numerators. It turns out that one can choose the single integral

(d) as the master integral. One can then make an ansatz for the numerator of this master

integral by applying the following three constraints.

1. From the power counting property, the numerator should depend only linearly on the

loop momentum ℓ and there should be no dependence on other loop momenta. A general

ansatz is therefore given as (note that we have factorized a whole factor s212)

Nansatz
d (p1, p2, ℓ) = α1ℓ · p1 + α2ℓ · p2 + α3p1 · p2 , (4.3)

8There is one bubble-like graph containing a two-point tree leg which turns out not contribute. For simplicity

we do not include it here. In the four-loop construction, such graphs are as shown in Figure 10.
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• Generate all topologies (no-triangle property)

• Find master numerator via CK duality

• Make ansatz for the master numerator

• Apply symmetry property
which contains three parameters αi, i = 1, 2, 3.

2. The numerator should preserve the symmetry of the graph, which implies that it should

be invariant under

{p1, p2, ℓ} ⇐⇒ {p2, p1, q − ℓ} , (4.4)

or more explicitly

Nd(p1, p2, ℓ) = Nd(p2, p1, q − ℓ) . (4.5)

Plugging in the ansatz (4.3), we obtain the relation

α2 = −α1 . (4.6)

3. Finally, we consider the constraint of maximal cut. From the “rung rule” we read off

the numerator (ℓ− p1)2. On the maximal cut we have

[

Nd(p1, p2, ℓ)− (ℓ− p1)
2
]

∣

∣

∣

maximal cut
= 0 . (4.7)

This fixes the remaining two parameters

α1 = −1, α3 = −1 . (4.8)

Therefore, by applying the above constraints we arrive at a unique solution for the master

integral

Nansatz
d = (p2 − p1) · ℓ− p1 · p2 . (4.9)

Given this solution, one can check that all Jacobi equations are satisfied. Other numer-

ators can be obtained from the master integral by using the relations

Na = Nb = Nc , Nd = −Ne = Nf , (4.10)

Nb(p1, p2) = −Ne(p1, p2, ℓ)−Ne(p2, p1, ℓ) , (4.11)

where Nx = Nx(p1, p2, ℓ) if not specified.

Now it is essential to check that the solution is indeed physical i.e. satisfies the unitarity

cuts. A non-trivial quadruple cut is given as in Figure 6. The product of trees is

∫ 4
∏

i=1

d4ηli

[

FMHV
4 (−l1,−l2,−l3,−l4)AMHV

6 (p1, p2, l4, l3, l2, l1) + (4.12)

FNMHV
4 (−l1,−l2,−l3,−l4)ANMHV

6 (p1, p2, l4, l3, l2, l1) +

Fmax-non-MHV
4 (−l1,−l2,−l3,−l4)AMHV

6 (p1, p2, l4, l3, l2, l1)
]

.

From the basis integrals, we obtain the cut integrand as a sum of 29 cut diagrams. We have

compared the two expressions numerically, and have found perfect agreement.
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and correlation functions with two adjoint operators through eight loops.

2 Review

2.1 Color-kinematic duality for scattering amplitudes

Color-kinematic duality is the collective name for what is basically a pair of two partially

proven conjectures [2], [3]. The starting point is to write the integrand for a scattering

amplitude in D dimensions at l loops in terms of a sum over trivalent graphs only,

A(l) =
∑

Γi

∫ l
∏

j=1

dDℓj
1

Si

nici
si

, (2.1)

where ci is the natural color factor associated to trivalent graph i, Si is the symmetry factor

associated to the trivalent graph i and si is the product of all internal propagators of the

graph. This form of the integrand simply amounts to a rewriting of Feynman graph-based

perturbation theory by parcelling out the four-vertex over three-vertices. This determines

some set of numerators ni which is not unique. The non-trivial claim of color-kinematic

duality is that there exists a set of numerators such that whenever color factors obey a Jacobi

identity, the numerators do too:

∀{i, j, k} ci + cj + ck = 0 ⇒ ni + nj + nk = 0 . (2.2)

A set of numerators which obeys all Jacobi identities is called color-dual. Color-dual numer-

ators have been constructed explicitly at tree level for all multiplicities through a variety of

methods [6–8], and at loop level in specific examples in N = 4 SYM for five points up to

two loops [9] and for four points up to four loops [10]. Moreover, in pure Yang-Mills theory

numerators are known at two loops for the four-point helicity equal amplitude [3] and at

one loop for the helicity equal and one-unequal cases [11]. Of course, the tree level results

will extend almost trivially to any generalized cut of a loop amplitude which involves tree

amplitudes.

The second conjecture usually taken to be part of color-kinematic duality is that if a set

of color-dual numerators exists in a gauge theory, then an amplitude in a gravitational theory

may be constructed as

M (l) =
∑

Γi

∫ l
∏

j=1

dDℓj
1

Si

niñi

si
, (2.3)

where n and ñ are color-dual numerators for two in general distinct gauge theories. This

conjecture has been proven at tree level, assuming that local numerators exist [12]. The field

content of the gravity theory is the direct product of the field contents of the gauge theories.

In this way ’squaring’ N = 4 SYM gives the maximal (ungauged) N = 8 super-gravity theory.

Similarly, squaring pure Yang-Mills theory gives Einstein gravity coupled to a dilaton and

– 3 –
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Table 2. The result for the two-point two-loop form factor.
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4.2 Two-point three-loop form factor

As a more non-trivial example, the two-point form factor at three loops is calculated next by

the procedure outlined above. This result has been computed by unitarity methods in [22].

First, by generating topologies we can find there are six trivalent diagrams, as shown in

Figure 5.8.
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By applying the color-kinematic relation to this set of trivalent diagrams, a set of equa-

tions can be obtained for the numerators. It turns out that one can choose the single integral

(d) as the master integral. One can then make an ansatz for the numerator of this master

integral by applying the following three constraints.

1. From the power counting property, the numerator should depend only linearly on the

loop momentum ℓ and there should be no dependence on other loop momenta. A general

ansatz is therefore given as (note that we have factorized a whole factor s212)

Nansatz
d (p1, p2, ℓ) = α1ℓ · p1 + α2ℓ · p2 + α3p1 · p2 , (4.3)

8There is one bubble-like graph containing a two-point tree leg which turns out not contribute. For simplicity

we do not include it here. In the four-loop construction, such graphs are as shown in Figure 10.
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• Generate all topologies (no-triangle property)

• Find master numerator via CK duality

• Make ansatz for the master numerator

• Apply symmetry property
which contains three parameters αi, i = 1, 2, 3.

2. The numerator should preserve the symmetry of the graph, which implies that it should

be invariant under

{p1, p2, ℓ} ⇐⇒ {p2, p1, q − ℓ} , (4.4)

or more explicitly

Nd(p1, p2, ℓ) = Nd(p2, p1, q − ℓ) . (4.5)

Plugging in the ansatz (4.3), we obtain the relation

α2 = −α1 . (4.6)

3. Finally, we consider the constraint of maximal cut. From the “rung rule” we read off

the numerator (ℓ− p1)2. On the maximal cut we have

[

Nd(p1, p2, ℓ)− (ℓ− p1)
2
]

∣

∣

∣

maximal cut
= 0 . (4.7)

This fixes the remaining two parameters

α1 = −1, α3 = −1 . (4.8)

Therefore, by applying the above constraints we arrive at a unique solution for the master

integral

Nansatz
d = (p2 − p1) · ℓ− p1 · p2 . (4.9)

Given this solution, one can check that all Jacobi equations are satisfied. Other numer-

ators can be obtained from the master integral by using the relations

Na = Nb = Nc , Nd = −Ne = Nf , (4.10)

Nb(p1, p2) = −Ne(p1, p2, ℓ)−Ne(p2, p1, ℓ) , (4.11)

where Nx = Nx(p1, p2, ℓ) if not specified.

Now it is essential to check that the solution is indeed physical i.e. satisfies the unitarity

cuts. A non-trivial quadruple cut is given as in Figure 6. The product of trees is

∫ 4
∏

i=1

d4ηli

[

FMHV
4 (−l1,−l2,−l3,−l4)AMHV

6 (p1, p2, l4, l3, l2, l1) + (4.12)

FNMHV
4 (−l1,−l2,−l3,−l4)ANMHV

6 (p1, p2, l4, l3, l2, l1) +

Fmax-non-MHV
4 (−l1,−l2,−l3,−l4)AMHV

6 (p1, p2, l4, l3, l2, l1)
]

.

From the basis integrals, we obtain the cut integrand as a sum of 29 cut diagrams. We have

compared the two expressions numerically, and have found perfect agreement.
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compared the two expressions numerically, and have found perfect agreement.
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and correlation functions with two adjoint operators through eight loops.

2 Review

2.1 Color-kinematic duality for scattering amplitudes

Color-kinematic duality is the collective name for what is basically a pair of two partially

proven conjectures [2], [3]. The starting point is to write the integrand for a scattering

amplitude in D dimensions at l loops in terms of a sum over trivalent graphs only,

A(l) =
∑

Γi

∫ l
∏

j=1

dDℓj
1

Si

nici
si

, (2.1)

where ci is the natural color factor associated to trivalent graph i, Si is the symmetry factor

associated to the trivalent graph i and si is the product of all internal propagators of the

graph. This form of the integrand simply amounts to a rewriting of Feynman graph-based

perturbation theory by parcelling out the four-vertex over three-vertices. This determines

some set of numerators ni which is not unique. The non-trivial claim of color-kinematic

duality is that there exists a set of numerators such that whenever color factors obey a Jacobi

identity, the numerators do too:

∀{i, j, k} ci + cj + ck = 0 ⇒ ni + nj + nk = 0 . (2.2)

A set of numerators which obeys all Jacobi identities is called color-dual. Color-dual numer-

ators have been constructed explicitly at tree level for all multiplicities through a variety of

methods [6–8], and at loop level in specific examples in N = 4 SYM for five points up to

two loops [9] and for four points up to four loops [10]. Moreover, in pure Yang-Mills theory

numerators are known at two loops for the four-point helicity equal amplitude [3] and at

one loop for the helicity equal and one-unequal cases [11]. Of course, the tree level results

will extend almost trivially to any generalized cut of a loop amplitude which involves tree

amplitudes.

The second conjecture usually taken to be part of color-kinematic duality is that if a set

of color-dual numerators exists in a gauge theory, then an amplitude in a gravitational theory

may be constructed as

M (l) =
∑

Γi

∫ l
∏

j=1

dDℓj
1

Si

niñi

si
, (2.3)

where n and ñ are color-dual numerators for two in general distinct gauge theories. This

conjecture has been proven at tree level, assuming that local numerators exist [12]. The field

content of the gravity theory is the direct product of the field contents of the gauge theories.

In this way ’squaring’ N = 4 SYM gives the maximal (ungauged) N = 8 super-gravity theory.

Similarly, squaring pure Yang-Mills theory gives Einstein gravity coupled to a dilaton and
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• Apply a simple cut

which contains three parameters αi, i = 1, 2, 3.

2. The numerator should preserve the symmetry of the graph, which implies that it should

be invariant under

{p1, p2, ℓ} ⇐⇒ {p2, p1, q − ℓ} , (4.4)

or more explicitly

Nd(p1, p2, ℓ) = Nd(p2, p1, q − ℓ) . (4.5)

Plugging in the ansatz (4.3), we obtain the relation

α2 = −α1 . (4.6)

3. Finally, we consider the constraint of maximal cut. From the “rung rule” we read off

the numerator (ℓ− p1)2. On the maximal cut we have

[

Nd(p1, p2, ℓ)− (ℓ− p1)
2
]

∣

∣

∣

maximal cut
= 0 . (4.7)

This fixes the remaining two parameters

α1 = −1, α3 = −1 . (4.8)

Therefore, by applying the above constraints we arrive at a unique solution for the master
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Nansatz
d = (p2 − p1) · ℓ− p1 · p2 . (4.9)

Given this solution, one can check that all Jacobi equations are satisfied. Other numer-

ators can be obtained from the master integral by using the relations

Na = Nb = Nc , Nd = −Ne = Nf , (4.10)

Nb(p1, p2) = −Ne(p1, p2, ℓ)−Ne(p2, p1, ℓ) , (4.11)

where Nx = Nx(p1, p2, ℓ) if not specified.

Now it is essential to check that the solution is indeed physical i.e. satisfies the unitarity

cuts. A non-trivial quadruple cut is given as in Figure 6. The product of trees is
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3-loop Sudakov form factor
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Figure 6. A quadruple-cut for the two-point three-loop form factor.

The results have been summarized including the color and symmetry factors in Table 3.

The full form factor result can be obtained as

F (3)
2 = s212F

(0)
2

∑

σ2

e
∑

i=a

1

Si
Ci Ii . (4.13)

Note that the graph (f) has zero color factor and therefore does not contribute to the final

result of the form factor. However, it is necessarily involved in solving the Jacobi relations.

Table 3. The result for the two-point three-loop form factor.

Basis Numerator factor Color factor Symmetry factor

(a) s212 8N3
c δa1a2 2

(b) s212 4N3
c δa1a2 4

(c) s212 4N3
c δa1a2 4

(d) (p2 − p1) · ℓ− p1 · p2 2N3
c δa1a2 2

(e) −(p2 − p1) · ℓ+ p1 · p2 2N3
c δa1a2 1

(f) (p2 − p1) · ℓ− p1 · p2 0 2

The result we obtain by applying color-kinematic duality seems quite different from that

in [22]. However, it is a simple check that the results are equivalent, by using the identities

given in section 3 of [22] between different integrals. Our result is presented in a much simpler

form which involves only trivalent graphs. The numerical integer factors which have no easy

interpretation in [22] are also naturally explained here by the color and symmetry factors.
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Table 2. The result for the two-point two-loop form factor.

Basis Numerator factor Color factor Symmetry factor

(a) 1 4N2
c δ

a1a2 2

(b) 1 2N2
c δ

a1a2 4

4.2 Two-point three-loop form factor

As a more non-trivial example, the two-point form factor at three loops is calculated next by

the procedure outlined above. This result has been computed by unitarity methods in [22].

First, by generating topologies we can find there are six trivalent diagrams, as shown in

Figure 5.8.
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Figure 5. The integrals for the two-point three-loop form factor.

By applying the color-kinematic relation to this set of trivalent diagrams, a set of equa-

tions can be obtained for the numerators. It turns out that one can choose the single integral

(d) as the master integral. One can then make an ansatz for the numerator of this master

integral by applying the following three constraints.

1. From the power counting property, the numerator should depend only linearly on the

loop momentum ℓ and there should be no dependence on other loop momenta. A general

ansatz is therefore given as (note that we have factorized a whole factor s212)

Nansatz
d (p1, p2, ℓ) = α1ℓ · p1 + α2ℓ · p2 + α3p1 · p2 , (4.3)

8There is one bubble-like graph containing a two-point tree leg which turns out not contribute. For simplicity

we do not include it here. In the four-loop construction, such graphs are as shown in Figure 10.
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• Finally, check all other cuts are satisfied

G. Yang Sci. China-Phys. Mech. Astron. July (2020) Vol. 63 No. 7 270001-17

(a) (b) (c)

(d) (e) (f)

Figure 15 (Color online) The six topologies, labelled by (a)-(f) respectively, for the three-loop Sudakov form factor.

(b) (e)(e)

Figure 16 (Color online) From Graph (b), one can perform t and u channel transformation for the propagator s, which generates two new graphs that has the
same topology as graph (e). By color-kinematics duality, the numerator of graph (b) is equal to the sum of two numerators of graph (e), as given in eq. (83).

(4) Check unitarity cuts. We need to check if the above
ansatz satisfies the unitarity cuts:

F (3)|cut =
∑

cubic graphs
∣∣∣∣
cuts
=

∑

helicities

F tree
∏

I

Atree
I . (91)

One of the most constraining cuts is the quadruple-cut shown
in Figure 17. On one side, it is given by the product of tree
results:
∫ 4∏

i=1

d4ηli

[
F (0),MHV

4 (−l1,−l2,−l3,−l4)

×A(0),NNMHV
6 (p1, p2, l4, l3, l2, l1)

+ F (0),NMHV
4 (−l1,−l2,−l3,−l4)

×A(0),NMHV
6 (p1, p2, l4, l3, l2, l1)

+ F (0),NNMHV
4 (−l1,−l2,−l3,−l4)

×A(0),MHV
6 (p1, p2, l4, l3, l2, l1)

]
, (92)

where the tree building blocks of non-MHV cases can be ob-
tained using MHV rules [24]. On the other side, from the
ansatz in terms of cubic integrals, one obtains a sum of 29
cut diagrams. The equivalence of two sides provides a rather
non-trivial check of the result.

Figure 17 (Color online) A quadruple-cut for the three-loop Sudakov form
factor.

The full form factor result can be finally obtained as:

F̂ (3)
2 = F (0)

2

∑

σ2

e∑

i=a

1
S i

Ci Ii , (93)

where the various factors are summarized in Table 3. Note
that the graph (f) has zero color factor and therefore does not
contribute to the final result of the form factor, but it is nec-
essarily involved in solving the Jacobi relations. This result
is consistent with the result in ref. [132] first computed using
pure unitarity method. With the aid of color-kinematics du-
ality, the computation here is more straightforward. We can
also note that there is no non-planar correction at three loops.

At higher loops The above procedure has been success-
fully applied to construct Sudakov form factors at four and
five loops [50,51]. We summarize the number of cubic graphs
and master integrals in Table 4. The corresponding master
graphs are shown in Figure 18. We would like stress that
the number of masters is 2 at four loops and 4 at five loops,
which are remarkably small numbers comparing to the total
numbers of cubic graphs that contribute to the results. In this

Table 3 The factors for the three-loop Sudakov form factor

Graph Numerator factor Color factor Symmetry factor

(a) s3
12 8 N3

c δ
a1a2 2

(b) s3
12 4 N3

c δ
a1a2 4

(c) s3
12 4 N3

c δ
a1a2 4

(d) [(p2 − p1) · l − p1 · p2]s2
12 2 N3

c δ
a1a2 2

(e) [−(p2 − p1) · l + p1 · p2]s2
12 2 N3

c δ
a1a2 1

(f) [(p2 − p1) · l − p1 · p2]s2
12 0 2
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229 trivalent graphs

A more complicated example:
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FIG. 2. Selected four-loop diagrams from the 229 topologies.

permutation operator �3 acts on F
(0)
3 , Ni, P 2

↵i
and Ci, ex-

changing external momenta and color indices associated
to them respectively.

With the integrand solution at hand, we also interest
in the dual conformal structure of form factors. Dual
conformal symmetry [29] is an insightful feature of scat-
tering amplitudes in N = 4 SYM, based on which the
amplitude/Wilson loop duality at weak coupling is found
[30, 31]. This symmetry is generalized to the Yangian
symmetry [32–34] and is closely related to the integra-
bility [35]. In contrast, the generalization to form factor
cases is much less discussed so far [36]. Form factors
are expected to be equivalently evaluated at weak cou-
pling from a periodic Wilson loop at strong coupling,
while actual comparison is currently been conducted up
to one-loop level [10]. In this Letter, we find that within
on-shell-q limit, the leading-color integrand of the con-
sidered form factor up to four-loop level bears the direc-
tional dual conformal invariance (DDCI) in the direction
of q-leg. A notable feature here is that these DDCI re-
sults include non-planar diagrams, which is similar to the
amplitude case [37]. We also comment on the expectation
of the relation between our new results and dual periodic
Wilson line pictures.

Following the strategy mentioned above, we firstly con-
struct the integrand ansatz and secondly solve the ansatz.
With the solution of the integrand at hand, we then study
some interesting limits of it, where the directional dual
conformal invariance (DDCI) of the planar form factor
part in onshell-q limit is mainly concerned. The complete
CK-dual solutions are provided in the ancillary files.

ANSATZ OF CK-DUAL INTEGRAND

The first step of the construction is to get all trivalent
diagrams which have the operator q-leg and three exter-
nal on-shell legs. As observed in [27, 38–40], for N = 4
SYM, it is reasonable to exclude tadpole, bubble and tri-
angle sub-graphs, unless the triangle involves the q-leg.
Under this criteria, there are 229 trivalent topologies to
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FIG. 3. Master topologies.

consider. Selected examples are shown in Figure 2: the
first column are planar diagrams which can be drawn on
a plane with the ends of the q-leg and three onshell legs
aligned at infinity; the second column are defined as q-
interior planar in the sense that after removing the color-
singlet q-leg the graphs are planar (they survive in the
large-Nc planar limit); the third column contains some
intrinsic non-planar diagrams; some special graphs that
are one-particle-reducible are shown in the last column.

The color factors Ci and propagators P 2
↵i

in (3) can
be directly read from these trivalent diagrams �i. The
truly non-trivial physical information are contained in
the kinematic numerators Ni which are the main task of
the construction. This is where the CK duality plays its
important role. The dual Jacobi relations (??) provide
linear relations connecting the numerators of di↵erent
topologies. As a result, one can use the kinematic numer-
ators of a small set of graphs, i.e. the master graphs, to
generate the numerators of all other diagrams. It is con-
venient to select planar diagrams as master graphs, and a
minimal set requires only four planar masters which are
shown in Figure 3.

Thanks to the CK duality, one only needs to construct
an ansatz for the master numerators, which are given as
polynomials of Lorentz product of momenta. For planar
diagrams, it is convenient to parametrize the momenta
by the dual coordinates corresponding to zones [29], such
as given in Figure 3, for example, `a = x1 � xa ⌘ x1a

in the first diagram. The numerators are thus polyno-
mials of proper distance variables x2

ij . For form factors
of protected operators in N = 4 SYM, one can impose
the power-counting constraint on the ansatz: a one-loop
n-point sub-graph carries no more than n � 4 powers
of the corresponding loop momentum [27], with an ex-
ception that if the sub-graph is a one-loop form factor,
the maximal power is n � 3 [38]. The detailed explana-
tion of such a power-counting constraint can be found in
[40, 41], here we just give an example about the first mas-
ter in Figure 3: since there are two pentagons, monomials
like (x2

ij)
2(x2

ai)
2(x2

cj) and (x2
ij)

3(x2
ac)(x

2
aj), i, j = 1, 2, 3, 4,

should be considered in the ansatz, and xb and xd are not
allowed to appear.

In practice, one can simplify the ansatz construction
by applying the symmetry as well as the maximal-cut
properties of the master graphs. This can be achieved
by starting from the rung-rule numerators [42, 43] and
then adding terms proportional to propagators according

Master graphs
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permutation operator �3 acts on F
(0)
3 , Ni, P 2

↵i
and Ci, ex-

changing external momenta and color indices associated
to them respectively.

With the integrand solution at hand, we also interest
in the dual conformal structure of form factors. Dual
conformal symmetry [29] is an insightful feature of scat-
tering amplitudes in N = 4 SYM, based on which the
amplitude/Wilson loop duality at weak coupling is found
[30, 31]. This symmetry is generalized to the Yangian
symmetry [32–34] and is closely related to the integra-
bility [35]. In contrast, the generalization to form factor
cases is much less discussed so far [36]. Form factors
are expected to be equivalently evaluated at weak cou-
pling from a periodic Wilson loop at strong coupling,
while actual comparison is currently been conducted up
to one-loop level [10]. In this Letter, we find that within
on-shell-q limit, the leading-color integrand of the con-
sidered form factor up to four-loop level bears the direc-
tional dual conformal invariance (DDCI) in the direction
of q-leg. A notable feature here is that these DDCI re-
sults include non-planar diagrams, which is similar to the
amplitude case [37]. We also comment on the expectation
of the relation between our new results and dual periodic
Wilson line pictures.

Following the strategy mentioned above, we firstly con-
struct the integrand ansatz and secondly solve the ansatz.
With the solution of the integrand at hand, we then study
some interesting limits of it, where the directional dual
conformal invariance (DDCI) of the planar form factor
part in onshell-q limit is mainly concerned. The complete
CK-dual solutions are provided in the ancillary files.

ANSATZ OF CK-DUAL INTEGRAND

The first step of the construction is to get all trivalent
diagrams which have the operator q-leg and three exter-
nal on-shell legs. As observed in [27, 38–40], for N = 4
SYM, it is reasonable to exclude tadpole, bubble and tri-
angle sub-graphs, unless the triangle involves the q-leg.
Under this criteria, there are 229 trivalent topologies to
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consider. Selected examples are shown in Figure 2: the
first column are planar diagrams which can be drawn on
a plane with the ends of the q-leg and three onshell legs
aligned at infinity; the second column are defined as q-
interior planar in the sense that after removing the color-
singlet q-leg the graphs are planar (they survive in the
large-Nc planar limit); the third column contains some
intrinsic non-planar diagrams; some special graphs that
are one-particle-reducible are shown in the last column.

The color factors Ci and propagators P 2
↵i

in (3) can
be directly read from these trivalent diagrams �i. The
truly non-trivial physical information are contained in
the kinematic numerators Ni which are the main task of
the construction. This is where the CK duality plays its
important role. The dual Jacobi relations (??) provide
linear relations connecting the numerators of di↵erent
topologies. As a result, one can use the kinematic numer-
ators of a small set of graphs, i.e. the master graphs, to
generate the numerators of all other diagrams. It is con-
venient to select planar diagrams as master graphs, and a
minimal set requires only four planar masters which are
shown in Figure 3.

Thanks to the CK duality, one only needs to construct
an ansatz for the master numerators, which are given as
polynomials of Lorentz product of momenta. For planar
diagrams, it is convenient to parametrize the momenta
by the dual coordinates corresponding to zones [29], such
as given in Figure 3, for example, `a = x1 � xa ⌘ x1a

in the first diagram. The numerators are thus polyno-
mials of proper distance variables x2

ij . For form factors
of protected operators in N = 4 SYM, one can impose
the power-counting constraint on the ansatz: a one-loop
n-point sub-graph carries no more than n � 4 powers
of the corresponding loop momentum [27], with an ex-
ception that if the sub-graph is a one-loop form factor,
the maximal power is n � 3 [38]. The detailed explana-
tion of such a power-counting constraint can be found in
[40, 41], here we just give an example about the first mas-
ter in Figure 3: since there are two pentagons, monomials
like (x2
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cj) and (x2
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3(x2
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2
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should be considered in the ansatz, and xb and xd are not
allowed to appear.

In practice, one can simplify the ansatz construction
by applying the symmetry as well as the maximal-cut
properties of the master graphs. This can be achieved
by starting from the rung-rule numerators [42, 43] and
then adding terms proportional to propagators according
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nation of such a power-counting constraint can be found
in [42, 43], and here we just examplify it by the first mas-
ter in Figure 3: since there are two pentagons, monomials
like (x2

ij)
2(x2

ai)
2(x2

cj) and (x2
ij)

3(x2
ac)(x

2
aj), i, j = 1, 2, 3, 4,

should be involved in the ansatz, while xb and xd are not
allowed to appear.

In practice, we can simplify the ansatz construction
by applying the symmetry as well as the maximal-cut
properties of the master graphs, which can be achieved
by starting from the rung-rule numerators [44, 45] and
then adding terms proportional to propagators according
to the graph symmetries. For instance, the rung-rule
numerator for the first master Nm

1 is

Nm
1 |rr =x2

13x
2
24x

2
a2x

2
a3(x

2
c1 � x2

14/2)� (x2
13)

2x2
24x

2
a2x

2
c4

� x2
13(x

2
14 � x2

13)(x
2
a2)

2x2
c4 + (1 $ 4)&(2 $ 3),

(4)
which captures the maximal cut of the diagram, and to
further complement the ansatz, contributions involving
propagators like x2

c2 and x2
c3 have to be considered in a

symmetry-preserving way, such as

Nm
1 = Nm

1 |rr+↵1x
2
13x

2
24((x

2
a2)

2x2
c3+(x2

a3)
2x2

c2)+... . (5)

In the end, a CK-dual integrand ansatz with 1433 pa-

rameters for F (4)
3 is reached, of which the four master

numerators contain 257, 562, 479 and 135 parameters
respectively.

PHYSICAL CONSTRAINTS AND SOLUTION

Given the ansatz, we apply various constraints to solve
for the parameters and also ensure the solution to satisfy
physical requirements.

First, we impose the condition that every numerator
Ni (besides the masters) shares the symmetry of the cor-
responding diagram �i and also generates the correct
maximal cut. These conditions involve only one numera-
tor at a time and are practically very convenient to solve.
Nicely, they provide significant restrictions on the ansatz,
reducing the number of parameters to 246.

Next, we require the CK-dual integrand ansatz as (3)
to match all generalized unitarity cuts [7–9]. Some typi-
cal cuts are illustrated in Figure 4. Cuts (a) and (b) are

relatively simple octuple cuts, cutting the four-loop form
factor into five tree blocks [46]. Such octuple cuts can
be first conducted, eliminating 94 parameters. Then the
septuple cuts, such as cut (c), and the sextuple cuts, such
as (d), are considered, further fixing 19 parameters. The
most complicated cuts are quintuple cuts like (e) and (f).
For instance, the cut (e) involves over a thousand cut dia-
grams, of which the sum should reproduce the non-trivial

tree product
R
d⌘F (0)

5 A
(0)
8 . We find that quintuple cuts

provide no further constraints on parameters indeed. Af-
ter all these cuts, we end up with a solution with 133
parameters. We stress that we have checked both planar
and non-planar cuts, and details for performing cuts can
be found in [43].

We also check that all dual Jacobi relations are satis-
fied. Thus we get the CK-dual four-loop physical inte-
grand in the form of (3) with 133 free parameters.

The final form factor result must be independent of
the 133 free parameters. As a further important check,
we find that the free parameters indeed all cancel after
performing the simplification of the integrand, which we
briefly explain as follows. Firstly, we express the triva-
lent color factors Ci in trace basis of group generators in
SU(Nc) gauge group, resulting in both Nc-leading and
Nc-subleading contributions as

F (4)
3 = F

(0)
3 f̃a1a2a3

�
N4

c

Z
I
(4)
pl +N2

c

Z
I
(4)
np

�
, (6)

where f̃a1a2a3 = tr(T a1T a2T a3) � tr(T a1T a3T a2). Here

76 topologies contributes to I
(4)
pl , containing diagrams

in the first and second columns of Figure 2, while 138

topologies contribute to I
(4)
np , involving those in the third

column of Figure 2. Note that 28 topologies contribute

to both I
(4)
pl and I

(4)
np , including the four master graphs

and also (A3) and (B3) in Figure 2. Moreover, it worth
noticing that 43 topologies out of 229 have zero color fac-
tors, such as (D2) in Figure 2, which do not contribute
to the final form factor but are important in the con-
struction via the CK duality. We then perform the sim-

plification for I
(4)
pl and I

(4)
np respectively, by expanding

the integrands in a set of basis, following the procedure
described in detail in [43]. After the simplification, we
achieve a result that is independent of all free parame-
ters.

The explicit four master numerator solutions with 133
free parameters and a set of dual Jacobi relations for
generating the numerators Ni of all trivalent topologies,
together with the symmetry factors Si, the color factors
Ci, and the propagator lists P↵i in the form of (3), are
provided in the ancillary files.

Unitarity cuts
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those of others, and thus a relatively small ansatz can be
utilized rather than making ansatz for all topologies. The
second step is to solve the ansatz via constraints, where
topology symmetries are involved and generalized unitar-
ity method [7–9] is applied. Readers are also referred to
[6, 11, 31] for more details of general constructions.

Before entering the specific construction, we summa-
rize the final CK-dual integrand of the considered four-
loop three-point form factor as follows:

F (4)
3 =

X

�3

229X

i=1

Z 4Y

j=1

dD`j
1

Si
�3 ·

F
(0)
3 Ci NiQ
↵i

P 2
↵i

, (3)

where the sum is over 229 non-isomorphic cubic graphs;
Si are symmetry factors which remove the overcounting
from the automorphism symmetries of the graphs and the

permutation operator �3 acts on F
(0)
3 , Ni, P 2

↵i
and Ci, ex-

changing external momenta and color indices associated
to them respectively.

With the integrand solution at hand, we also interest
in the dual conformal structure of form factors. Dual
conformal symmetry [32] is an insightful feature of scat-
tering amplitudes in N = 4 SYM, based on which the
amplitude/Wilson loop duality at weak coupling is found
[33, 34]. This symmetry is generalized to the Yangian
symmetry [35–37] and is closely related to the integra-
bility [38]. In contrast, the generalization to form factor
cases is much less discussed so far [39]. Form factors
are expected to be equivalently evaluated at weak cou-
pling from a periodic Wilson loop at strong coupling,
while actual comparison is currently been conducted up
to one-loop level [40]. In this Letter, we find that within
on-shell-q limit, the leading-color integrand of the con-
sidered form factor up to four-loop level bears the direc-
tional dual conformal invariance (DDCI) in the direction
of q-leg. A notable feature here is that these DDCI re-
sults include non-planar diagrams, which is similar to the
amplitude case [41]. We also comment on the expectation
of the relation between our new results and dual periodic
Wilson line pictures.

ANSATZ OF CK-DUAL INTEGRAND

To start the construction, we first need to get all trivalent
diagrams, each of which contains one operator q-leg and
three external on-shell legs. As observed in [11, 20, 21,
42], for N = 4 SYM, it is reasonable to exclude diagrams
with tadpole, bubble and triangle sub-graphs, unless the
triangle is connected with the q-leg. Under this criteria,
there are 229 trivalent topologies to consider. Selected
examples are shown in Figure 2: the first column contains
planar diagrams which can be drawn on a plane with the
ends of the q-leg and three on-shell legs aligned at infinity;
the second column includes diagrams defined as q-interior
planar in the sense that after removing the color-singlet

(A1) (B1)

(A2)

(A3)

(B2)

(B3)

(C1)

(C2)

(C3) (D3)

(D2)

(D1)

FIG. 2. Selected four-loop diagrams from the 229 topologies.
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q-leg, the graphs are planar (they survive in the large-Nc

planar limit); the third column involves some intrinsic
non-planar diagrams; some special one-particle-reducible
graphs are shown in the last column.
The color factors Ci and propagators P 2

↵i
in (3) can be

directly read from these trivalent diagrams �i, whereas
the truly non-trivial physical information is contained in
the kinematic numerators Ni which are the focus of our
construction. Here the CK duality plays a central role.
The induced dual Jacobi relations referring to (2) pro-
vide linear relations among the numerators of di↵erent
topologies. As a result, we can use the kinematic numer-
ators of a small set of graphs, i.e. the master graphs, to
generate the numerators of all other diagrams. Practi-
cally, it is convenient to select planar diagrams as master
graphs, and a minimal set requires only four planar mas-
ters shown in Figure 3.
With the planar master graphs at hand, we further

need to construct numerator ansatz for them. Firstly,
we expect the numerators are in fully local form, which
means the ansatz are polynomials of Lorentz products of
momenta. Moreover, for planar master graphs, we find
it convenient to parametrize the momenta by the dual
coordinates corresponding to zones [32] as, for example,
`a = x1 � xa ⌘ x1a in the first diagram of Figure 3,
and hence the ansatz are polynomials of proper distance
variables x2

ij . Secondly, since form factors of a protected
operator tr(�2) in N = 4 SYM are considered, we can
impose the power-counting constraint on the ansatz: a
one-loop n-point sub-graph carries no more than n � 4
powers of the corresponding loop momentum [11], with
an exception that if the sub-graph is a one-loop form fac-
tor, the maximal power is n� 3 [20]. The detailed expla-

Final solution with 133 free parameters!

Master graphs
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“Our formula predicts Casimir scaling of the cusp anomalous 
dimension to all orders in perturbation theory, and we 
explicitly check that the constraints exclude the appearance of 
higher Casimir invariants at four loops.” 
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Conclusion & Outlook

Introduction

Computing 4-Loop Non-planar CADConstructing CK duality at 5 Loops

Modern amplitude techniques allow new computations which would be 
impossible using traditional Feynman diagram methods. Based on these and 
using Sudakov form factor in N=4 SYM,  we provide answers to two challenging 
problems:

Basic 
properties of 

Sudakov 
form factor 
in N=4 SYM

The key new idea that lead us to the final solution is to choose a nice set of 
basis integrals, the Uniform transcendentality (UT) integrals:

Unitarity CutsCK dualityFour 
Master 
Graphs

Color-Kinematics duality means that there exists a representation for an amplitude or 
form factor, such that its color factors and momentum factors satisfy same Jacobian 
relations. Take the 4-gluon tree amplitude as an example:

Problem 1
Color-Kinematics (CK) duality [3] indicates a deep 
connection between kinematic and color structures in 
gauge theories:

Problem 2
Cusp Anomalous dimension (CAD) characterizes the leading 
IR divergences of amplitudes. The computation of its non-
planar correction is a notorious long-standing problem, 
where the first possible correction starts at 4-loop, due to the 
appearance of a new group invariant — quartic Casimir d44:

Color-Kinematics Duality @ 5-Loop Quadratic Casimir Scaling Conjecture

To test quadratic Casimir scaling conjecture, we need to evaluate the four-
loop form factor integrals. After the complicated integration-by-part (IBP) 
reduction, the IBP masters turn out to be very hard to compute even using 
powerful computer clusters.

 In [5], Becher and Neubert conjectured that: 

It is important to test this conjecture which requires an 
explicit computation.

1)  Does color-kinematics duality exist at 5 loops?   YES! 
2)  Is the quadratic Casimir scaling conjecture correct?  NO! 

Sudakov 
From Factor

p1

p2

q

Here, we solve two challenging problems 
using Sudakov form factor in N=4 super 
Yang-Mills (N=4 SYM, which is the 
maximally supersymmetric cousin of QCD) :

The first problem has close connection to the 
study of quantum gravity, while the second is 
important for understanding general IR 
structure in gauge theory.

1) Does Color-Kinematics duality exist at 
5-loop? [1]

2)  Is quadratic Casimir scaling conjecture      
-    correct? [2] The duality has been constructed at 4-loop [4], which 

provides also a first 4-loop gravity amplitude result. 
However, despite significant efforts, a five-loop 
realization was unsuccessful. One natural question is: 
would the duality only exist up to four loops?

Gauge Color Spacetime Kinematics

Gravity

[3] Z. Bern, J. J. M. Carrasco, H. Johansson, "New Relations for Gauge-Theory 
Amplitudes", Phys.Rev. D78, 085011 (2008).

2

The minimal scattering-like observable that contains
the cusp anomalous dimension is the Sudakov form fac-
tor. In maximally supersymmetric Yang-Mills theory one
can use a correlator of a member of the stress-tensor mul-
tiplet with two on-shell massless states. The first com-
putation of the two-loop correction to the Sudakov form
factor in N = 4 SYM appeared in [28]. The three-loop
correction to the QCD result was studied in a series of
papers [29–33]. In [34] these results were fine-tuned for
the form factor in N = 4 SYM to the three-loop order.
The integrand for the four-loop Sudakov form factor in
N = 4 SYM was derived in [35] based on the duality
between color and kinematics, and its reduction to mas-
ter integrals was presented in [36]. Various other cal-
culations of four-loop corrections in QCD were recently
reported [37–42]. For the five-loop integrand in N = 4
SYM see [43].

REVIEW

Form factor and cusp anomalous dimension

The Sudakov form factor involves only a single scale
q2 which is the Lorentzian norm of the sum of the two
massless momenta, i.e. q2 = (p1 + p2)2 with p21 = p22 =
0. Dimensional analysis and maximal supersymmetry fix
the form factor F (l) at l loops to be given by

F
(l) = F

treeg2l(�q2)�l✏F (l) , (1)

where the coupling constant is normalised as g2 =
g2
YM

(4⇡)2 (4⇡e
��E)✏. For a classical Lie-group with Lie-

algebra [T a, T b] = ifabc T c and structure constants fabc,
gauge invariance dictates the color structure to be given
by Casimir invariants. Up to three-loop order, only pow-
ers (CA)l of the quadratic Casimir appear, for which
facdf bcd = CA�ab holds. At four loops the quartic invari-
ant d44 = dabcdA dabcdA /NA appears in addition to (CA)4,
with NA the number of generators of the group and

dabcdA =
1

6
[f↵a

�f
�b

�f
�c

�f
�d

↵ + perms.(b, c, d)] . (2)

Starting from six loops, even higher group invariants ap-
pear, see e.g. [35]. In SU(Nc), NA = N2

c � 1, CA = Nc

and d44 = N2
c /24 (N

2
c + 36) hold.

The form factor has no ultraviolet (UV) divergences
since the operator is protected, leaving only IR diver-
gences. If dimensional regularization with D = 4 � 2✏
is used to regulate the latter, F (l) is a purely numerical
function of gauge group invariants and ✏. This function is

related to the cusp anomalous dimension �(l)
cusp at l loops

by [5, 44–47],

(logF )(l) = �


�(l)
cusp

(2l✏)2
+

G
(l)
coll

2l✏
+ Fin(l)

�
+O (✏) . (3)

At l loops the planar part / N l
c of F (l) has leading di-

vergence / 1/✏2l. This function needs to be expanded
down to ✏�2 to extract the l-loop CAD, and also higher
terms in the Laurent expansion in ✏ from lower-loop con-
tributions are required. As mentioned, the first occur-
rence of non-planar (i.e. subleading-color) corrections to
the CAD is at four loops, due to the appearance of the
quartic Casimir invariant d44. This invariant therefore
breaks quadratic Casimir scaling explicitly. The relation
between form factor and cusp anomalous dimension for
the non-planar part at four loops is

h
F (4)

i

NP
= �

�(4)
cusp, NP

(8✏)2
+O

�
✏�1

�
, (4)

i.e. [F (4)]NP has only a double pole in ✏. Individual in-
tegrals that contribute to [F (4)]NP will however typically
show the full 1/✏8 divergence. The general CAD is be-
lieved to be expressible as a rational-coe�cient polyno-
mial of Riemann Zeta values ⇣n, and their multi-index
generalizations, such as multiple zeta values (MZVs) and
Euler sums, see e.g. [48]. MZVs are denoted by ⇣n1,n2,...

and have a transcendentality degree which is the sum
of their indices,

P
i ni. At l loops, the planar CAD in

N = 4 SYM has uniform transcendentality degree 2l�2.
At four loops for instance, the planar CAD in N = 4
SYM has been computed [12–14] to be

�(4)
cusp,P = �1752⇣6 � 64⇣23 . (5)

We will provide strong evidence that also the non-planar
CAD is of uniform transcendentality six at four loops.

In QCD, the known CAD has the same maximal tran-
scendentality degree as in N = 4, but also contains lower
transcendentality degree constants. The maximal tran-
scendentality coe�cients match between planar N = 4
and QCD, an observation known as the maximal tran-
scendentality principle [16, 17].

Integrands, integrals, integral relations

The non-planar part of the Sudakov form factor in
N = 4 SYM was obtained as a linear combination
of a number of four-loop integrals in [35] using color-
kinematics duality [49, 50]. The integrals take the generic
form

I = (q2)2
Z

dDl1 . . . d
Dl4

N(li, pj)Q12
k=1 Dk

, (6)

where Di are propagators and the numerators N(li, pj)
are quadratic polynomials of Lorentz products of the four
independent loop and two independent external on-shell
momenta. The explicit expressions of these integrals can
be found in [35]. There are 14 distinct integral topologies

Cusp Anomalous dimension (CAD)

Diagram-expansion 
up to 3 loops

Let me also briefly introduce the basic relations that we will use, namely the dual
Jacobi relations. They play a central role in our five-loop construction. Once the
gauge theories is obtained, it is straightforward to obtain the gravity results. If we
consider the difference of complexity of the two theories, this is a rather remarkable
facts.

First important character is that it contains both planar and non-planar parts.
The second character is that it allows to obtain gravity from gauge theories for

free.
I would like to emphasize that so far the existence of this duality for general loop

level is still a conjecture. One has to check it by explicit constructions. There is no
such a proof which can say that as long as you try hard enough, you will get the
solution, not even in principle.

2 Five-loop construction

Now let us look at the construction at five loops. Since the construction details is
technical, I will outline the main steps.

p21 = p22 = 0, q2 = (p1 + p2)2 ̸= 0

3 Summary and outlook

The color-kinematics duality reveals a very deep connection between gauge theories
and gravity theories. In gauge theory
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Definition Logarithmic behavior
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0. Dimensional analysis and maximal supersymmetry fix
the form factor F (l) at l loops to be given by

F
(l) = F

treeg2l(�q2)�l✏F (l) , (1)

where the coupling constant is normalised as g2 =
g2
YM

(4⇡)2 (4⇡e
��E)✏. For a classical Lie-group with Lie-

algebra [T a, T b] = ifabc T c and structure constants fabc,
gauge invariance dictates the color structure to be given
by Casimir invariants. Up to three-loop order, only pow-
ers (CA)l of the quadratic Casimir appear, for which
facdf bcd = CA�ab holds. At four loops the quartic invari-
ant d44 = dabcdA dabcdA /NA appears in addition to (CA)4,
with NA the number of generators of the group and
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Starting from six loops, even higher group invariants ap-
pear, see e.g. [35]. In SU(Nc), NA = N2

c � 1, CA = Nc

and d44 = N2
c /24 (N

2
c + 36) hold.

For SU(N) : CA = N d44 =
N2(N2 + 36)

24
The form factor has no ultraviolet (UV) divergences

since the operator is protected, leaving only IR diver-
gences. If dimensional regularization with D = 4 � 2✏
is used to regulate the latter, F (l) is a purely numerical
function of gauge group invariants and ✏. This function is

related to the cusp anomalous dimension �(l)
cusp at l loops

by [5, 44–47],
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At l loops the planar part / N l
c of F (l) has leading di-

vergence / 1/✏2l. This function needs to be expanded
down to ✏�2 to extract the l-loop CAD, and also higher
terms in the Laurent expansion in ✏ from lower-loop con-
tributions are required. As mentioned, the first occur-
rence of non-planar (i.e. subleading-color) corrections to
the CAD is at four loops, due to the appearance of the
quartic Casimir invariant d44. This invariant therefore
breaks quadratic Casimir scaling explicitly. The relation
between form factor and cusp anomalous dimension for
the non-planar part at four loops is

h
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i.e. [F (4)]NP has only a double pole in ✏. Individual in-
tegrals that contribute to [F (4)]NP will however typically
show the full 1/✏8 divergence. The general CAD is be-
lieved to be expressible as a rational-coe�cient polyno-
mial of Riemann Zeta values ⇣n, and their multi-index
generalizations, such as multiple zeta values (MZVs) and
Euler sums, see e.g. [48]. MZVs are denoted by ⇣n1,n2,...

and have a transcendentality degree which is the sum
of their indices,

P
i ni. At l loops, the planar CAD in

N = 4 SYM has uniform transcendentality degree 2l�2.
At four loops for instance, the planar CAD in N = 4
SYM has been computed [12–14] to be

�(4)
cusp,P = �1752⇣6 � 64⇣23 . (5)

We will provide strong evidence that also the non-planar
CAD is of uniform transcendentality six at four loops.

In QCD, the known CAD has the same maximal tran-
scendentality degree as in N = 4, but also contains lower
transcendentality degree constants. The maximal tran-
scendentality coe�cients match between planar N = 4
and QCD, an observation known as the maximal tran-
scendentality principle [16, 17].

Integrands, integrals, integral relations

The non-planar part of the Sudakov form factor in
N = 4 SYM was obtained as a linear combination
of a number of four-loop integrals in [35] using color-
kinematics duality [49, 50]. The integrals take the generic
form

I = (q2)2
Z

dDl1 . . . d
Dl4

N(li, pj)Q12
k=1 Dk

, (6)

where Di are propagators and the numerators N(li, pj)
are quadratic polynomials of Lorentz products of the four
independent loop and two independent external on-shell
momenta. The explicit expressions of these integrals can
be found in [35]. There are 14 distinct integral topologies
that contribute to the non-planar CAD, labelled (21) –
(34) in [35], each with 12 internal lines. We will see below
that only 10 of them, (21) – (30) as shown in Fig. ??,
contribute to the non-planar form factor if a basis of uni-
formly transcendental integrals is used.

Integrands are only identified up to terms that inte-
grate to zero. Infinitesimal linear reparametrizations of
the loop momenta generate such terms, which are known
as integration-by-parts (IBP) identities [51, 52]. With
these identities the form factor was simplified in [36] us-
ing the Reduze code [53]. A particular subset of these
relations, dubbed ‘rational IBP’ relations and obtained
in [54], will play an important role for the problem at
hand. Note that integral relations due to graph sym-
metries are a particular subset of the rational IBP rela-
tions. Although simpler integrals emerged in [36] com-
pared to [35], these have largely evaded integration so far
due to their overwhelming complexity. The obstacle to
computing the CAD is therefore to find a complete set of
integrals which are simple enough to integrate.
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[4] Z. Bern et.al., "Simplifying Multiloop Integrands and Ultraviolet Divergences of 
Gauge Theory and Gravity Amplitudes", Phys.Rev. D85, 105014 (2012).
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Another important tool is the on-shell unitarity method [6], 
which requires loop form factors to have consistent 
discontinuities by cutting propagators. On the cut, the loop 
quantity factorizes into a product of tree-level or lower- loop 
results. The form factors are guarantee to be correct once 
they satisfy all cut constraints.

L-loop L=1 L=2 L=3 L=4 L=5
# of topologies 1 2 6 34 306

# of masters 1 1 1 2 4

Final 5-loop integrand

ℱ5-loop
2 = F tree

2
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L
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j
dDℓj

1
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Ci Ni
∏αi

P2αi

Four master 
graphs @    
5-loop:

Ten 4-loop 
non-planar 
topologies

When expanding in terms of UT basis, the integrand becomes remarkably 
simple: the full non-planar 4-loop form factor can be written in terms of only 
23 UT integrals. Importantly, each of them are much simpler to evaluate.

Since some of integrals are evaluated numerically, a careful error analysis is 
mandatory, which is carried out in details in [2]. Recently, our result was 
nicely confirmed by an independent computation of Henn et.al. [7].

Finally, from form factor result we extract the 4-loop non-planar CAD:

γ(4)
cusp, NP = − 3072 × (1.60 ± 0.19) 1

N 2c

Sudakov Form Factor in N=4 SYM 
Up To Five Loops
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the results are known, our techniques illustrate the existence and the power of the duality.

4.1 Two-point two-loop form factor

As a warm-up exercise, we consider first the two-loop two-point form factor. This result has

been computed by Feynman graph methods in [14].

(a)

q

p1

p2

(b)

q

p1

p2

Figure 4. The integrals for the two-point two-loop form factor.

First, by equation (2.20) the two-point form factor in N = 4 SYM is trivially dependent

of the inserted operator through a tree factor, as long as it’s in the stress-energy tensor

multiplet. This tree factor is factored out, as will be done in every two-point calculation in

this article.

By the rules introduced in the previous section, there are only two trivalent graphs to

consider as shown in Figure 4: a planar ladder and a non-planar ladder diagram. The Jacobi

relations simply tell us that the numerators of both integrals are the same.

By the power counting constraint explained in the previous section, we find that the

numerator should be independent of loop momenta. Hence by the kinematics of the problem

the numerator should be proportional to a power of s12, which will be absorbed into the

whole kinematic factor K2 = s2
12
F

(0)

2
. The numerator is then a purely numerical constant.

This numerical constant can be easily fixed by considering any (color-stripped) unitarity cut,

which turns out to be one. At the same time, this unitarity cut verifies that nothing has been

missed in the construction. In this simple example it is not hard to explicitly compute and

verify all possible unitarity cuts, verifying that the result is physical.

The results including the color and symmetry factors are summarized in Table 2. The

full form factor result can be obtained as

F
(2)

2
= K2

X

�2

bX

i=a

1

Si
Ci Ii (4.1)

= N2

c �
a1a2 s212F

(0) (4 Ia + Ib) , (4.2)

which reproduces exactly the known result [14]. Note that the color and symmetry factors

are responsible for the numerical integer factors, which are 4 and 1 for planar and non-planar

graphs respectively.
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Table 2. The result for the two-point two-loop form factor.

Basis Numerator factor Color factor Symmetry factor

(a) 1 4N2
c �

a1a2 2

(b) 1 2N2
c �

a1a2 4

4.2 Two-point three-loop form factor

As a more non-trivial example, the two-point form factor at three loops is calculated next by

the procedure outlined above. This result has been computed by unitarity methods in [22].

First, by generating topologies we can find there are six trivalent diagrams, as shown in

Figure 5.8.
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Figure 5. The integrals for the two-point three-loop form factor.

By applying the color-kinematic relation to this set of trivalent diagrams, a set of equa-

tions can be obtained for the numerators. It turns out that one can choose the single integral

(d) as the master integral. One can then make an ansatz for the numerator of this master

integral by applying the following three constraints.

1. From the power counting property, the numerator should depend only linearly on the

loop momentum ` and there should be no dependence on other loop momenta. A general

ansatz is therefore given as (note that we have factorized a whole factor s2
12
)

Nansatz

d (p1, p2, `) = ↵1` · p1 + ↵2` · p2 + ↵3p1 · p2 , (4.3)

8
There is one bubble-like graph containing a two-point tree leg which turns out not contribute. For simplicity

we do not include it here. In the four-loop construction, such graphs are as shown in Figure 10.
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A 1-loop UT integral: = − 1
ϵ2 + 1

2 ζ2 + 7
3 ζ3ϵ + 47

16 ζ4ϵ2 + 𝒪(ϵ3)

I (a) = [(ℓ3 − p1)2]2 ,

I (b) = (ℓ3 − p1)2 [ℓ2
4 + ℓ2

6 − ℓ2
3 + (ℓ3 − ℓ4 + p1)2 + (ℓ3 − ℓ6 − p1)2] ,

I (c) = [(ℓ3 − p1)2]2 ,

I (d ) = (ℓ3 − p1)2 [(q − ℓ3 − ℓ5)2 + (ℓ5 + p2)2] .

Examples of 
four-loop UT 
numerators:

Importantly, the duality allows to construct gravity 
amplitudes as the “square” of Yang-Mills amplitudes, 
once the latter is organized to respect the duality:

Color factors

Cs = Ct + Cu
Jacobian identity

Momentum factors

Ns = Nt + Nu
dual Jacobian relationA4 = CsNs

s
+ Ct Nt

t
+ CuNu

u

The main procedure can be summarized as follows:

5-loop 
Ansatz with 
306 graphs

It would be very interesting to study CK duality at six loops, and also obtain the  
analytic result of non-planar CAD, which are both not yet available.

Unitarity-cut

[7] J. Henn, et.al. "Matter dependence of the four-loop cusp anomalous dimension", 
arXiv:1901.03693.

The 5-loop form factor in terms of 306 integrals satisfies the complete CK duality, 
suggesting the duality exists more generally. Through double copy, our result should 
contain 5-loop supergravity information, which would be interesting to study further.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

which is non-zero, showing explicitly that the quadratic Casimir scaling 
conjecture is not true.

5

TABLE I. Number of cubic graphs, planar masters and free
parameters in CK-solution of three-point form factors up to
four loops. Note that the number of parameters are counted
based on the solutions obtained from minimal ansatzes.

L loops L=1 L=2 L=3 L=4

# of cubic graphs 2 6 29 229

# of planar masters 1 2 2 4

# of free parameters 1 4 24 133

contributions and include all—usually one has to find all
possible ways of planar projections and distribute the in-
tegrand equally among them.

We have performed explicitly checks for three-point
form factors up to four loops. The checks also use CK-
dual integrands with free parameters as input. to modify

DISCUSSION

In this paper we obtain for the first time the full-color
four-loop integrand of the three-point form factor in
N = 4 SYM. The color-kinematics duality has played
a crucial role in this construction by providing a very
compact integrand ansatz. The main challenge of the
computation is actually if a solution consistent with all
unitarity cut constraints exists. Remarkably, there is a
large solution space for the final four-loop CK-dual inte-
grand. In Table I, we summarize the some descriptions
of the CK-dual constructions up to four loops, including
also previous lower loop results in [38, 40]. One can see
that as the number of loops increase, the number of mas-
ters and the size of their ansatzes increase mildly. Impor-
tantly, the dimension of the CK-dual solution space also
grows when going to higher loop orders, which strongly
suggests that the construction can be applied to form
factors at five and even higher loops.

As another interesting aspect of this work, we show
that for the three-point form factor up to four loops, the
leading-Nc integrands in the limit of q2 ! 0 all satisfy
the directional dual conformal symmetry with a boost
vector bµ / qµ. This property should hold for more
general higher-point and higher-loop form factors, which
are supported by a unitarity based argument. It is thus
reasonable to closely inspect the directional dual con-
formal symmetry for the dual periodic Wilson lines at
both weak- and strong-coupling. On the other hand, for
the integrated planar form factors, the DDCI symmetry
should be broken and the cusp anomalies appear due to
IR divergences [30]. We expect that the cusp anoma-
lies can also be subtracted by the BDS ansatz, similar to
the amplitudes case, and can be well interpreted by the
anomalous conformal Ward identities [51] for the dual
Wilson lines. Furthermore, it is natural to ask whether
the directional dual conformal symmetry can be extended

to general conformal symmetry beyond the directional
bµ / qµ as well as the lightlike limit of q. Some dis-
cussions about the (general) dual conformal symmetry
for form factors as well as its Wilson line dual at one-
loop level are already given in [10, 36] but higher-loop
generalizations are still not completely clear. We also
mention that recently a non-perturbative result has been
obtained in [52, 53] (see also the related study for am-
plitudes [54]) originating from the integrability of N = 4
SYM [55] in the operator product expansion (OPE) limit
of the Wilson line and it would be interesting to have
a deeper comprehension about the form factor/periodic
Wilson line duality. We will give more details about the
above DDCI, as well as the cut-based proof, and further
generalizations elsewhere [? ].

Finally, to implement the four-loop integrals defi-
nitely deserves considerations. As discussed in the pre-
vious three-loop discussions [40], our form factors re-
sults should encode full-color IR divergences and splitting
functions. This is, however, not a trivial task even in the
large Nc limit, since the color-singlet q-leg results in in-
evitable contributions from non-planar topologies (the q-
interior topologies). Besides these di�culties, we are still
optimistic about solving the problem of loop integrations
in the future.
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How about double-copy of the 
form factors ?

M4(1,2,3,4) = nsns
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+ ntnt
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+ nunu

u
A4(1,2,3,4) = csns

s
+ ctnt

t
+ cunu

u

If the gauge amplitude satisfies CK duality, one can directly 
construct gravity amplitude：
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• An surprising new mechanism for form factors:

• Hidden “factorization” relations of gauge form factors
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We extend the double copy picture of scattering amplitudes to a class of matrix elements (so-called
form factors) that involve local gauge invariant operators. Both the Bern, Carrasco and Johansson
(BCJ) and the Kawai, Lewellen and Tye (KLT) formalisms are considered and novel properties are
observed. One remarkable feature is that through the double-copy construction, certain spurious
poles hidden in the gauge form factors become physical propagators in gravity. This mechanism
also reveals new hidden relations for form factors which can be understood as a generalization of
the BCJ relations. The same double-copy prescription applies as well to tree-level QCD amplitudes
involving a color-singlet Higgs particle. The double copy of form factors suggests a possible new
class of observables in gravity and string theory.

INTRODUCTION

Despite the very di↵erent nature, gauge and gravity the-
ories are known to be intimately related. The celebrated
AdS/CFT correspondence [1–3] shows that a gravity the-
ory in the AdS space can be equivalent to a gauge theory
living on the AdS boundary. Moreover, the perturba-
tive amplitudes in gauge and gravity theories are also
closely linked via the double copy as “gravity = (gauge
theory)2”, realized in various formalisms including the
Kawai, Lewellen and Tye (KLT) relations [4], the Bern,
Carrasco and Johansson (BCJ) double copy stemming
from the color-kinematics (CK) duality [5, 6], and the
Cachazo, He and Yuan (CHY) formula [7, 8]. An excel-
lent review about the double copy can be found in [9].

Apart from scattering amplitudes, which involve on-
shell asymptotic states only, gauge invariant local op-
erators also play important roles in gauge theories and
it is natural to ask: does a consistent double copy pic-
ture exist for physical quantities involving local opera-
tors? Nevertheless, the answer is not obvious at all, since
for example, local operators in gravity would break the
di↵eomorphism invariance.

In this paper, we make a concrete step towards ad-
dressing this question, by realizing both BCJ and KLT
double copy for the form factors [10–12]. Form factors
are defined as matrix elements between a gauge invari-
ant operator O and n on-shell states (see [13] for a recent
introduction and review),

FO,n =

Z
d
D
xe

�iq·x
h1 2 . . . n|O(x)|0i , (1)

where q =
P

n

i=1 pi is the o↵-shell momentum associated
with the operator. We find that in realizing the dou-
ble copy, the inclusion of gauge invariant local operators
indeed leads to intriguing new features.

One novel feature is that special spurious poles ap-
pear in the construction of CK-dual numerators in gauge-
theory form factors, and after double copy they become
new physical propagators in the gravity quantities, i.e.

spurious poles
double-copy
��������! physical propagators.

Besides, the factorization on the new propagators in grav-
ity implies that the gauge-theory form factors satisfy hid-
den relations when evaluated on the spurious poles, which
can be schematically shown as

~v · ~Fn

��
spurious pole

= Fm ⇥An+2�m, (2)

and may be understood as a generalization of BCJ rela-
tions [5] for form factors.
Below we explain these properties in detail with ex-

amples of tree-level form factors with O = tr(�2) in the
scalar-Yang-Mills theory. Similar discussions also apply
to form factors of other operators, such as  ̄ in QCD, of
which the form factors are equivalent to a class of Higgs
plus quarks and gluons amplitudes. This provides for the
first time a double copy for amplitudes involving a color
singlet particle. We will discuss more on this in the last
section.

INVITATION: A THREE-POINT EXAMPLE

Most new features of the form-factor double copy can be
illustrated by considering a simple example: the three-
point tree-level form factor F tr(�2),3(1

�
, 2�, 3g). In this

example, there are two cubic Feynman diagrams �a,b as
given in Figure 1, and the full-color form factor can be
written as

F 3(1
�
, 2�, 3g) =

CaNa("3, {pi})

s13
+

CbNb("3, {pi})

s23
, (3)

Spurious poles Real propagators
Double-copy

Gauge theory Gravity theory

GravityGauge x Gauge Double-copy
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Two physical requirements
Physical amplitudes should preserve  

“gauge symmetry” in gauge theory: 

“diffeomorphism invariance” in gravity: Mn |εμν
i →p(μ

i ξν)
i

= 0

An |εμ
i →pμ

i
= 0

Physical amplitudes should also have correct 
“factorization property”. 
For example, the four-point tree amplitude:

The reason why we need (2.8) is that it is exactly the equation required by di↵eomorphism

invariance of the four-graviton amplitude obtained through double copy

M4p1h, 2h, 3h, 4hq “ NsNs

s
` NtNt

t
` NuNu

u
. (2.9)

More precisely, the di↵eomorphism invariance (i.e. Ward identity) requires that the gravity

amplitude is invariant under the following transformation

"
µ⌫

i
ppiq Ñ "

µ⌫

i
ppiq ` ↵ p

pµ
i
⇠
⌫q
i
, (2.10)

which is from the linearized di↵eomorphism of the asymptotic (weak) graviton field hµ⌫ ,

�hµ⌫ “ Bµ⌘⌫ ` B⌫⌘µ, with ⌘µ arbitrary. From the double copy construction (2.9), if we shift

"
µ⌫

1
“ "

pµ
1
"
⌫q
1

according to (2.10), we get precisely (2.8) that is actually zero.

In this way, we have shown that double-copy result (2.9) satisfies di↵eomorphism invari-

ance, and the invariance can be derived from gauge invariance and CK duality structure (2.2)

of the gluon amplitude.

Besides satisfying di↵eomorphism invariance, there is another important physical require-

ment: the result should also has correct factorization properties. One can check that (2.9)

also satisfies this property. For example, in the limit of s Ñ 0, the four-point amplitude

should factorized as the product of two three-point amplitudes. Since the gauge amplitude

has correct factorization property

lim
sÑ0

A4 ˆ s “
ÿ

"P ,aP

A3A3 “ Cs

ÿ

"P

A3 ˆ A3 ùñ Ns|sÑ0 “
ÿ

"P

A3A3 , (2.11)

where P “ p1 ` p2 is the internal momentum that becomes on-shell in the limit. The double-

copy structure of (2.9) givens that

lim
sÑ0

M4 ˆ s “
´ ÿ

"
g
P

A3A3

¯
2

“
ÿ

"
g
P ,"

g
P

pA3q2 ˆ pA3q2 “
ÿ

"
h
P

M3 ˆ M3 , (2.12)

which is the wanted factorization behavior. Note that in (2.12) we have used the double-copy

relation for three-point amplitudes M3 “ pA3q2 and the helicity sum relations for p"gqµ and

p"hqµ⌫ “ p"gqpµp"gq⌫q:1

ÿ

hel.

p"gqµ
P

p"gq˚⌫
P “ ⌘

µ⌫
,

ÿ

hel.

p"hqµ⌫
P

p"hq˚⇢�
P

“ 1

2
p⌘µ⇢⌘⌫� ` ⌘

µ�
⌘
⌫⇢q . (2.13)

To summarize, we have checked that the double-copy amplitude satisfies two important

physical requirements: (1) it is invariant under linearized di↵eomorphism transformation;

(2) it has correct factorization property. These two properties will play central roles in our

construction of double copy quantities for form factors.

1
The tensor product of gluon polarization vectors also contains the antisymmetric and trace parts, which

are identified with an antisymmetric tensor field and the dilaton. They do not contribute in this tree example.

– 3 –
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 For form factors: challenge 1

The double-copy of a local operator is not obvious: 
a “local” operator would break the diffeomorphism 
invariance in gravity.

𝒪(x) → ∫ d4x𝒪(x)
?

Solution:  view operator as a scalar Higgs particle and 
impose CK duality.

∑
a

ca (na |εi→pi
)

Da
= 0 ∑

a

na (na |εi→pi
)

Da
= 0

ca = cb + cc na = nb + nc



Spurious poles Real propagators
Double-copy

Gauge theory Gravity theory

Another problem: CK-duality can generate spurious poles. 

Solution: the spurious poles in gauge theory can 
become real physical poles in gravity.

 For form factors: challenge 2
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Example: 3-point form factor

�(p1)

q

�(p2)

g(p3)

�(p1)

q

�(p2)

g(p3)

Figure 1. Feynman diagrams for the three-point form factor in gauge theory. The blue double line
with arrow represents operator insertion. The black straight line and spring line are (light) scalars
and gluons respectively.

3 Double copy for form factors in scalar-Yang-Mills theory

In this section, we consider the double-copy of form factors in the scalar-Yang-Mills theory:

L
sYM “ trpFµ⌫F

µ⌫q ` trpDµ
�Dµ�q (3.1)

The gauge field Aµ “ A
a
µT

a and the scalar � “ �
a
T
a are both in the adjoint representation,

where T
a are the generators of gauge group satisfying rT a

, T
bs “ if

abc
T
c. The covariant

derivative acts as Dµ ¨ “ Bµ ¨ `igrAµ, ¨ s, and rDµ, D⌫s ¨ “ igrFµ⌫ , ¨ s. We focus on the form

factor of the operator trp�2q:

Fnp1�, 2�, 3g, . . . , ngq “
ª
d
D
x e

´iq¨xx�pp1q�pp2q gpp3q . . . gppnq|trp�2qpxq|0y . (3.2)

The two-point minimal form factor is proportional to a delta function in the color space:

F 2p1�, 2�q “ �
a1a2 , (3.3)

which has a trivial kinematic part equal to one, and one can make a double-copy directly.

Thus the first interesting case is the three-point case.

3.1 Three-point form factors

We first consider the three-point form factor. At tree-level, there two cubic Feynman diagrams

�1,2 as shown in Figure 1. The form factor can be obtained as

F 3p1�, 2�, 3gq “ C1N1

s23
` C2N2

s13
, (3.4)

where the color factors are

C1 “ C2 “ f
a1a2a3 , (3.5)

and kinematic numerator factors from Feynman diagrams are

N
Feyn

1
“ ´"3 ¨ p2 , N

Feyn

2
“ "3 ¨ p1 . (3.6)

One can also obtain the color-ordered form factor (associated with color factor trpT a1T
a3T

a2q):

F3p1�, 3g, 2�q “ ´"3 ¨ p2
s23

` "3 ¨ p1
s13

4-dimùùùñ
"`
3

x21y
x13yx32y , (3.7)
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where in the second equation we express the result in spinor helicity form in four dimensions.
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that
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where in the second equation we express the result in spinor helicity form in four dimensions.

A well-defined quantity in gravity should preserve the di↵eomorphism invariance, in other

words, it should be invariant under a transformation of graviton polarization tensor: "
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3
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⌫q. Here "

µ⌫

3
“ "

pµ
3
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with the brackets indicating the symmetric-traceless part,

and ⇠
⌫ is a reference vector satisfying ⇠ ¨ p3 “ 0. However, a naive double-copy of (3.4),

G
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, (3.8)

obviously breaks the di↵eomorphism invariance.

To solve this problem, the well-known solution is to impose the color-kinematics duality.

For scattering amplitudes in CK-dual representations, the di↵eomorphism invariance of the

double copy is ensured because kinematics numerator satisfy the same Jacobi relations as

color factors. Here for form factors, the color factors satisfy a di↵erent type of color relations,

coming from the color structure of local operators, and it is understandable that di↵eomor-

phism require the numerators satisfy similar relations. In this example, one needs to require

that

C1 “ C2 ñ N
CK
1 “ N

CK
2 . (3.9)

Given this requirement, the form factor can be written as
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´ 1
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where in the second equation we apply the color decomposition and F3 is the color-ordered
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The gauge invariance of the numerators immediately implies the di↵eomorphism invariance

of G3.

However, it seems to be disappointing that the numerator solutions (3.11) have a spurious

poles, and the spurious pole will not disappear in G3.

It is interesting that the s13 ` s23 “ q
2 ´ s12 is a simple pole, which looks like a Feynman

propagator, and the residue on this pole is
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where F2p1�, 2�q “ 1 is the minimal form factor of trp�2q and

A3pqS

2 , 3
g
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Sq “ ✏3 ¨ q , with q2 “ p1 ` p2, (3.14)
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a1a2 , (3.3)

which has a trivial kinematic part equal to one, and one can make a double-copy directly.

Thus the first interesting case is the three-point case.

3.1 Three-point form factors

We first consider the three-point form factor. At tree-level, there two cubic Feynman diagrams
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where in the second equation we express the result in spinor helicity form in four dimensions.

A well-defined quantity in gravity should preserve the di↵eomorphism invariance, in other

words, it should be invariant under a transformation of graviton polarization tensor: "
µ⌫

3
Ñ

"
µ⌫

3
` p

pµ
3
⇠
⌫q. Here "

µ⌫

3
“ "

pµ
3
"
⌫q
3

with the brackets indicating the symmetric-traceless part,

and ⇠
⌫ is a reference vector satisfying ⇠ ¨ p3 “ 0. However, a naive double-copy of (3.4),

G
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3 “ p"3 ¨ p2q2
s23
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“ "
µ⌫

3
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` "

µ⌫

3
p1µp1⌫

s13
, (3.8)

obviously breaks the di↵eomorphism invariance.

To solve this problem, the well-known solution is to impose the color-kinematics duality.

For scattering amplitudes in CK-dual representations, the di↵eomorphism invariance of the

double copy is ensured because kinematics numerator satisfy the same Jacobi relations as

color factors. Here for form factors, the color factors satisfy a di↵erent type of color relations,

coming from the color structure of local operators, and it is understandable that di↵eomor-

phism require the numerators satisfy similar relations. In this example, one needs to require

that

C1 “ C2 ñ N
CK
1 “ N

CK
2 . (3.9)

Given this requirement, the form factor can be written as

F 3p1�, 2�, 3gq “
´ 1

s23
` 1
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¯
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CK
1 “ C1F3p1�, 3g, 2�q , (3.10)

where in the second equation we apply the color decomposition and F3 is the color-ordered

three-point form factor given in (3.7). Thus one finds CK-dual numerator solution as:

N
CK
1 “ N

CK
2 “ s13s23

s13 ` s23
F3p1�, 3g, 2�q . (3.11)

We stress that the numerators are uniquely determined and are also manifestly gauge invari-

ant.

When applying the double copy for (3.11), giving
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. (3.12)

The gauge invariance of the numerators immediately implies the di↵eomorphism invariance

of G3.

However, it seems to be disappointing that the numerator solutions (3.11) have a spurious

poles, and the spurious pole will not disappear in G3.

It is interesting that the s13 ` s23 “ q
2 ´ s12 is a simple pole, which looks like a Feynman

propagator, and the residue on this pole is
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A3pqS
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Sq “ ✏3 ¨ q , with q2 “ p1 ` p2, (3.14)
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s13 ` s23

´
F3p1�, 3g, 2�q

¯
2

. (3.12)

The gauge invariance of the numerators immediately implies the di↵eomorphism invariance

of G3.

However, it seems to be disappointing that the numerator solutions (3.11) have a spurious

poles, and the spurious pole will not disappear in G3.

It is interesting that the s13 ` s23 “ q
2 ´ s12 is a simple pole, which looks like a Feynman

propagator, and the residue on this pole is

Res rG3s
s12“q2

“ p✏3 ¨ qq2 “
`
F2p1�, 2�q

˘
2 ˆ pA3pqS

2 , 3
g
,´q

Sqq2 , (3.13)

where F2p1�, 2�q “ 1 is the minimal form factor of trp�2q and

A3pqS

2 , 3
g
,´q

Sq “ ✏3 ¨ q , with q2 “ p1 ` p2, (3.14)
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3
Ñ

"
µ⌫

3
` p

pµ
3
⇠
⌫q. Here "

µ⌫

3
“ "

pµ
3
"
⌫q
3

with the brackets indicating the symmetric-traceless part,

and ⇠
⌫ is a reference vector satisfying ⇠ ¨ p3 “ 0. However, a naive double-copy of (3.4),

G
naive

3 “ p"3 ¨ p2q2
s23

` p"3 ¨ p1q2
s13

“ "
µ⌫

3
p2µp2⌫

s23
` "

µ⌫

3
p1µp1⌫

s13
, (3.8)
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�(p1)

S(q)

�(p2)

h(p3)

�(p1)

S(q)

�(p2)

h(p3)

S(q) �(p1)

�(p2)h(p3)

Figure 2. Feynman diagrams for the double copy of the three-point form factor in gravity theory.
The blue double line in this case is the massive scalar with mass m2 “ q

2. The black straight line is
still the (light) scalar while we doubled the spring line to represent gravitons.

is the three-point planar amplitude of a gluon and one pair of massive scalar particle S with

mass m
2 “ q

2 “ q2

2
, see e.g. [2]. In this way (3.13) can be interpreted as a factorization

formula

Res rG3s
s12“q2

“ G2p1�, 2�q M3pqS

2 ,´q
S
, 3hq , (3.15)

where G2 “
`
F2

˘
2
is the double copy of the minimal form factor and M3 “ pA3q2 is the

double copy of the three-point amplitude.

Clearly, (3.15) represent the factorization of the third Feynman diagram �c in Figure 2.

Furthermore, one can check that (3.13) also give a consistent factorization on the s13 and s23

poles (which also appear in the gauge form factor), e.g.:

Res rG3s
s23“0

“ G2p1�,p�

23
q M3p´p�

23
, 2�, 3hq , (3.16)

Res rG3s
s13“0

“ G2p2�,p�

13
q M3p´p�

13
, 1�, 3hq , (3.17)

and they correspond to �a and �b respectively.

Let us write (3.12) in a form that will be useful later:

G3 “ F3p1�, 3g, 2�qSF

3 F3p1�, 3g, 2�q , SF

3 “ s13s23

s13 ` s23
. (3.18)

Another nice property is that by taking the “square-root” of the double copy factorization

(3.13), one can get a relation for the gauge-theory form factor:

s13F3p1�, 3g, 2�q
ˇ̌
s12“q2

“ F2p1�, 2�q A3pqS

2 , 3
g
,´q

Sq . (3.19)

In this three-point example, one may wonder that these properties could be accidental, in

particular, the two-point results are trivial G2 “
`
F2

˘
2 “ 1. As we will see shortly, these nice

properties apply to more non-trivial higher point cases as well.

3.2 Four-point case

Now we try to generalize the above discussion to higher points. Concretely, we discuss (i)

how to get the numerators in general, (ii) discuss a KLT-like double copy formula and the

di↵eomorphism invariance, (iii) discuss the properties of the KLT kernel and the numerators,

and (iv) end up with factorization properties of the double copy result. The four-point

example can capture most of the characteristics and help to clarify the generalization.
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�(p1)

q

�(p2)

g(p3)

�(p1)

q

�(p2)

g(p3)

Figure 1. Feynman diagrams for the three-point form factor in gauge theory. The blue double line
with arrow represents operator insertion. The black straight line and spring line are (light) scalars
and gluons respectively.

3 Double copy for form factors in scalar-Yang-Mills theory

In this section, we consider the double-copy of form factors in the scalar-Yang-Mills theory:

L
sYM “ trpFµ⌫F

µ⌫q ` trpDµ
�Dµ�q (3.1)

The gauge field Aµ “ A
a
µT

a and the scalar � “ �
a
T
a are both in the adjoint representation,

where T
a are the generators of gauge group satisfying rT a

, T
bs “ if

abc
T
c. The covariant

derivative acts as Dµ ¨ “ Bµ ¨ `igrAµ, ¨ s, and rDµ, D⌫s ¨ “ igrFµ⌫ , ¨ s. We focus on the form

factor of the operator trp�2q:

Fnp1�, 2�, 3g, . . . , ngq “
ª
d
D
x e

´iq¨xx�pp1q�pp2q gpp3q . . . gppnq|trp�2qpxq|0y . (3.2)

The two-point minimal form factor is proportional to a delta function in the color space:

F 2p1�, 2�q “ �
a1a2 , (3.3)

which has a trivial kinematic part equal to one, and one can make a double-copy directly.

Thus the first interesting case is the three-point case.

3.1 Three-point form factors

We first consider the three-point form factor. At tree-level, there two cubic Feynman diagrams

�1,2 as shown in Figure 1. The form factor can be obtained as

F 3p1�, 2�, 3gq “ C1N1

s23
` C2N2

s13
, (3.4)

where the color factors are

C1 “ C2 “ f
a1a2a3 , (3.5)

and kinematic numerator factors from Feynman diagrams are

N
Feyn

1
“ ´"3 ¨ p2 , N

Feyn

2
“ "3 ¨ p1 . (3.6)

One can also obtain the color-ordered form factor (associated with color factor trpT a1T
a3T

a2q):

F3p1�, 3g, 2�q “ ´"3 ¨ p2
s23

` "3 ¨ p1
s13

4-dimùùùñ
"`
3

x21y
x13yx32y , (3.7)
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A new graph 
in gravity

There is a nice factorization behavior at the new pole:
s13 + s23 = q2 − s12 = 0
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2 Constructing operator basis

In this section we consider the construction of operator basis. We will first consider the field

theory method and then apply the on-shell form factor method. Besides counting the number

of basis, a central goal is to explain how to construct a convenient set of basis operators that

will facilitate the high loop computations. We will provide explicit basis for length-3 operators

up to dimension 16, and in later sections we will compute their anomalous dimension and

related Higgs EFT amplitudes.

2.1 Operator setup

We consider local gauge invariant scalar operators in pure Yang-Mills theory composed of

field strength Fµ⌫ and covariant derivatives Dµ. The field strength carries an adjoint color

index as Fµ⌫ = F a
µ⌫T

a, where T a are the adjoint generators of gauge group and satisfy

[T a, T b] = ifabcT c . (2.1)

The covariant derivative acts in the standard way as

Dµ ? = @µ + ig[Aµ, ?] , [Dµ, D⌫ ] ? = ig[Fµ⌫ , ?] . (2.2)

A gauge invariant scalar operator takes the following form

c(a1, ..., an)
�
Dµ11 ...Dµ1m1

F⌫1⇢1

�a1
· · ·

�
Dµn1 ...Dµnmn

F⌫n⇢n

�anX(⌘, ✏) , (2.3)

where c(a1, ..., an) are color factors, such as given in terms of products of Tr(..T ai ..T aj ..). And

to form a scalar operator, all Lorentz indices {µi, ⌫i, ⇢i} are contracted in pairs by metric ⌘µ⌫

or by antisymmetric tensor ✏µ⌫⇢�, which are contained in the function X(⌘, ✏). In this paper,

for simplicity we will consider the parity even operators where X contains only ⌘’s.

For convenience of the upcoming discussions, we define following useful quantities for the

operators:

• Canonical dimension of an operator:

dim(O) = �0(O) = (# of D’s) + 2⇥ (# of F ’s) . (2.4)

Since we consider Lorentz scalar operators, this dimension is always an even integer

number, starting with dim=4. The canonical dimension typically receives quantum

corrections at loop level, and the correction is called the anomalous dimension �(O).
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We consider Lorentz scalar gauge invariant local operators:
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They are color-singlet gluon states and also appear as 
Higgs-gluon effective interaction vertices in “Higgs” EFT:

(anomalous) dimension of composite operators. Due the non-perturbative nature of confine-

ment, an analytic derivation of anomalous dimensions remains a dream;1 on the other hand,

at high energy scale the asymptotic freedom ensures that a perturbative expansion still ap-

plies. A good knowledge of such perturbative information is helpful to understand the RG

flow of the spectrum, and should also provide an important probe to the full spectrum. One

goal of this paper is to provide a working framework that can be e�ciently used to compute

the anomalous dimension of high-dimensional operators as well as at high loop orders. To be

concrete, we will focus on gauge invariant and Lorentz invariant local operators O(x) where

all elementary fields are located at a common point in spacetime.

As another motivation, the local operators we consider are also related to the Higgs

e↵ective action, which describes the Higgs production via gluon fusion process at LHC. The

Higgs particle has no direct interaction with gluons but through Yukawa coupling with quarks.

The coupling is proportional to the mass of quarks, which is dominated by the heaviest top

quark [2, 3]. To simplify the computation, a useful approximation is to use an e↵ective field

theory (EFT) which describes the interaction between Higgs and gluons by integrating out

heavy top quark [4–10]. The EFT Lagrangian can be schematically given as:

Le↵ = Ĉ0HO4;0 +
1X

k=1

1

m2k
t

X

i

ĈiHO4+2k;i , (1.1)

where Ĉi is the Wilson coe�cient, H is the Higgs field, and O�0;i are the e↵ective operators

of canonical dimension �0. For the Higgs plus one jet production, the contribution of higher

dimension operators can be important when the Higgs transverse momentum is comparable

to the top mass. The two-loop Higgs plus three-parton amplitudes with the leading operator

O4;0 = Tr(Fµ⌫Fµ⌫) were computed in [11], and similar two-loop amplitudes with dimension-

6 operators were computed in [12, 13]. The two-loop amplitudes with higher dimension

operators may be used to improve the precision for the cross section of Higgs plus a jet

production at N2LO, which is so far known in the infinite top mass limit [14–20]. At NLO

QCD accuracy, the full top mass e↵ect can be taken into account by integrating the top quark

loop directly [21–23]. See also [24] for a recent extensive review about related studies on Higgs

amplitudes and their phenomenological applications.

To study the operator spectrum and the corresponding Higgs amplitudes, we consider

the form factor which is defined as a matrix element between an operator O(x) and n on-shell

states (see e.g. [25] for an introduction):

FO,n =

Z
d4x e�iq·x

hp1, . . . , pn|O(x)|0i . (1.2)

Such form factor is equivalent to a Higgs plus n-parton amplitude in the Higgs EFT (1.1),

where q2 = m2
H . In this following, we will often refer Higgs amplitudes as form factors.

1In the simplified toy model of planar N = 4 super Yang-Mills (SYM), this goal is in certain sense achieved,

thanks to the infinite number of hidden symmetries in the theory, see [1] for a review.
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Higgs boson @ LHC
The dominant production mechanism is the 
gluon fusion through a top quark loop.

p

p

g H
t

2. pT distribution of Higgs Bosons

At LO, the Higgs boson has no pT and a transverse momentum spectrum for the Higgs

is first generated by the process, gg ! gh, which is an NLO contribution to the gluon

fusion process[48]. As pT ! 0, the partonic cross section for Higgs plus jet production

diverges as 1/p2
T ,

d�̂

dt
(gg ! gh) = �̂0

3↵s

2⇡

⇢
1

p2
T

✓
1 �

m2
h

s

◆4

+ 1 +

✓
m2

h

s

◆4�

�
4

s

✓
1 �

m2
h

s

◆2

+
2p2

T

s

�
, (117)

where �̂0 is the LO gg ! h cross section given in Eq. 90, and s, t and u are the partonic

Mandelstam invariants. The pT spectrum for Higgs plus jet at LO is shown in Fig. 13,

where the contributions from the gg and qg, qg initial states are shown separately. Also

shown is the mt ! 1 limit of the spectrum that is derived from the e↵ective Lagrangian of

Eq. 97 . The e↵ective Lagrangian approximation fails around pT ⇠ 2mt. In this process,

there are several distinct momentum scales (pT , mh, mt), as opposed to gluon fusion where

there is only a single scale (mh/mt) at LO. The expansion in mh
mt

for gg ! gh receives

corrections of O( s
m2

t
,

p2
T

m2
t
) and for pT

>
⇠ 2mt, the EFT large top quark mass expansion

cannot be used to obtain reliable distributions.

NLO, NNLO, and N3LO radiative corrections to Higgs plus jet production have been

calculated[49–52] using the mt ! 1 approximation. The lowest order result of Eq. 117

is then reweighted by a K factor derived in the mt ! 1 limit for each kinematic bin.

The e↵ects of the higher order corrections are significant and increase the rate by a factor

of around 1.8 as shown in Fig. 14. The singularity of the LO result at pT = 0 is clearly

visible in Fig. 14 and we note that after the inclusion of the NLO corrections, the pT

spectrum no longer diverges as pT ! 0.

The terms which are singular as pT ! 0 can be isolated and the integrals performed

explicitly. Considering only the gg initial state[53],

d�

dp2
T dy

(pp ! gh) |p2
T!0⇠ �̂0

3↵s

2⇡

1

p2
T


6 log

✓
m2

h

p2
T

◆
� 2�0

�
g(zey)g(ze�y) + ... (118)

where z ⌘ m2
h/S, �0 = (33 � 2nlf )/6, and nlf = 5 is the number of light flavors. Clearly

when pT << mh, the terms containing the logarithms resulting from soft gluon emission

can give a large numerical contribution. The logarithms of the form ↵n
s logm(m2

h/p
2
T ) can
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1. INTRODUCTION CONTENTS

1 Introduction

Gauge invariant operators play important roles in QFT. For example, they correspond to com-
posite states such as color-singlet hadrons in QCD and also appear as effective interaction
vertices in effective field theories (EFT). At classical level, an important problem is to find
a set of independent basis for the operators of a certain canonical dimension. At quantum
level, the operators receive quantum loop corrections and it is important to perform renor-
malization, where the canonical dimensions are modified by anomalous dimensions. Further
problems include computing scattering amplitudes in EFTs where the operators need to be
taken into account as well.

In this report, we will address all these problems by considering gauge invariant local
operators which are composed of field strength Fµ⌫ and covariant derivatives Dµ. The field
strength carries a color index as Fµ⌫ = F a

µ⌫T a, where T a are the adjoint generators of gauge
group and satisfy

[T a, T b] = i f abc T c . (1)

The covariant derivative acts in the standard way as

Dµ ?= @µ ?+i g[Aµ,?] , [Dµ, D⌫] ?= i g[Fµ⌫,?] . (2)

A gauge invariant scalar operator can be written in the following general form:

O(x)⇠ c(a1, ..., an)X (⌘µ⌫)
�
Dµ11

...Dµ1m1
F⌫1⇢1

�a1 · · ·
�
Dµn1

...Dµnmn
F⌫n⇢n

�an(x) , (3)

where c(a1, ..., an) are color factors (e.g. given in terms of Tr(..T ai ..T aj ..)). All Lorentz indices
{µi ,⌫i ,⇢i} are contracted in pairs by metric ⌘µ⌫ contained in the function X (⌘). These oper-
ators form composite color-singlet states in QCD, and they are also related to the Higgs EFT,
which is obtained in the gluon fusion process by integrating the heavy top quark [1–4].

To study the aforementioned problems associated to these operators, a useful observable
to consider is the form factor defined as (see e.g. [5] for an introduction):

FO,n(1, . . . , n; q)⌘
Z

dD xe�iq·xh1 . . . n|O(x)|0i , (4)

where pi are momenta for on-shell states and q =
P

i pi is an off-shell momentum associated
to the operator. The form factors allow to apply modern on-shell amplitude techniques to
study “off-shell" operators, for both constructing (classical) operator bases and for computing
high-loop quantum corrections. In the remaining sections, we would like to report some recent
progress on these problems, mainly based on [6,7].

2 Operator basis

The operators at a given canonical dimension in general are not independent with each other,
because they can be related to each other through equations of motion (EoM) or Bianchi
identities (BI):

EoM : DµFµ⌫ = 0 , BI : DµF⌫⇢ + D⌫F⇢µ + D⇢Fµ⌫ = 0 . (5)

Our goal in this section is to find a set of independent operators in the sense that there are no
above relations among the operators.

For simplicity, we will focus on length-2 and length-3 operators, in which there are only 2
and 3 Fµ⌫ fields respectively, plus arbitrary insertion of covariant derivatives. Two operators

2

High-dimensional YM operators
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2. pT distribution of Higgs Bosons

At LO, the Higgs boson has no pT and a transverse momentum spectrum for the Higgs

is first generated by the process, gg ! gh, which is an NLO contribution to the gluon

fusion process[48]. As pT ! 0, the partonic cross section for Higgs plus jet production
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where �̂0 is the LO gg ! h cross section given in Eq. 90, and s, t and u are the partonic

Mandelstam invariants. The pT spectrum for Higgs plus jet at LO is shown in Fig. 13,

where the contributions from the gg and qg, qg initial states are shown separately. Also

shown is the mt ! 1 limit of the spectrum that is derived from the e↵ective Lagrangian of

Eq. 97 . The e↵ective Lagrangian approximation fails around pT ⇠ 2mt. In this process,

there are several distinct momentum scales (pT , mh, mt), as opposed to gluon fusion where

there is only a single scale (mh/mt) at LO. The expansion in mh
mt

for gg ! gh receives

corrections of O( s
m2

t
,

p2
T

m2
t
) and for pT

>
⇠ 2mt, the EFT large top quark mass expansion

cannot be used to obtain reliable distributions.

NLO, NNLO, and N3LO radiative corrections to Higgs plus jet production have been

calculated[49–52] using the mt ! 1 approximation. The lowest order result of Eq. 117

is then reweighted by a K factor derived in the mt ! 1 limit for each kinematic bin.

The e↵ects of the higher order corrections are significant and increase the rate by a factor

of around 1.8 as shown in Fig. 14. The singularity of the LO result at pT = 0 is clearly

visible in Fig. 14 and we note that after the inclusion of the NLO corrections, the pT

spectrum no longer diverges as pT ! 0.

The terms which are singular as pT ! 0 can be isolated and the integrals performed

explicitly. Considering only the gg initial state[53],

d�

dp2
T dy

(pp ! gh) |p2
T!0⇠ �̂0

3↵s

2⇡

1

p2
T


6 log

✓
m2

h

p2
T

◆
� 2�0

�
g(zey)g(ze�y) + ... (118)

where z ⌘ m2
h/S, �0 = (33 � 2nlf )/6, and nlf = 5 is the number of light flavors. Clearly

when pT << mh, the terms containing the logarithms resulting from soft gluon emission

can give a large numerical contribution. The logarithms of the form ↵n
s logm(m2

h/p
2
T ) can
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Dimension-7 operators

allows us to study this effect and obtain the two-loop anomalous dimensions for the first time.

The rest of the paper is organized as follows. We first review the effective action and

divergence structures in section 2. Then we explain the strategy of computation in section 3.

The results are presented in section 4, followed by a discussion section.

2 Setup

2.1 Effective Lagrangian

Leff = C0Htr(G2) +O

(

1

m2
t

)

, (2.1)

Leff = C0O0 +
1

m2
t

4
∑

i=1

CiOi +O

(

1

m4
t

)

, (2.2)

Higgs production from gluon fusion can be computed using an effective Lagrangian

Leff = Ĉ0O0 +
1

m2
t

4
∑

i=1

ĈiOi +O

(

1

m4
t

)

, (2.3)

where O0 = Htr(G2) is the leading term, and the subleading terms contain dimension-7

operators [35–39]

O1 = Htr(DρGµνD
ρGµν) , (2.4)

O2 = Htr(G ν
µ G ρ

ν G µ
ρ ) , (2.5)

O3 = Htr(DρGρµDσG
σµ) , (2.6)

O4 = Htr(GµρD
ρDσG

σµ) . (2.7)

In this paper, we will focus on the pure gluon sector. The last two operators have zero

contribution in the sector and only contribute when there are internal quark lines. The full

results including complete quarks will be presented else where [? ].

An amplitude with a Higgs boson and n gluons is equivalent to the form factor with an

operator Oi

FOi,n =

∫

d4x e−iq·x⟨p1, . . . , pn|Oi(x)|0⟩ , (2.8)

where the operator Oi corresponds to a Higgs-gluon interaction term Oi in the effective

Lagrangian with the Higgs field stripped off, i.e. Oi = HOi, and q2 = m2
H . In the following,

we will refer Higgs amplitudes as form factors.

Using Bianchi identity one can decompose the operator O1 as (see e.g. [36])

O1 =
1

2
∂2O0 − 4 gO2 + 2O4 . (2.9)

Since O4 has no contribution in the pure gluon sector, we have the relation for the form factor

FO1 =
1

2
q2 FO0 − 4 g FO2 , (2.10)

where the partial derivatives reduce to q which is the total momentum flowing through the

O0 operator. This should serve as self-consistency check for the result.
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µ F ⇢

⌫ F µ
⇢ ) , (1.1)
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2 Constructing operator basis

In this section we consider the construction of operator basis. We will first consider the field

theory method and then apply the on-shell form factor method. Besides counting the number

of basis, a central goal is to explain how to construct a convenient set of basis operators that

will facilitate the high loop computations. We will provide explicit basis for length-3 operators

up to dimension 16, and in later sections we will compute their anomalous dimension and

related Higgs EFT amplitudes.

2.1 Operator setup

We consider local gauge invariant scalar operators in pure Yang-Mills theory composed of

field strength Fµ⌫ and covariant derivatives Dµ. The field strength carries an adjoint color

index as Fµ⌫ = F a
µ⌫T

a, where T a are the adjoint generators of gauge group and satisfy

[T a, T b] = ifabcT c . (2.1)

The covariant derivative acts in the standard way as

Dµ ? = @µ + ig[Aµ, ?] , [Dµ, D⌫ ] ? = ig[Fµ⌫ , ?] . (2.2)

A gauge invariant scalar operator takes the following form

c(a1, ..., an)
�
Dµ11 ...Dµ1m1

F⌫1⇢1

�a1
· · ·

�
Dµn1 ...Dµnmn

F⌫n⇢n

�anX(⌘, ✏) , (2.3)

where c(a1, ..., an) are color factors, such as given in terms of products of Tr(..T ai ..T aj ..). And

to form a scalar operator, all Lorentz indices {µi, ⌫i, ⇢i} are contracted in pairs by metric ⌘µ⌫

or by antisymmetric tensor ✏µ⌫⇢�, which are contained in the function X(⌘, ✏). In this paper,

for simplicity we will consider the parity even operators where X contains only ⌘’s.

For convenience of the upcoming discussions, we define following useful quantities for the

operators:

• Canonical dimension of an operator:

dim(O) = �0(O) = (# of D’s) + 2⇥ (# of F ’s) . (2.4)

Since we consider Lorentz scalar operators, this dimension is always an even integer

number, starting with dim=4. The canonical dimension typically receives quantum

corrections at loop level, and the correction is called the anomalous dimension �(O).
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theory method and then apply the on-shell form factor method. Besides counting the number

of basis, a central goal is to explain how to construct a convenient set of basis operators that

will facilitate the high loop computations. We will provide explicit basis for length-3 operators

up to dimension 16, and in later sections we will compute their anomalous dimension and

related Higgs EFT amplitudes.
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where c(a1, ..., an) are color factors, such as given in terms of products of Tr(..T ai ..T aj ..). And

to form a scalar operator, all Lorentz indices {µi, ⌫i, ⇢i} are contracted in pairs by metric ⌘µ⌫

or by antisymmetric tensor ✏µ⌫⇢�, which are contained in the function X(⌘, ✏). In this paper,

for simplicity we will consider the parity even operators where X contains only ⌘’s.

For convenience of the upcoming discussions, we define following useful quantities for the

operators:

• Canonical dimension of an operator:

dim(O) = �0(O) = (# of D’s) + 2⇥ (# of F ’s) . (2.4)

Since we consider Lorentz scalar operators, this dimension is always an even integer

number, starting with dim=4. The canonical dimension typically receives quantum

corrections at loop level, and the correction is called the anomalous dimension �(O).
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In this section we consider the construction of operator basis. We will first consider the field

theory method and then apply the on-shell form factor method. Besides counting the number

of basis, a central goal is to explain how to construct a convenient set of basis operators that

will facilitate the high loop computations. We will provide explicit basis for length-3 operators

up to dimension 16, and in later sections we will compute their anomalous dimension and

related Higgs EFT amplitudes.

2.1 Operator setup

We consider local gauge invariant scalar operators in pure Yang-Mills theory composed of

field strength Fµ⌫ and covariant derivatives Dµ. The field strength carries an adjoint color

index as Fµ⌫ = F a
µ⌫T

a, where T a are the adjoint generators of gauge group and satisfy

[T a, T b] = ifabcT c . (2.1)

The covariant derivative acts in the standard way as
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where c(a1, ..., an) are color factors, such as given in terms of products of Tr(..T ai ..T aj ..). And

to form a scalar operator, all Lorentz indices {µi, ⌫i, ⇢i} are contracted in pairs by metric ⌘µ⌫

or by antisymmetric tensor ✏µ⌫⇢�, which are contained in the function X(⌘, ✏). In this paper,

for simplicity we will consider the parity even operators where X contains only ⌘’s.

For convenience of the upcoming discussions, we define following useful quantities for the

operators:

• Canonical dimension of an operator:

dim(O) = �0(O) = (# of D’s) + 2⇥ (# of F ’s) . (2.4)
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number, starting with dim=4. The canonical dimension typically receives quantum
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In this section we consider the construction of operator basis. We will first consider the field

theory method and then apply the on-shell form factor method. Besides counting the number

of basis, a central goal is to explain how to construct a convenient set of basis operators that

will facilitate the high loop computations. We will provide explicit basis for length-3 operators

up to dimension 16, and in later sections we will compute their anomalous dimension and

related Higgs EFT amplitudes.
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We consider local gauge invariant scalar operators in pure Yang-Mills theory composed of

field strength Fµ⌫ and covariant derivatives Dµ. The field strength carries an adjoint color

index as Fµ⌫ = F a
µ⌫T

a, where T a are the adjoint generators of gauge group and satisfy

[T a, T b] = ifabcT c . (2.1)

The covariant derivative acts in the standard way as

Dµ ? = @µ + ig[Aµ, ?] , [Dµ, D⌫ ] ? = ig[Fµ⌫ , ?] . (2.2)

A gauge invariant scalar operator takes the following form
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�a1
· · ·
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Dµn1 ...Dµnmn

F⌫n⇢n

�anX(⌘, ✏) , (2.3)

where c(a1, ..., an) are color factors, such as given in terms of products of Tr(..T ai ..T aj ..). And

to form a scalar operator, all Lorentz indices {µi, ⌫i, ⇢i} are contracted in pairs by metric ⌘µ⌫

or by antisymmetric tensor ✏µ⌫⇢�, which are contained in the function X(⌘, ✏). In this paper,

for simplicity we will consider the parity even operators where X contains only ⌘’s.

For convenience of the upcoming discussions, we define following useful quantities for the

operators:

• Canonical dimension of an operator:

dim(O) = �0(O) = (# of D’s) + 2⇥ (# of F ’s) . (2.4)

Since we consider Lorentz scalar operators, this dimension is always an even integer

number, starting with dim=4. The canonical dimension typically receives quantum

corrections at loop level, and the correction is called the anomalous dimension �(O).
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2 Constructing operator basis

In this section we consider the construction of operator basis. We will first consider the field

theory method and then apply the on-shell form factor method. Besides determining the

dimension of the basis, a central goal is to explain how to construct a convenient set of basis

operators that will facilitate the high loop computations. We will provide explicit basis for

length-3 operators up to dimension 16, and in later sections we will compute their anomalous

dimension and related Higgs EFT amplitudes.

2.1 Operator setup

We consider local gauge invariant scalar operators in pure Yang-Mills theory composed of

field strength Fµ⌫ and covariant derivatives Dµ. The field strength carries an adjoint color

index as Fµ⌫ = F a
µ⌫T

a, where T a are the adjoint generators of gauge group and satisfy

[T a, T b] = ifabcT c . (2.1)

The covariant derivative acts in the standard way as

Dµ ? = @µ ?+ig[Aµ, ?] , [Dµ, D⌫ ] ? = ig[Fµ⌫ , ?] . (2.2)

A gauge invariant scalar operator takes the following form

c(a1, ..., an)
�
Dµ11 ...Dµ1m1

F⌫1⇢1

�a1
· · ·

�
Dµn1 ...Dµnmn

F⌫n⇢n

�anX(⌘, ✏) , (2.3)

where c(a1, ..., an) are color factors, such as given in terms of products of Tr(..T ai ..T aj ..). And

to form a scalar operator, all Lorentz indices {µi, ⌫i, ⇢i} are contracted in pairs by metric ⌘µ⌫

or by antisymmetric tensor ✏µ⌫⇢�, which are contained in the function X(⌘, ✏). In this paper,

for simplicity we will consider the parity even operators where X contains only ⌘’s.

For the convenience of upcoming discussions, we define following useful quantities for the

operators:

• Canonical dimension of an operator:

dim(O) = �0(O) = (# of D’s) + 2⇥ (# of F ’s) . (2.4)

Since we consider Lorentz scalar operators, this dimension is always an even integer

number, starting with dim=4. The canonical dimension typically receives quantum

corrections at loop level, and the correction is called the anomalous dimension �(O).

– 4 –

• Length of an operator:

len(O) = (# of F ’s) . (2.5)

We will also call an F in an operator together with all the derivatives in front of it, i.e.

(D . . .DF ), as one block. Obviously, the number of blocks is equal to the length of the

operator.

• Descendants. If an operator can be written as a total derivative of lower dimensional

operator, it is called a descendant. Since we consider Lorentz invariant and gauge

invariant operators, the overall derivatives are just covariant derivatives and always

appear in pairs so a descendant must take the form like

O = @2(O0) = D2(O0) . (2.6)

Below we also summarize the color factors for length-2 to length-4 operators:

1. The length-2 case has a unique color factor:

c(a, b) = Tr(T aT b) = �ab . (2.7)

2. In length-3 case there are two inequivalent color factors:

c(a, b, c) = Tr(T aT bT c) and Tr(T aT cT b) . (2.8)

Equivalently, one can introduce two other color factors as

fabc = Tr(T aT bT c)� Tr(T aT cT b) , dabc = Tr(T aT bT c) + Tr(T aT cT b) , (2.9)

which are fully anti-symmetric or symmetric in the color indices, respectively.

3. Length-4 is the first case where double traces appear. The color factors are:

Tr(T a1T a�(2)T a�(3)T a�(4)), Tr(T a1T a�̃(2))Tr(T a�̃(3)T a�̃(4)) , � 2 S3, �̃ 2 Z3 .

Our goal is to find a set of independent operator basis, which requires no equivalent

relation holds among the basis we choose. Two operators are said to be equivalent if their

di↵erence is proportional to the equation of motion (EoM) or Bianchi identity (BI):

EoM : DµF
µ⌫ = 0 , (2.10)

BI : DµF⌫⇢ +D⌫F⇢µ +D⇢Fµ⌫ = 0 . (2.11)

Below we will use two di↵erent ways to do this classification: (1) field theory method, and

(2) on-shell spinor helicity method.

For the convenience of notation, we will often use integer numbers to represent Lorentz

indices and abbreviate product DiDjDk.... to Dijk.... For example,

Fµ1µ2Dµ1Dµ5F
µ3µ4Dµ2D

µ5Fµ3µ4 ) F12D15F34D25F34 . (2.12)
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2 Constructing operator basis

In this section we consider the construction of operator basis. We will first consider the field

theory method and then apply the on-shell form factor method. Besides counting the number

of basis, a central goal is to explain how to construct a convenient set of basis operators that

will facilitate the high loop computations. We will provide explicit basis for length-3 operators

up to dimension 16, and in later sections we will compute their anomalous dimension and

related Higgs EFT amplitudes.

2.1 Operator setup

We consider local gauge invariant scalar operators in pure Yang-Mills theory composed of

field strength Fµ⌫ and covariant derivatives Dµ. The field strength carries an adjoint color

index as Fµ⌫ = F a
µ⌫T

a, where T a are the adjoint generators of gauge group and satisfy

[T a, T b] = ifabcT c . (2.1)

The covariant derivative acts in the standard way as
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where c(a1, ..., an) are color factors, such as given in terms of products of Tr(..T ai ..T aj ..). And

to form a scalar operator, all Lorentz indices {µi, ⌫i, ⇢i} are contracted in pairs by metric ⌘µ⌫

or by antisymmetric tensor ✏µ⌫⇢�, which are contained in the function X(⌘, ✏). In this paper,

for simplicity we will consider the parity even operators where X contains only ⌘’s.

For convenience of the upcoming discussions, we define following useful quantities for the

operators:
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dim(O) = �0(O) = (# of D’s) + 2⇥ (# of F ’s) . (2.4)

Since we consider Lorentz scalar operators, this dimension is always an even integer

number, starting with dim=4. The canonical dimension typically receives quantum

corrections at loop level, and the correction is called the anomalous dimension �(O).
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2 Constructing operator basis

In this section we consider the construction of operator basis. We will first consider the field

theory method and then apply the on-shell form factor method. Besides counting the number

of basis, a central goal is to explain how to construct a convenient set of basis operators that

will facilitate the high loop computations. We will provide explicit basis for length-3 operators

up to dimension 16, and in later sections we will compute their anomalous dimension and

related Higgs EFT amplitudes.

2.1 Operator setup

We consider local gauge invariant scalar operators in pure Yang-Mills theory composed of

field strength Fµ⌫ and covariant derivatives Dµ. The field strength carries an adjoint color

index as Fµ⌫ = F a
µ⌫T

a, where T a are the adjoint generators of gauge group and satisfy

[T a, T b] = ifabcT c . (2.1)

The covariant derivative acts in the standard way as

Dµ ? = @µ + ig[Aµ, ?] , [Dµ, D⌫ ] ? = ig[Fµ⌫ , ?] . (2.2)

A gauge invariant scalar operator takes the following form

c(a1, ..., an)
�
Dµ11 ...Dµ1m1

F⌫1⇢1

�a1
· · ·

�
Dµn1 ...Dµnmn

F⌫n⇢n

�anX(⌘, ✏) , (2.3)

where c(a1, ..., an) are color factors, such as given in terms of products of Tr(..T ai ..T aj ..). And

to form a scalar operator, all Lorentz indices {µi, ⌫i, ⇢i} are contracted in pairs by metric ⌘µ⌫

or by antisymmetric tensor ✏µ⌫⇢�, which are contained in the function X(⌘, ✏). In this paper,

for simplicity we will consider the parity even operators where X contains only ⌘’s.

For convenience of the upcoming discussions, we define following useful quantities for the

operators:

• Canonical dimension of an operator:

dim(O) = �0(O) = (# of D’s) + 2⇥ (# of F ’s) . (2.4)

Since we consider Lorentz scalar operators, this dimension is always an even integer

number, starting with dim=4. The canonical dimension typically receives quantum

corrections at loop level, and the correction is called the anomalous dimension �(O).
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Equation of motion: Bianchi identities:

Classically, operators are generally not independent:

DμFμν = 0 DμFνρ + DνFρμ + DρFμν = 0

At quantum level, different operators can mixing with each 
other via renormalization. 

High-dimensional YM operators

We consider Lorentz scalar gauge invariant local operators:

1. INTRODUCTION CONTENTS

1 Introduction

Gauge invariant operators play important roles in QFT. For example, they correspond to com-
posite states such as color-singlet hadrons in QCD and also appear as effective interaction
vertices in effective field theories (EFT). At classical level, an important problem is to find
a set of independent basis for the operators of a certain canonical dimension. At quantum
level, the operators receive quantum loop corrections and it is important to perform renor-
malization, where the canonical dimensions are modified by anomalous dimensions. Further
problems include computing scattering amplitudes in EFTs where the operators need to be
taken into account as well.

In this report, we will address all these problems by considering gauge invariant local
operators which are composed of field strength Fµ⌫ and covariant derivatives Dµ. The field
strength carries a color index as Fµ⌫ = F a

µ⌫T a, where T a are the adjoint generators of gauge
group and satisfy

[T a, T b] = i f abc T c . (1)

The covariant derivative acts in the standard way as

Dµ ?= @µ ?+i g[Aµ,?] , [Dµ, D⌫] ?= i g[Fµ⌫,?] . (2)

A gauge invariant scalar operator can be written in the following general form:

O(x)⇠ c(a1, ..., an)X (⌘µ⌫)
�
Dµ11

...Dµ1m1
F⌫1⇢1

�a1 · · ·
�
Dµn1

...Dµnmn
F⌫n⇢n

�an(x) , (3)

where c(a1, ..., an) are color factors (e.g. given in terms of Tr(..T ai ..T aj ..)). All Lorentz indices
{µi ,⌫i ,⇢i} are contracted in pairs by metric ⌘µ⌫ contained in the function X (⌘). These oper-
ators form composite color-singlet states in QCD, and they are also related to the Higgs EFT,
which is obtained in the gluon fusion process by integrating the heavy top quark [1–4].

To study the aforementioned problems associated to these operators, a useful observable
to consider is the form factor defined as (see e.g. [5] for an introduction):

FO,n(1, . . . , n; q)⌘
Z

dD xe�iq·xh1 . . . n|O(x)|0i , (4)

where pi are momenta for on-shell states and q =
P

i pi is an off-shell momentum associated
to the operator. The form factors allow to apply modern on-shell amplitude techniques to
study “off-shell" operators, for both constructing (classical) operator bases and for computing
high-loop quantum corrections. In the remaining sections, we would like to report some recent
progress on these problems, mainly based on [6,7].

2 Operator basis

The operators at a given canonical dimension in general are not independent with each other,
because they can be related to each other through equations of motion (EoM) or Bianchi
identities (BI):

EoM : DµFµ⌫ = 0 , BI : DµF⌫⇢ + D⌫F⇢µ + D⇢Fµ⌫ = 0 . (5)

Our goal in this section is to find a set of independent operators in the sense that there are no
above relations among the operators.

For simplicity, we will focus on length-2 and length-3 operators, in which there are only 2
and 3 Fµ⌫ fields respectively, plus arbitrary insertion of covariant derivatives. Two operators

2



Minimal tree form factors

Dictionary for YM operators:

Table 2. Dictionary between operators and on-shell spinors

operator Dµ Fµ⌫

kinematics pµ pµ"⌫ � p⌫"µ

Table 3. Dictionary between operators and on-shell spinors

operator D↵̇↵ f↵� f̄↵̇�̇
spinor �̃↵̇�↵ �↵�� ��̃↵̇�̃�̇

1. First we classify primitive operators which contain no DD contraction.

2. After primitive operators being classified, one can then generate other (non-primitive)

operators by enumerating inequivalent ways of DD pair insertion into primitive ones.

3. While independent operators obtained from inserting DD pairs into primitive ones

already form a set of basis, they are not a good choice since we require descendants to

be included. One can apply identities between descendants and above basis and solve

for part of them in terms of descendants.

4. For length-3 case, we also organize the basis into fabc and dabc sectors, to manifest the

symmetry properties.

5. Finally, to obtain a full basis at a given dimension, one needs to sum operators of

all possible length. For example, for dimension-8 case, operators up to length-4 all

contribute.

2.3 On-shell spinor helicity method

An alternative way to do the classification is to make use of on-shell technique and read

properties of operators from their form factors. We will apply the dictionary relation between

operators and their tree-level minimal form factors and translate all the operator information

into spinor helicity formalism.

Operator-spinor dictionary

A minimal tree-level form factor means the number of external gluons is equal to the length

of the operator. One can establish a dictionary from an operator to its tree-level minimal

form factor [53–55]:

OL , FOL,L(1, . . . , L) , (2.26)

especially each single D and F contained by the operator are mapped to certain spinor

structures, as shown in Table 3.
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4-dim

The map of D results from spinor representation of momentum p↵̇↵ = �̃↵̇
p�

↵
p . As for field

strength F , first one takes decomposition

Fµ⌫ ! F↵↵̇��̇ = ✏↵� f̄↵̇�̇ + ✏↵̇�̇f↵� (2.27)

to obtain self-dual and anti-self-dual components

f̄↵̇�̇ =
1

2
✏↵�F↵↵̇��̇ , f↵� =

1

2
✏↵̇�̇F↵↵̇��̇ . (2.28)

Then one makes use of LSZ reduction formula

h~p|Fµ⌫(0)|⌦i = (�i)["⌫pµ � "µp⌫ ] (2.29)

to get their final matrix elements

h~p|f↵�(0)|⌦i =

(
0, h = +

�
i

p
2
�↵�� , h = �

, h~p|f̄↵̇�̇(0)|⌦i =

(
i

p
2
�̃↵̇�̃�̇ , h = +

0, h = �
. (2.30)

Here, "µ denotes polarization vector of external gluon. We summarize the correspondence

between operators and on-shell spinors in Table 3, and the example on reconstructing op-

erators from spinor-helicity formalism will be given in upcoming context, see (2.41). The

correspondence listed in Table 3 is not limited within pure Yang-Mills theory, and the result

can be generalized when fermions enter in.

The above on-shell language has several advantages:

1. Equivalent relations between operators take much simpler forms. Equation of motion

holds automatically, and Bianchi identities are translated into Schouten identities:

DµF
µ⌫

! �[��]���̃
�̇ + h��i�̃�̇�

� = 0 ,

DµF⌫⇢ +D⌫F⇢µ +D⇢Fµ⌫ ! ��̃↵̇�̃�̇�̃�̇(�↵✏�� + ��✏�↵ + ��✏↵�)

+ �↵����(�̃↵̇✏�̇�̇ + �̃�̇✏�̇↵̇ + �̃�̇✏↵̇�̇) = 0 .

2. Two operators that are equivalent up to higher length components have identical tree-

level minimal form factor, since F
(0)
OL

(1, .., n) = 0 when n < L. For example, following

three operators are equivalent at the level of length 2:

Tr(D⇢Fµ⌫D
⌫Fµ⇢),

1

2
Tr(D⇢Fµ⌫D

⇢Fµ⌫),
1

4
@2Tr(Fµ⌫F

µ⌫) , (2.31)

and they have the same form factor for arbitrary helicity setting, like s12h12i2 for 1�2�

and 0 for 1�2+.

3. In the previous field theory classification we treat DF contraction and DD contraction

di↵erently. In on-shell language, DD contraction only contributes to scalar factor like

sij . For example:

1

2
Tr(D⇢Fµ⌫D

⇢Fµ⌫) 2
⌅
Tr(Fµ⌫F

µ⌫)
⇧

) s212h12i
2
2
⌅
h12i2

⇧
.
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Fn,O(1, . . . , n) =

∫

d4x e−iq·x ⟨p1 . . . pn|O(x)|0⟩

= δ(4)(
n

∑

i=1

pi − q) ⟨p1 . . . pn|O(0)|0⟩ (1.2)

We have

O(x) = eiP ·xO(0)e−iP ·x (1.3)

2 Form factor of stress tensor multiplet

2.1 MHV form factor

MHV form factor:

FMHV
n (1, . . . , n) = (2.1)

Feynman diagrams.

Why it is so simple?

(1) Why MHV amplitudes is so simple? Twistor action. Constraints: collinear. (2)
MHV form factor is because that the operator is part of the Lagrangian.

Connection to Higgs amplitudes. All negative helicity gluon form factor.

2.2 Super form factor

Super amplitudes:

AMHV(1, 2, . . . , n) =
δ(4)(

∑n
i=1 pi)δ

(8)(
∑n

i=1 λiηi)

⟨1 2⟩⟨2 3⟩ . . . ⟨n 1⟩ . (2.2)

where the external states are given by Nair’s superfield:

Φ(p, η) = g+(p) + ηAψ̄A(p) +
ηAηB

2
φAB(p) +

ηAηBηD

3!
ϵABCDψ

D(p) + η1η2η3η4g−(p) .

(2.3)

This is based on the super Ward identity:

0 = ⟨0|[Q,Φ1Φ2 . . .Φn]|0⟩ =
n

∑

i=1

⟨0|Φ1 . . . [Q,Φi] . . .Φn]|0⟩ , (2.4)

and

[QAα,Φ(p, η)] = λαηAΦ(p, η) . (2.5)

2
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3.3 Oscillator picture

F̄α̇β̇ −−−−→ b†α̇b†β̇ |0⟩
ψ̄α̇A −−−−→ b†α̇d†A|0⟩
φAB −−−−→ d†Ad†B|0⟩
ψαABC −−−−→ a†αd†Ad†Bd†C |0⟩
Fαβ −−−−→ a†αa†βd†1d†2d†3d†4|0⟩
Dαα̇ −−−−→ a†αb†α̇|0⟩

3.4 Form factor picture

General dictionary between operators and minimal tree form factors:

F̄α̇β̇
g+−−−−→ λ̃α̇λ̃β̇

ψ̄α̇A
ψ̄α̇A−−−−−→ λ̃α̇ηA

φAB
φAB−−−−−→ ηAηB

ψαABC
ψαABC−−−−−−−→ λαηAηBηC

Fαβ
g
−−−−−→ λαλβη1η2η3η4

Dαα̇ −−−−→ λαλ̃α̇

The correspondence to the oscillator picture is simply

a† ∼ λ , b† ∼ λ̃ , d† ∼ η (3.12)

However, the interpretation changes significantly.

tr(F̄αβF
αβ) → λα1λ

β
1λ2αλ2β(η1)

4(η2)
4 = ⟨1 2⟩2(η1)4(η2)4 (3.13)

tr(F̄ β̇
α̇ F̄ γ̇

β̇
F̄ α̇
γ̇ ) → λ̃α̇1 λ̃1β̇λ̃

β̇
2 λ̃2γ̇ λ̃

γ̇
3 λ̃3α̇ = [1 2][2 3][3 1] (3.14)

tr(F̄α̇β̇F̄
α̇β̇) → λ̃α̇1 λ̃

β̇
1 λ̃2α̇λ̃2β̇ = [1 2]2 (3.15)

tr(F β
α F γ

β F α
γ ) → λα1λ1βλ

β
2λ2γλ

γ
3λ3α(η1)

4(η2)
4(η3)

4 = ⟨1 2⟩⟨2 3⟩⟨3 1⟩(η1)4(η2)4(η3)4

(3.16)

Note that Fαβ corresponds to out-going negative helicity gluon state, and Fα̇β̇ to
out-going positive helicity gluon state. This can be seen as follows. First, we decompose
the field strength Fµν as self-dual and anti-self-dual parts:

Fµν → ϵα̇β̇Fαβ + ϵαβF̄α̇β̇ , (3.17)

and more explicitly

Fαβ = ϵα̇β̇
(

∂αα̇Aββ̇ − ∂ββ̇Aαα̇

)

, Fα̇β̇ = ϵαβ
(

∂αα̇Aββ̇ − ∂ββ̇Aαα̇

)

. (3.18)
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Important for capturing 
“Evanescent operators”



Unitarity-IBP strategy
We will apply a different strategy which allow overcoming both issues. The key idea is

to apply IBP reduction directly for the cut integrand. The logic is thus outlined as:

F (l)|cut =
∑

helicities

F tree
∏

j

Atree
j =

∑

i

ci Mi|cut , (3.1)

whereMi are IBP master integrals. In this way, there is no need to contruct the full integrand,

but one reaches directly to the finally coefficients ci of IBP master integrals. Because the cut

integrand are simpler than the full integrand, there is a significant room of simplification for J: drop mas-

ter and men-

tion Zeng’s

paper

J: drop mas-

ter and men-

tion Zeng’s

paper

the IBP reduction. Furthermore, the coefficients computed by a single cut must be the final

answer, i.e. no ambiguity involved. This is because the master integrals are “unreducible”,

and the coefficients are loop momenta independent.
Y: mention

color factor

and only pla-

nar

Y: mention

color factor

and only pla-

nar

Below we illustrate our strategy in more details.

We will apply D-dimensional unitarity method. We choose to use the planar unitarity

cut. One can also carry out the non-planar unitarity cut, in which the building blocks with be

the complete amplitude(form factors) with color factors. However, as will be discussed later,

the non-planar contribution vanishes up to 2 loops, so these two methods are equivalent.

Tree amplitudes and form factors can be computed using planar Feynman diagrams, or

recursive techniques such as Berends-Giele method[42]. To sum over all helicity states for the

cut legs, we contract the internal gluon polarization vectors using the following rule:

εµi ◦ ενi ≡
∑

helicities

εµi ε
ν
i = ηµν −

qµpνi + qνpµi
q · pi

, (3.2)

where qµ is an arbitrary reference momenta.

Since the cut-integrand is gauge invariant, we can further expand the integral using a set

of gauge invariant basis Bα (see e.g. [27] and also [43, 44] for recent general discussion)

Fn(εi, pi, la)|cut =
∑

α

fα
n (pi, la)Bα . (3.3)

and fα
n (pi, la) can be computed as

fα
n (pi, la) = Bα ◦ Fn(εi, pi, la) , (3.4)

where the dual basis Bα play as projectors, which satisfies,

Bα ◦Bβ = δαβ , Bα = GαβB
β, Gαβ = Bα ◦Bβ . (3.5)

For the form factor with three gluons, the gauge invariant basis has 4 elements and we choose

the basis to be [27]

B1 = A1C23 , B2 = A2C31 , B3 = A3C12 , B4 = A1A2A3 , (3.6)

in which Ai and Cij are defined by

Ai =
εi · pj
pi · pj

−
εi · pk
pi · pk

, Cij = εi · εj −
(pi · εj)(pj · εi)

pi · pj
. (3.7)
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On-shell unitarity (cut) IBP reduction

∑
i

ci Mi

symmetric property under label permutation. For example, kinematic part of single-trace

operators are invariant under Z4 cyclic permutation, and those of double trace operators are

invariant under 1 $ 2, 3 $ 4 permutation.

Form factors for one plus three minus or three plus one minus are not written in the table.

The results are all zero, because these eight operators do not have ffff̃ or f̃ f̃ f̃f components

under decomposition (2.27).

For length-2 and length-3 operators, the counting of operators in these two di↵erent

approaches agree with each other. However, this is not the case for higher length opera-

tors, where the evanescent operators appear. Such evanescent operators do not show up in

the 4-dim spinor approach, on the other hand the field theory approach is valid for generic

dimensions and can captures these operators. We leave the discussion to future work.

3 Two-loop form factor computation via unitarity

In this section, we compute the one and two-loop form factors of the high dimensional opera-

tors discussed in the last section. Our computation is based on the on-shell unitarity methods

[26–28], where the cut integrands are constructed by sewing tree-level components. Further-

more, we combine the unitary method together with the integration by parts (IBP) reduction

[29, 30]. This “unitarity-IBP” strategy not only makes the computation very e�cient, but

also provides important internal consistency checks for the results. Below we first outline the

main strategy of the computation and then apply it to the concrete form factor computations.

The work flow of our calculation can be illustrated as follows:

F
(l)
���
cut

=
Y

(tree blocks) = cut integrand

IBP with cuts
�����������!

X

cut permitted

ciIi
collect all cut channels
������������������!

X

complete

ciIi = F
(l) ,

where Ii are IBP master integrals. In the beginning, a particular cut channel (or cut configu-

ration) is chosen and one can calculate the cut integrand through tree-level data. In order to

avoid the issue of rational terms, here it is essential to use D-dimensional cut instead of four-

dimensional cut. The resulting cut integrand contains all the integrals whose topologies are

permitted by the chosen cut. As for the integral reduction, we use IBP method combined with

on-shell conditions for the cut propagators. Because terms proportional to cut inverse propa-

gators vanish under cut condition, the expressions of IBP relations can be sharply shortened

and therefore the computing e�ciency is improved. After the cut-constrained IBP reduction,

one obtains coe�cients ci of all the cut-permitted master integrals. Finally, by repeating the

process for di↵erent cut channels, coe�cients of all the master integrals are probed. See also

[31] for discussion.

In this paper we will mostly focus on the three-point form factors of length-three operators

up to two-loop level. In these cases only planar integrals appear (and therefore the planar cuts

are su�cient). This can be understood from a simple color analysis of Feynman diagrams that
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Unitarity cuts and master integrals

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. The cuts needed in the 2-loop 3-point form factor calculation. For F (2)
O2

, only the first cuts
are needed.

p1

p2p3

(1)

q

q

p3 q

q

q

p3

p3

p3
p1

p2

p1 p1 p1

p2 p2 p2

(2) (2)′ (3) (3)′

Figure 5. Master integrals of F (2)
O2

captured by the s12 triple cut.

(4) (5) (6) (7)

Figure 6. Master integrals of F (2)
O2

that are not captured by the s12 triple cut.

for integral (5) and (6), since the permutation does not alter the diagram.

The cuts needed for the three-point two-loop form factors are given in Figure 4. These

cuts are all needed for the form factor of Tr(DFDF ), while for Tr(F 3) only the first four

cuts are needed. The form factor F (2)
O2

contains seven master integrals up to permutations of

external legs, as show in Figure 5 and Figure 6. Each cut fixes the coefficients of a subset

of these master integrals. For example, triple cut (b) of Figure 4 in s12 channel is given in

terms of five master integrals in Figure 5, and the coefficients of (2)′ (or (3)′) are related to

that of (2) (or (3)) by flipping symmetry p1 ↔ p2. If a master integral appears in the result

of several different cuts, its coefficient in these cuts must be the same.

The full two-loop 3-point form factor can be given as

F (2)
O2

(p1, p2, p3; q) =
1

2

( 7
∑

i=1

ciMi +
∑

i=2,5

ciMi

)

+ perms(p1, p2, p3) , (3.9)

where Mi correspond to the integrals with label (i) in Figure 5 and Figure 6.

4 Results

The method of last section computes the bare form factors. For the Higgs and three-gluon

amplitudes considered in this paper, all master integrals have been known explicitly in terms

– 8 –

All cuts that are needed: H

4

l
p

FIG. 5. The master integrals of the 2-loop 3-point form factor.
The second double-box master has a numerator (l − p)2. A
propagator with a dot is a double propagator.

ter integrals have been obtained in terms of harmonic
polylogarithms [63, 64]. Thus we obtain the bare form
factors in explicit transcendental functions.

Divergence subtraction and checks.—The bare form fac-
tors contrain both ultraviolet (UV) and infrared (IR) di-
vergences. Our QCD results are regularized in the CDR
scheme, and we use MS renormalization scheme [65]. To
remove the UV divergences in the form factors, both the
gauge coupling and the operator require renormalization.
For the IR divergences, we apply the subtraction formula
by Catani [66].
At two-loop, all poles in 1/ϵm,m = 4, 3, 2 are totally

fixed by the universal IR structure and the one-loop data,
which provides non-trivial consistency check of the re-
sults. From the 1/ϵ UV pole one can extract the two-loop
anomalous dimension of the operator, which is related to
the renormalization constant of the operator by

γ = µ
∂

∂µ
logZ . (14)

Our computations reproduce all known results, includ-
ing the non-trivial two-loop QCD amplitudes of Higgs
plus three gluons with the operator O0 [24] (see also
[67]). For the latter, we match not only the divergences
but also the finite remainders exactly, which provides a
non-trivial check for our computation. The N = 4 com-
putations also reproduce those in [23] and [29].
As a further consistency check of the new results of

dimension-7 operators, we find the form factor results
satisfy exactly the linear relation (8). This is true already
for the expressions in terms of IBP master integrals.

Operator mixing at two loops.—At two-loop the operator
mixing appears. Let us first consider O2. Based on (8),
we can define a new operator

Õ2 = −
3

2
(O2 + 8gYMO1) = −

3

4
∂2O0 . (15)

The new operator Õ2 has no mixing with others. The
anomalous dimension of Õ2 is identical to that of O0,

and the form factor of Õ2 is proportional to that of O0

as

FÕ2
= −

3

4
q2 FO0 . (16)

Below we only focus on the results for the operator O1.
The normalization constant − 3

4 is introduced such that

F (0)

Õ2
(1−, 2−, 3−)/F (0)

O1
(1−, 2−, 3−) = 1/(uvw), where

u =
s12
q2

, v =
s23
q2

, w =
s13
q2

, q2 = s123 . (17)

To study the operator mixing effect for O1, we
first consider the form factor with two external gluons

F (l)
O1

(1−, 2−). The tree and one-loop results are zero,
while at two-loop we obtain

F (2)
O1

(1−, 2−) =F (0)

Õ2
(1−, 2−)

(

−
1

ϵ
+ 2 log s12 −

487

72

)

+O(ϵ1) . (18)

This is completely an operator mixing effect between O1

and Õ2. Furthermore, for the three-point form factor

F (2)
O1

(1−, 2−, 3−), its Z(2) part is given as

F (2)
O1

(1−, 2−, 3−)
∣

∣

Z(2)-part
(19)

= F (0)
O1

(1−, 2−, 3−)

(

−
19

24ϵ2
+

25

12ϵ
−

1

uvw

1

ϵ

)

=

(

−
19

24ϵ2
+

25

12ϵ

)

F (0)
O1

(1−, 2−, 3−)−
F (0)

Õ2
(1−, 2−, 3−)

ϵ
.

The term 1
uvw

is precisely due to the operator mixing,
and its divergence is consistent with (18).
Similar to (15), we can define a new operator which

avoids the operator mixing as

Õ1 = O1 +
1

ϵ

1

gYM

(αs

4π

)2
Õ2 , (20)

and we have

Z(2)

Õ1
= −

19

24ϵ2
+

25

12ϵ
, γ(2)

Õ1
=

25

3
, (21)

in which the two-loop anomalous dimensions is computed
using (14). We emphasize that it is an important consis-
tency check that the 1/ϵ2 term in the two-loop renormal-
ization constant cancel exactly by the one-loop data.

Two-loop finite remainder.—After renormalization and
subtracting the IR divergences, the two-loop finite re-

mainder of F (2)
R,O1

(1−, 2−, 3−) is given in terms of har-
monic polylogarithms, which can be simplified using the
symbology technique for transcendental functions [68].
The final expression takes a remarkable simple form. It
can be decomposed as:

F (2),fin
R,O1

= F (0)
O1

4
∑

i=0

Ω(2)
O1;i

, (22)

[Gehrmann, Remiddi 2001]

Master integrals are known in terms of 2d Harmonic polylogarithms.



Loop structure of form factors

General structure of (bare) amplitudes/form factors:

Loop correction = IR + UV + finite remainder + 𝒪(ϵ)

Mixed in dim-reg



Loop structure of form factors

IR structure is “universal”:

Anomalous dimension �(l) should be regular as ✏ ! 0, so it is expected that Z(1)
O

⇠ O(✏�1),

and the ✏�2 terms should cancel between Z(2)
O

and
(Z

(1)
O

)2

2 �
Z

(1)
O

�0

2✏ . Subtracting
(Z

(1)
O

)2

2 �
Z

(1)
O

�0

2✏

from Z(2)
O

, we get the intrinsic 2-loop divergence, which is proportional to the 2 loop anomalous

dimension and of order ⇠ O(✏�1).

The coupling taken by tree-level E-point form factor of length L operator O is gE�L. Per-

turbative expansion of form factors can be written either in bare quantities or in renormalized

quantities:

FO,R =

8
><

>:

ZOFO,B = ZO

⇣
↵0
4⇡

⌘E�L
2

h
F

(0)
O

+ ↵0
4⇡F

(1)
O,B + (↵0

4⇡ )
2
F

(2)
O,B +O(↵3

0)
i

(in bare) ,
⇣
↵s
4⇡

⌘E�L
2

h
F

(0)
O

+ ↵s
4⇡F

(1)
O,R + (↵s

4⇡ )
2
F

(2)
O,R +O(↵3

s)
i

(in renorm.) .

(4.6)

Relations between {F (l)
O,R} and {F (l)

O,B} can be obtained by comparing above two ex-

pressions order by order. Plugging in gauge coupling renormalization (4.1), one can get

renormalization of form factors up to two-loop level as:

F
(1)
O,R =F

(1)
O,B +

⇣
Z(1)
O

�
�

2

�0
✏

⌘
F

(0)
O

, (4.7)

F
(2)
O,R =F

(2)
O,B +

⇣
Z(1)
O

�

⇣
1 +

�

2

⌘�0
✏

⌘
F

(1)
O,B +

⇣
Z(2)
O

�
�

2

�0
✏
Z(1)
O

�
�

2

�1
2✏

+
�

2
(
�

2
+ 1)

�2
0

2✏2

⌘
F

(0)
O

.

(4.8)

Here � = E � L accounts for the di↵erence between number of external gluons and length of

the operator.

To determine the UV divergences, one needs to subtract the IR divergences. This can

be achieved thanks to the universality of the IR divergences, in the sense that they are

independent of the type of operators but only depend on the data of external particles. The

IR subtraction formula of renormalized E-gluon amplitudes up to 2-loop order is known

[63, 64] (see also [11]):

F
(1)
O,R = I(1)(✏)F (0)

O
+ F

(1)
O,fin +O(✏) , (4.9)

F
(2)
O,R = I(2)(✏)F (0)

O
+ I(1)(✏)F (1)

O,R + F
(2)
O,fin +O(✏) , (4.10)

where

I(1)(✏) = �
e�E✏

�(1� ✏)

⇣Nc

✏2
+

�0
2✏

⌘ EX

i=1

(�si,i+1)
�✏ , (4.11)

I(2)(✏) = �
1

2

�
I(1)(✏)

�2
�

�0
✏
I(1)(✏) +

e��E✏�(1� 2✏)

�(1� ✏)

⇣�0
✏

+
67

9
�

⇡2

3

⌘
I(1)(2✏)

+ E
e�E✏

✏�(1� ✏)

⇣⇣3
2

+
5

12
+

11⇡2

144

⌘
. (4.12)
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Anomalous dimension �(l) should be regular as ✏ ! 0, so it is expected that Z(1)
O

⇠ O(✏�1),

and the ✏�2 terms should cancel between Z(2)
O

and
(Z

(1)
O

)2

2 �
Z

(1)
O

�0

2✏ . Subtracting
(Z

(1)
O

)2

2 �
Z

(1)
O

�0

2✏

from Z(2)
O

, we get the intrinsic 2-loop divergence, which is proportional to the 2 loop anomalous

dimension and of order ⇠ O(✏�1).

The coupling taken by tree-level E-point form factor of length L operator O is gE�L. Per-

turbative expansion of form factors can be written either in bare quantities or in renormalized

quantities:

FO,R =

8
><

>:

ZOFO,B = ZO

⇣
↵0
4⇡

⌘E�L
2

h
F

(0)
O

+ ↵0
4⇡F

(1)
O,B + (↵0

4⇡ )
2
F

(2)
O,B +O(↵3

0)
i

(in bare) ,
⇣
↵s
4⇡

⌘E�L
2

h
F

(0)
O

+ ↵s
4⇡F

(1)
O,R + (↵s

4⇡ )
2
F

(2)
O,R +O(↵3

s)
i

(in renorm.) .

(4.6)

Relations between {F (l)
O,R} and {F (l)

O,B} can be obtained by comparing above two ex-

pressions order by order. Plugging in gauge coupling renormalization (4.1), one can get

renormalization of form factors up to two-loop level as:

F
(1)
O,R =F

(1)
O,B +

⇣
Z(1)
O

�
�

2

�0
✏

⌘
F

(0)
O

, (4.7)

F
(2)
O,R =F

(2)
O,B +

⇣
Z(1)
O

�

⇣
1 +

�

2

⌘�0
✏

⌘
F

(1)
O,B +

⇣
Z(2)
O

�
�

2

�0
✏
Z(1)
O

�
�

2

�1
2✏

+
�

2
(
�

2
+ 1)

�2
0

2✏2

⌘
F

(0)
O

.

(4.8)

Here � = E � L accounts for the di↵erence between number of external gluons and length of

the operator.

To determine the UV divergences, one needs to subtract the IR divergences. This can

be achieved thanks to the universality of the IR divergences, in the sense that they are

independent of the type of operators but only depend on the data of external particles. The

IR subtraction formula of renormalized E-gluon amplitudes up to 2-loop order is known

[63, 64] (see also [11]):

F
(1)
O,R = I(1)(✏)F (0)

O
+ F

(1)
O,fin +O(✏) , (4.9)

F
(2)
O,R = I(2)(✏)F (0)

O
+ I(1)(✏)F (1)

O,R + F
(2)
O,fin +O(✏) , (4.10)

where

I(1)(✏) = �
e�E✏

�(1� ✏)

⇣Nc

✏2
+

�0
2✏

⌘ EX

i=1

(�si,i+1)
�✏ , (4.11)

I(2)(✏) = �
1

2

�
I(1)(✏)

�2
�

�0
✏
I(1)(✏) +

e��E✏�(1� 2✏)

�(1� ✏)

⇣�0
✏

+
67

9
�

⇡2

3

⌘
I(1)(2✏)

+ E
e�E✏

✏�(1� ✏)

⇣⇣3
2

+
5

12
+

11⇡2

144

⌘
. (4.12)
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Loop correction = IR + UV + finite remainder + 𝒪(ϵ)

[Catani 1998]

General structure of (bare) amplitudes/form factors:



UV renormalization: operator mixing

𝒪R,i = Z j
i 𝒪B,j

• From the renormalization matrix, one can 
obtain the dilatation operator: 𝒟 = − d log Z

d log μ

• The anomalous dimensions are are given 
by the eigenvalues of dilatation operator:

𝒟 ⋅ 𝒪eigen = γ ⋅ 𝒪eigen

• Operators (of same classical dimension) 
can mix with each other at quantum level 
via renormalization: 

By subtracting the universal IR, one can obtain the UV 
renormalization matrix. 



Example for UV mixing

are associated with ↵3/2
s and contribute to D(3/2), while the diagonal elements are associated

with ↵2
s and contribute to D(2).

The dilation matrix is straightforward to obtain using (4.26), and it reads:

DO6 =
⇣↵s

4⇡

⌘
D(1) +

⇣↵s

4⇡

⌘3/2
D(3/2) +

⇣↵s

4⇡

⌘2
D(2) +O(↵5/2

s )

=

 
�

22
3 �̂�

136
3 �̂2 0

�3 �̂2

ĝ 1�̂+ 25
3 �̂

2

!
+O(

�̂3

ĝ
) , (4.31)

where for the convenience of notation, we introduce newly normalized ‘t Hooft coupling �̂

and gauge coupling ĝ:

�̂ := Nc
↵s

4⇡
, ĝ :=

g

4⇡
. (4.32)

By diagonalizing the matrices, one obtains the anomalous dimensions (eigenvalues) as:

�̂(1)
O6

=

⇢
�
22

3
; 1

�
, �̂(2)

O6
=

⇢
�
136

3
;
25

3

�
. (4.33)

Dimension 8

There are two length-3 basis operators at dimension 8, which are given in Table 7. Together

with O8;0 =
1
2@

4
O4, they can be classified into two helicity sectors according to (2.34):

(f123;�,�,+) : O8;↵;f ;1, O8;0 ,

(f123;�,�,�) : O8;�;f ;1, O8;0 .
(4.34)

An observation from (4.19) and (4.20) is that (Z(1)) j
i and (Z(2)) j

i representing mixing

from Oi to Oj can only be probed when F
(0)
Oj

does not vanish, i.e., the external helicity setting

matches the helicity sector of Oj . Since O8;0 belongs to both helicity sectors, the mixing from

other operators to it can be probed for both 1�2�3+ and 1�2�3�. This will provide another

consistency check of final results: di↵erent helicity settings must produce the same 3 ! 2

elements of renormalization matrix, namely (Z(2))
O8;0

O8;i
.

Let us show the mixing aspects of dimension-8 operators in detail by analyzing UV

divergence structure of their form factors. For the convenience of notation, we introduce the

scalar ratios

u =
s12
s123

, v =
s23
s123

, w =
s13
s123

. (4.35)

First, for the case with helicity (�,�,+), the 2-loop UV divergences of O8;↵;f ;1 and O8;�;f ;1

at order O(✏�1) are

F
(2)
O8;↵;f ;1

(1�, 2�, 3+)
���
1
✏
UV-div.

=F
(0)
O8;↵;f ;1

(1�, 2�, 3+)⇥
N2

c

✏

⇣
�

1

3vw
+

269

72

⌘
, (4.36)

F
(2),↵
O8;�;f ;1

(1�, 2�, 3+)
���
1
✏
UV-div.

=F
(0)
O8;↵;f ;1

(1�, 2�, 3+)⇥
N2

c

✏

⇣
�

1

vw

⌘
. (4.37)
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Here 1
vw =

s2123
s23s13

is the ratio between tree form factors of O8;0 and O8;↵;f ;1, and from these

one reads the renormalization matrix elements:

(Z(2))
O8;0

O8;↵;f ;1
= �

N2
c

3✏
, (Z(2))

O8;↵;f ;1

O8;↵;f ;1
=

269N2
c

72✏
, (Z(2))

O8;0

O8;�;f ;1
= �

N2
c

✏
. (4.38)

Second, for the (�,�,�) case, the 2-loop UV divergences at order O(✏�1) are

F
(2)
O8;↵;f ;1

(1�, 2�, 3�)
���
1
✏
UV-div.

=F
(0)
O8;�;f ;1

(1�, 2�, 3�)⇥
N2

c

✏

⇣
�

1

3uvw
+

5

2

⌘
, (4.39)

F
(2)
O8;�;f ;1

(1�, 2�, 3�)
���
1
✏
UV-div.

=F
(0)
O8;�;f ;1

(1�, 2�, 3�)⇥
N2

c

✏

⇣
�

1

uvw
+

25

12

⌘
. (4.40)

Here 1
uvw =

s3123
s12s23s13

is the ratio between tree form factors of O8;0 and O8;�;f ;1, and one reads

the renormalization matrix elements:

(Z(2))
O8;0

O8;↵;f ;1
= �

N2
c

3✏
, (Z(2))

O8;�;f ;1

O8;↵;f ;1
=

5N2
c

2✏
,

(Z(2))
O8;0

O8;�;f ;1
= �

N2
c

✏
, (Z(2))

O8;�;f ;1

O8;�;f ;1
=

25N2
c

12✏
. (4.41)

As expected, (4.38) and (4.41) give the same 3 ! 2 elements (Z(2))
O8;0

O8;↵;f ;1
and (Z(2))

O8;0

O8;�;f ;1
,

which is a non-trivial check of the result.

We arrange the operators into a vector {O8;0,O8;↵;f ;1,O8;�;f ;1}. According to this order,

the one-loop renormalization matrix is:
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ĝ
7
3 �̂+ 269

18 �̂
2 10�̂2

�3 �̂2
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Note that the o↵-diagonal elements of the first column belong to Z(2)
3!2 and thus have

a di↵erent coupling, as discussed below (4.30). Computing the eigenvalues of (4.44), one

obtains the anomalous dimensions up to O(�̂2):

�̂(1)
O8

=

⇢
�
22

3
; 1;

7

3

�
, �̂(2)

O8
=

⇢
�
136

3
;
25

3
;
269

18

�
. (4.45)

– 29 –

Here 1
vw =

s2123
s23s13

is the ratio between tree form factors of O8;0 and O8;↵;f ;1, and from these

one reads the renormalization matrix elements:

(Z(2))
O8;0

O8;↵;f ;1
= �

N2
c

3✏
, (Z(2))

O8;↵;f ;1

O8;↵;f ;1
=

269N2
c

72✏
, (Z(2))

O8;0

O8;�;f ;1
= �

N2
c

✏
. (4.38)

Second, for the (�,�,�) case, the 2-loop UV divergences at order O(✏�1) are

F
(2)
O8;↵;f ;1

(1�, 2�, 3�)
���
1
✏
UV-div.

=F
(0)
O8;�;f ;1

(1�, 2�, 3�)⇥
N2

c

✏

⇣
�

1

3uvw
+

5

2

⌘
, (4.39)

F
(2)
O8;�;f ;1

(1�, 2�, 3�)
���
1
✏
UV-div.

=F
(0)
O8;�;f ;1

(1�, 2�, 3�)⇥
N2

c

✏

⇣
�

1

uvw
+

25

12

⌘
. (4.40)

Here 1
uvw =

s3123
s12s23s13

is the ratio between tree form factors of O8;0 and O8;�;f ;1, and one reads

the renormalization matrix elements:

(Z(2))
O8;0

O8;↵;f ;1
= �

N2
c

3✏
, (Z(2))

O8;�;f ;1

O8;↵;f ;1
=

5N2
c

2✏
,

(Z(2))
O8;0

O8;�;f ;1
= �

N2
c

✏
, (Z(2))

O8;�;f ;1

O8;�;f ;1
=

25N2
c

12✏
. (4.41)

As expected, (4.38) and (4.41) give the same 3 ! 2 elements (Z(2))
O8;0

O8;↵;f ;1
and (Z(2))

O8;0

O8;�;f ;1
,

which is a non-trivial check of the result.

We arrange the operators into a vector {O8;0,O8;↵;f ;1,O8;�;f ;1}. According to this order,

the one-loop renormalization matrix is:

Z(1)
O8

=
Nc

✏

0

B@
�

11
3 0 0

0 7
6 0

0 0 1
2

1

CA . (4.42)

At two-loop level, the Z(2) matrix is:

Z(2)
O8

���
1
✏
-part.

=
N2

c

✏

0

B@
�

34
3 0 0

�
1
3

269
72

5
2

�1 0 25
12

1

CA . (4.43)

Using (4.26), the dilation operator is given as

DO8 =

0

B@
�

22
3 �̂�

136
3 �̂2 0 0

�
�̂2

ĝ
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a di↵erent coupling, as discussed below (4.30). Computing the eigenvalues of (4.44), one

obtains the anomalous dimensions up to O(�̂2):

�̂(1)
O8

=

⇢
�
22

3
; 1;

7

3

�
, �̂(2)

O8
=

⇢
�
136

3
;
25

3
;
269

18

�
. (4.45)
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We arrange the operators into a vector {O8;0,O8;↵;f ;1,O8;�;f ;1}. According to this order,

the one-loop renormalization matrix is:

Z(1)
O8

=
Nc

✏

0

B@
�

11
3 0 0

0 7
6 0

0 0 1
2

1

CA . (4.40)

At two-loop level, the Z(2) matrix is:

Z(2)
O8

���
1
✏ -part.

=
N2

c

✏

0

B@
�

34
3 0 0

�
1
3

269
72

5
2

�1 0 25
12

1

CA . (4.41)

Using (4.25), the dilation operator is given as

DO8 =

0

B@
�

22
3 �̂�

136
3 �̂2 0 0

�
�̂2

ĝ
7
3 �̂+ 269

18 �̂
2 10�̂2

�3 �̂2

ĝ 0 �̂+ 25
3 �̂

2

1

CA . (4.42)

Note that the o↵-diagonal elements of the first column belong to Z(2)
3!2 and thus have

a di↵erent coupling, as discussed below (4.29). Computing the eigenvalues of (4.42), one

obtains the anomalous dimensions up to O(�̂2):

�̂(1)
O8

=

⇢
�
22

3
; 1;

7

3

�
, �̂(2)

O8
=

⇢
�
136

3
;
25

3
;
269

18

�
. (4.43)

From now on we sort eigenvalues according to the lowest dimensions they emerge. For exam-

ple, O(�̂) anomalous dimension �
22
3 appears at dimension four, 1 appears at dimension six,

and 7
3 appears at dimension eight, so they are listed in the order of {�22

3 ; 1;
7
3}.

Dimension 10

There are five length-3 basis operators at dimension 10, as shown in Table 13. Together with

O10;0 =
1
4@

6
O4, they can be classified into three sectors:

(f123;�,�,+) : O10;0, O10;↵;f ;1, O10;↵;f ;2 ,

(f123;�,�,�) : O10;0, O10;�;f ;1, O10;�;f ;2 .

(d123;�,�,+) : O10;↵;d;1 .

(4.44)

Operators with di↵erent color factors will never mix with each other because of their opposite

C-parities, so renormalization matrices of fabc and dabc sectors can be written separately.

The computation of renormalization constant is the same as explained in the dimension-8

case and therefore not repeated here, see the discussion around (4.36) and (4.39). For the
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ĝ
7
3 �̂+ 269

18 �̂
2 10�̂2

�3 �̂2

ĝ 0 �̂+ 25
3 �̂

2

1

CA . (4.42)

Note that the o↵-diagonal elements of the first column belong to Z(2)
3!2 and thus have

a di↵erent coupling, as discussed below (4.29). Computing the eigenvalues of (4.42), one

obtains the anomalous dimensions up to O(�̂2):

�̂(1)
O8

=

⇢
�
22

3
; 1;

7

3

�
, �̂(2)

O8
=

⇢
�
136

3
;
25

3
;
269

18

�
. (4.43)

From now on we sort eigenvalues according to the lowest dimensions they emerge. For exam-

ple, O(�̂) anomalous dimension �
22
3 appears at dimension four, 1 appears at dimension six,

and 7
3 appears at dimension eight, so they are listed in the order of {�22

3 ; 1;
7
3}.

Dimension 10

There are five length-3 basis operators at dimension 10, as shown in Table 13. Together with

O10;0 =
1
4@

6
O4, they can be classified into three sectors:

(f123;�,�,+) : O10;0, O10;↵;f ;1, O10;↵;f ;2 ,

(f123;�,�,�) : O10;0, O10;�;f ;1, O10;�;f ;2 .

(d123;�,�,+) : O10;↵;d;1 .

(4.44)

Operators with di↵erent color factors will never mix with each other because of their opposite

C-parities, so renormalization matrices of fabc and dabc sectors can be written separately.
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The dilation operator matrix can be obtained from (4.25), and for fabc sector it is

DO10,f =

0

BBBBBB@

�
22�̂
3 �

136
3 �̂

2 0 0 0 0

�
�̂2

ĝ
7�̂
3 + 269

18 �̂
2 0 10�̂2 0

�
209
300

�̂2

ĝ �
6�̂
5 �

5579�̂2

4500
71�̂
15 + 2848

125 �̂
2 1493

300 �̂
2 5

9 �̂
2

�3 �̂2

ĝ 0 0 �̂+ 25
3 �̂

2 0

�
19
12

�̂2

ĝ
139
600 �̂

2 499
200 �̂

2
�2�̂�

143
72 �̂

2 17�̂
3 + 2195

72 �̂
2

1

CCCCCCA
. (4.47)

Its eigenvalues give the anomalous dimensions:

�̂(1)
O10,f

=

⇢
�
22

3
; 1;

7

3
;
71

15
,
17

3

�
, �̂(2)

O10,f
=

⇢
�
136

3
;
25

3
;
269

18
;
2848

125
,
2195

72

�
. (4.48)

Here eigenvalues emerging at di↵erent dimensions are divided by semicolons and those emerg-

ing at the same dimension are divided by commas.

For the singlet operator in dabc sector, one has:

�̂(1)
O10,d

=
13

3
, �̂(2)

O10,d
=

575

36
. (4.49)

Dimension 12

There are 10 length-3 basis operators at dimension 12, as shown in Table 14. Together

with O12;0 = 1
8@

8
O4, they can be classified into four sectors: (f123;�,�,+), (f123;�,�,�),

(d123;�,�,+), (d123;�,�,�).

We arrange the operators as {O12;0,O12;↵;f ;1, ...,O12;↵;f ;4,O12;�;f ;1, ...,O12;�;f ;3} for fabc-

sector, and {O12;↵;d;1,O12;↵;d;2,O12;�;d;1} for dabc-sector. Renormalization matrices of fabc

and dabc sectors at one-loop level are

Z(1)
O12,f

=
Nc

✏

0

BBBBBBBBBBBB@

�
11
3 0 0 0 0 0 0 0

0 7
6 0 0 0 0 0 0

0 �
3
5

71
30 0 0 0 0 0

0 0 �
5
4

221
60 �

1
6 0 0 0

0 �1 1
10 �

19
30

37
10 0 0 0

0 0 0 0 0 1
2 0 0

0 0 0 0 0 �1 17
6 0

0 0 0 0 0 0 �2 9
2

1

CCCCCCCCCCCCA

, Z(1)
O12,d

=
Nc

✏

0

B@

13
6 0 0

�
1
2

41
12 0

0 0 9
2

1

CA . (4.50)

The intrinsic two-loop renormalization matrices of fabc and dabc sector are

Z(2)
O12,f

���
1
✏ -part.

=
N2

c

✏

0

BBBBBBBBBBBB@

�
34
3 0 0 0 0 0 0 0

�
1
3

269
72 0 0 0 5

2 0 0

�
209
900 �

5579
18000

712
125 0 0 1493

1200
5
36 0

�
31
180

53
3600 �

36227
28800

3575983
432000

9793
21600

13
16

16877
14400 �

7319
14400

�
181
900 �

60979
36000

78487
72000 �

2177
2000

704167
72000

1299
1200

115501
43200 �

9803
43200

�1 0 0 0 0 25
12 0 0

�
19
36

139
2400

499
800 0 0 �

143
288

2195
288 0

�
1
3

4
15

121
400

637
800 �

211
800

119
120 �

15643
7200

79313
7200

1

CCCCCCCCCCCCA

, (4.51)
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ĝ 0 0 �̂+ 25
3 �̂

2 0

�
19
12

�̂2

ĝ
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Here eigenvalues emerging at di↵erent dimensions are divided by semicolons and those emerg-

ing at the same dimension are divided by commas.

For the singlet operator in dabc sector, one has:
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=
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Dimension 12

There are 10 length-3 basis operators at dimension 12, as shown in Table 14. Together

with O12;0 = 1
8@

8
O4, they can be classified into four sectors: (f123;�,�,+), (f123;�,�,�),

(d123;�,�,+), (d123;�,�,�).

We arrange the operators as {O12;0,O12;↵;f ;1, ...,O12;↵;f ;4,O12;�;f ;1, ...,O12;�;f ;3} for fabc-
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The intrinsic two-loop renormalization matrices of fabc and dabc sector are
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36000
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704167
72000
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115501
43200 �

9803
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�
19
36
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We obtain new one- and two-loop results up to dimension16.

Results were known previously at one-loop up to dimension-8.

See e.g.: Gracey 2002; Dawson, Lewis, Zeng 2014
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of fabc and dabc sector at one-loop level are

Z(1)
O16,f

=
Nc

✏

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

�
11
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 7
6 0 0 0 0 0 0 0 0 0 0 0 0 0

0 �
3
5

71
30 0 0 0 0 0 0 0 0 0 0 0 0

0 0 �
5
4

221
60 �

1
6 0 0 0 0 0 0 0 0 0 0

0 �1 1
10 �

19
30

37
10 0 0 0 0 0 0 0 0 0 0

0 17
84 �

17
28 �

47
70 �

17
28

337
84

5
14 0 0 0 0 0 0 0 0

0 �
3
20

9
20 �1 �

31
20 �

1
4

31
6 0 0 0 0 0 0 0 0

0 13
30 �

13
15

13
10 �

13
10 �

5
2

13
15

961
210

8
15 0 0 0 0 0 0

0 71
105 �

212
105

141
35 �

71
35 �

141
35

79
105 �

38
35

223
35

5
14 0 0 0 0 0

0 17
70

19
105 �

19
70 �

121
70 �

11
42

16
105 �

6
5

127
210

559
105 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1
2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 �1 17
6 0 0 0

0 0 0 0 0 0 0 0 0 0 0 �2 9
2 0 0

0 0 0 0 0 0 0 0 0 0 1
3 �2 1

3
43
10 0

0 0 0 0 0 0 0 0 0 0 1
2 �

5
2

5
2 �

11
4

67
12

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,

(4.64)

Z(1)
O16,d

=
Nc

✏

0

BBBBBBBBBBBB@

13
6 0 0 0 0 0 0 0

�
1
2

41
12 0 0 0 0 0 0

1
2 �2 301

60 �
2
3 0 0 0 0

�1 1 �
3
10

25
6 0 0 0 0

�
2
5

1
5 0 �

1
5

307
60

7
20 0 0

1
3 �1 1

2 �
7
3

13
12

67
12 0 0

0 0 0 0 0 0 9
2 0

0 0 0 0 0 0 7
12

67
12

1

CCCCCCCCCCCCA

. (4.65)

The intrinsic two-loop renormalization matrices of fabc and dabc sector are

Z(2)
O16,f

���
1
✏�part.

=
N2

c

✏

⇣
M N

⌘
, (4.66)
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The intrinsic two-loop renormalization matrices of fabc and dabc sector are

Z(2)
O16,f

���
1
✏�part.

=
N2

c

✏

⇣
M N

⌘
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Dim-16 at 1-loop:
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Dim-16 at 2-loop:
where two block matrices M , N are

M =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBB@

�
34
3 0 0 0 0 0 0 0 0 0

�
1
3

269
72 0 0 0 0 0 0 0 0

�
209
900 �

5579
18000

712
125 0 0 0 0 0 0 0

�
31
180

53
3600 �

36227
28800

3575983
432000

9793
21600 0 0 0 0 0

�
181
900 �

60979
36000

78487
72000 �

2177
2000

704167
72000 0 0 0 0 0

�
523
3920 �

2201287
29635200

605939
1975680 �

64128769
24696000

3303367
9878400

332422343
29635200

6699071
14817600 0 0 0

�
809
5600 �

12166789
21168000

11202299
7056000 �

73487
36750 �

9182209
7056000

37249
156800

26302879
2116800 0 0 0

�
269
2520

125599
10584000

50369
1323000 �

98317
1176000

73489
392000 �

8625329
3528000 �

97913
756000

90760559
7408800

25354501
21168000

40519
56448

�
19717
176400

3374557
7408800 �

102465523
74088000

5260289
1764000 �

6201763
4939200 �

115070197
24696000

10687837
9261000

6498287
9261000

1025255701
74088000 �

25511
493920

�
19717
176400 �

2733089
9261000

88146899
74088000 �

5678651
3528000 �

1966229
12348000

17842339
18522000 �

6878309
4630500 �

58976629
37044000

8569667
9261000

179275483
12348000

�1 0 0 0 0 0 0 0 0 0

�
19
36

139
2400

499
800 0 0 0 0 0 0 0

�
1
3

4
15

121
400

637
800 �

211
800 0 0 0 0 0

�
209
900

6299
21168

6767
35280

71063
88200 �

34723
176400

25841
58800 �

36091
264600 0 0 0

�
31
180

13843
105840

8317
15120 �

797
35280

5477
35280

2417
3528

611
105840

13975
14112 �

5377
10584 �

3581
10080

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCA

N =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0
5
2 0 0 0 0

1493
1200

5
36 0 0 0

13
16

16877
14400 �

7319
14400 0 0

1229
1200

115501
43200 �

9803
43200 0 0

37547
78400

75071
39200 �

497
576

103
1440 0

1613
3360

17401
6720

19
225

1187
2880 0

184259
1058400

65297
23520 �

420373
211680

248791
235200 �

2747
9408

347437
1764000

863371
302400 �

230747
105840

938797
705600 �

78243
196000

28489
661500

54403
14700 �

228689
88200

687461
264600 �

485507
5292000

25
12 0 0 0 0

�
143
288

2195
288 0 0 0

119
120 �

15643
7200

79313
7200 0 0

22723
21600 �

35
48 �

2861
5400

443801
36000 0

114221
151200

6017
15120

121
216 �

3661627
1411200

63879443
4233600

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCA

, (4.67)

and

Z(2)
O16,d

���
1
✏�part.

=
N2

c

✏

0

BBBBBBBBBBB@

575
144 0 0 0 0 0 0 0

�
23347
14400

46517
5760 0 0 0 0 487

1800 0
3883
4032 �

171823
37800

36597791
3024000 �

29581
16800 0 0 �

1789
4800 0

�
9271
11200 �

35239
50400

74209
168000

188599
18900 0 0 2101

4800 0
3287
84000 �

2048479
1176000

422283
392000 �

2501309
1764000

49211483
3528000

293221
392000

2764807
2116800 �

61
20160

947587
1058400 �

1555357
705600

16831
29400 �

239641
75600 �

381527
2116800

5839021
423360 �

5807
201600
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1411200

3349
7200 �

2591
2400 0 0 0 0 150391

14400 0
�

45083
44100

16564
11025
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117600

380791
176400

1063
29400 �

545189
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1176541
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174229
12600

1

CCCCCCCCCCCA

.
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The dilation operator matrix is straightforward to obtain using (4.25) and we will not provide

here. The anomalous dimensions are given by the eigenvalues. We summarize the anomalous

dimensions in Table 8. Irrational numbers also appear in the two-loop anomalous dimensions

in fabc sector at dimension 16.
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where two block matrices M , N are

M =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBB@

�
34
3 0 0 0 0 0 0 0 0 0

�
1
3

269
72 0 0 0 0 0 0 0 0

�
209
900 �

5579
18000

712
125 0 0 0 0 0 0 0

�
31
180

53
3600 �

36227
28800

3575983
432000

9793
21600 0 0 0 0 0

�
181
900 �

60979
36000

78487
72000 �

2177
2000

704167
72000 0 0 0 0 0

�
523
3920 �

2201287
29635200

605939
1975680 �

64128769
24696000

3303367
9878400

332422343
29635200

6699071
14817600 0 0 0

�
809
5600 �

12166789
21168000

11202299
7056000 �

73487
36750 �

9182209
7056000

37249
156800

26302879
2116800 0 0 0

�
269
2520

125599
10584000

50369
1323000 �

98317
1176000

73489
392000 �

8625329
3528000 �

97913
756000

90760559
7408800

25354501
21168000

40519
56448

�
19717
176400

3374557
7408800 �

102465523
74088000

5260289
1764000 �

6201763
4939200 �

115070197
24696000

10687837
9261000

6498287
9261000

1025255701
74088000 �

25511
493920

�
19717
176400 �

2733089
9261000

88146899
74088000 �

5678651
3528000 �

1966229
12348000

17842339
18522000 �

6878309
4630500 �

58976629
37044000

8569667
9261000

179275483
12348000

�1 0 0 0 0 0 0 0 0 0

�
19
36

139
2400

499
800 0 0 0 0 0 0 0

�
1
3

4
15

121
400

637
800 �

211
800 0 0 0 0 0

�
209
900

6299
21168

6767
35280

71063
88200 �

34723
176400

25841
58800 �

36091
264600 0 0 0

�
31
180

13843
105840

8317
15120 �

797
35280

5477
35280

2417
3528

611
105840

13975
14112 �

5377
10584 �

3581
10080

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCA

N =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0
5
2 0 0 0 0

1493
1200

5
36 0 0 0

13
16

16877
14400 �

7319
14400 0 0

1229
1200

115501
43200 �

9803
43200 0 0

37547
78400

75071
39200 �

497
576

103
1440 0

1613
3360

17401
6720

19
225

1187
2880 0

184259
1058400

65297
23520 �

420373
211680

248791
235200 �

2747
9408

347437
1764000

863371
302400 �

230747
105840

938797
705600 �

78243
196000

28489
661500

54403
14700 �

228689
88200

687461
264600 �

485507
5292000

25
12 0 0 0 0

�
143
288

2195
288 0 0 0

119
120 �

15643
7200

79313
7200 0 0

22723
21600 �

35
48 �

2861
5400

443801
36000 0

114221
151200

6017
15120

121
216 �

3661627
1411200

63879443
4233600

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCA

, (4.67)

and

Z(2)
O16,d

���
1
✏�part.

=
N2

c

✏

0

BBBBBBBBBBB@

575
144 0 0 0 0 0 0 0

�
23347
14400

46517
5760 0 0 0 0 487

1800 0
3883
4032 �

171823
37800

36597791
3024000 �

29581
16800 0 0 �

1789
4800 0

�
9271
11200 �

35239
50400

74209
168000

188599
18900 0 0 2101

4800 0
3287
84000 �
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1176000

422283
392000 �

2501309
1764000
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3528000
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2116800 �
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29400 �

239641
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381527
2116800

5839021
423360 �

5807
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7200 �

2591
2400 0 0 0 0 150391

14400 0
�

45083
44100

16564
11025

5447
117600

380791
176400

1063
29400 �

545189
352800

1176541
1058400

174229
12600

1

CCCCCCCCCCCA

.
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The dilation operator matrix is straightforward to obtain using (4.25) and we will not provide

here. The anomalous dimensions are given by the eigenvalues. We summarize the anomalous

dimensions in Table 8. Irrational numbers also appear in the two-loop anomalous dimensions

in fabc sector at dimension 16.
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The dilation operator matrix is straightforward to obtain using (4.25) and we will not provide

here. The anomalous dimensions are given by the eigenvalues. We summarize the anomalous

dimensions in Table 8. Irrational numbers also appear in the two-loop anomalous dimensions

in fabc sector at dimension 16.
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of fabc and dabc sector at one-loop level are

Z(1)
O16,f

=
Nc

✏

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

�
11
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 7
6 0 0 0 0 0 0 0 0 0 0 0 0 0

0 �
3
5

71
30 0 0 0 0 0 0 0 0 0 0 0 0

0 0 �
5
4

221
60 �

1
6 0 0 0 0 0 0 0 0 0 0

0 �1 1
10 �

19
30

37
10 0 0 0 0 0 0 0 0 0 0

0 17
84 �

17
28 �

47
70 �

17
28

337
84

5
14 0 0 0 0 0 0 0 0

0 �
3
20

9
20 �1 �

31
20 �

1
4

31
6 0 0 0 0 0 0 0 0

0 13
30 �

13
15

13
10 �

13
10 �

5
2

13
15

961
210

8
15 0 0 0 0 0 0

0 71
105 �

212
105

141
35 �

71
35 �

141
35

79
105 �

38
35

223
35

5
14 0 0 0 0 0

0 17
70

19
105 �

19
70 �

121
70 �

11
42

16
105 �

6
5

127
210

559
105 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1
2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 �1 17
6 0 0 0

0 0 0 0 0 0 0 0 0 0 0 �2 9
2 0 0

0 0 0 0 0 0 0 0 0 0 1
3 �2 1

3
43
10 0

0 0 0 0 0 0 0 0 0 0 1
2 �

5
2

5
2 �

11
4

67
12

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,

(4.64)

Z(1)
O16,d

=
Nc

✏

0

BBBBBBBBBBBB@

13
6 0 0 0 0 0 0 0

�
1
2

41
12 0 0 0 0 0 0

1
2 �2 301

60 �
2
3 0 0 0 0

�1 1 �
3
10

25
6 0 0 0 0

�
2
5

1
5 0 �

1
5

307
60

7
20 0 0

1
3 �1 1

2 �
7
3

13
12

67
12 0 0

0 0 0 0 0 0 9
2 0

0 0 0 0 0 0 7
12

67
12

1

CCCCCCCCCCCCA

. (4.65)

The intrinsic two-loop renormalization matrices of fabc and dabc sector are

Z(2)
O16,f

���
1
✏�part.

=
N2

c

✏

⇣
M N

⌘
, (4.66)
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Two-loop renormalization for higher length operators.

Mixing matrices and spectrum

Two-loop anomalous dimensions for length-3 operators up to dimension 16:
Table 8. Summary of anomalous dimensions for length-2 and length-3 operators. The lower dimension
operators will appear as descendants in the high dimension operators.

dim 4 6 8 10 12 14 16

�
(1)
f,↵ �

22
3 /

7
3

71
15

241
30 ,

101
15

61
6 ,

172
21

331
35 ,

1212±
p

3865
105

�
(2)
f,↵ �

136
3 /

269
18

2848
125

49901119
1404000 ,

8585281
234000

4392073141
87847200 ,

685262197
15373260

231568398949
4253886000 ,

355106171452034±95588158951
p
3865

6576507756000

�
(1)
f,� �

22
3 1 /

17
3 9 43

5
67
6

�
(2)
f,� �

136
3

25
3 /

2195
72

79313
1800

443801
9000

63879443
1058400

�
(1)
d,↵ / / /

13
3

41
6

551±3
p

609
60

321±
p

1561
30

�
(2)
d,↵ / / /

575
36

46517
1440

5809305897±19635401
p
609

131544000
229162584707±225658792

p
1561

4130406000

�
(1)
d,� / / / / 9 /

67
6

�
(2)
d,� / / / /

150391
3600 /

174229
3150

Checks and analysis

Some consistency checks for our calculation have been mentioned above, and here we make a

summary:

1. The O(✏�2) poles of one-loop bare form factors and the O(✏�3),O(✏�4) poles of two-loop

bare form factors have infrared origin and therefore should be totally canceled after IR

subtraction procedure shown in (4.9), (4.10).

2. The O(✏�2) poles of two-loop UV divergences are totally determined by one-loop UV

divergences and �0, as shown in (4.24).

3. At a given dimension, mixing from descendent operators to non-descendent operators

never takes place, such as length-2 to higher length operators in (4.15).

4. As explained in the dimension eight case, mixing from general length-3 operators to

the unique length-2 operator can be probed by form factors with both (�,�,+) and

(�,�,�). So form factors under these two helicity settings should give the same length-

changing matrix elements Z(2)
3!2.

Our results satisfy all these requirements. Some further consistency checks will be also men-

tioned for the computation of finite remainder function in next section.

Let us make a few comments on the anomalous dimensions and dilatation matrix.

• In Table 8, the irrational number appears in the dimension 14 and 16 cases. As eigen-

values of dilatation operators, anomalous dimensions can be obtained straightforwardly

by solving characteristic equation. Alternatively, one can get their series expansions

in �̂ up to arbitrary finite order through perturbation method introduced in quantum

mechanics, which is equivalent to treat dilatation operator as a Hamiltonian of a finite

system, see e.g. [69]. From perturbative calculation, one can find that whether irrational

numbers appear in perturbative expansions is determined by characteristic equation of
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Evanescent operators
2.2 Definition of evanescent operators

Given the above preparation, we now introduce evanescent operators. An operator is called

an evanescent operator, if the tree-level matrix elements of this operator have non-trivial

results in general d dimensions but all vanish in four dimensions. In terms of form factors, we

can give a more practical definition: for an evanescent operator Oe
L of length-L, its tree-level

form factors with arbitrary numbers of external on-shell states, are all zero in four dimensions,

but it has a non-trivial minimal form factor in general d dimensions, namely

F(0)
Oe

L,n≥L

∣

∣

4-dim
= 0 , F(0)

Oe
L,L

∣

∣

d-dim
̸= 0 . (2.18)

Here we would like to emphasize that the vanishing of minimal form factors in four dimensions

is not enough to fully characterize the property of an evanescent operator, and its higher-point

non-minimal form factors are also required to vanish in four dimensions. If an operator is

not an evanescent operator, i.e. its form factors do not vanish in four dimensions, we call it

a physical operator.

Let us review the example of evanescent operator mentioned in the introduction (1.2).

Using the map (2.9), one can obtain its color-ordered minimal form factor as (1.3), which we

reproduce here

F (0)
Oe

(1, 2, 3, 4) = 2δe1e2p1p2p3e3e4p3p4p1 + 2δe1e4p1p4p2e2e3p2p3p4 , (2.19)

where the δ functions are Gram determinants defined as follows. We define the generalized

Kronecker symbol as

δµ1..µn
ν1...νn = det(δµν ) =

∣

∣

∣

∣

∣

∣

∣

δµ1
ν1 . . . δµ1

νn
...

...

δµn
ν1 . . . δµn

νn

∣

∣

∣

∣

∣

∣

∣

. (2.20)

Given two lists of Lorentz vectors {ki}, {qi}, i = 1, .., n, the generalized δ function is defined

as follows:

δk1,...,knq1,...,qn = det(ki · qj) . (2.21)

It is easy to see that

1. If there is a pair of {ei, pi} contained in {ki} or {qi}, (2.21) is invariant under the gauge
transformation ei → ei + α pi. Thus (1.3) is manifestly gauge invariant.

2. The rank of the matrix ki · qj is determined by the smaller one of the number d and n.

If d = 4, then (2.21) vanishes for n > 4. Thus (1.3) is manifestly zero for d = 4.

Therefore, the minimal form factor (1.3) is nonzero in general d dimensions but vanish in

four dimensions. Alternatively, one may also compute the minimal form factor using the

four-dimensional rule (2.12) and find it vanishing. Furthermore, one can show that the non-

minimal form factors are also zero in four dimensions (which will be discussed later). Thus

we can conclude that Oe is an evanescent operator.

– 6 –
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𝒪(n)
4-ferm = ψ̄γ[μ1…γμn]ψ ψ̄γ[μ1

…γμn]ψ , n ≥ 5 .

Buras, Weisz 1990; Dugan, Grinstein 1991; Herrlich and U. Nierste 1994

Four-fermion dimension-6 operators:

Evanescent operator (“倏逝算符”)：
Vanishing in 4 dimension but non-zero in d = 4 − 2ϵ



Evanescent operators

In this paper, we consider a new class of evanescent operators in the pure Yang-Mills

theory, which are composed of field strength Fµν and covariant derivatives Dµ. A simple

example of such operators can be given as

Oe =
1

16
δµ1µ2µ3µ4µ5
ν1 ν2 ν3 ν4 ν5tr(Dν5Fµ1µ2Fµ3µ4Dµ5Fν1ν2Fν3ν4) , (1.2)

where δµ1..µn
ν1...νn = det(δµν ) is the generalized Kronecker symbol (see Section 2 for detail). This

operator is zero in four dimensions but has non-trivial matrix elements such as form factors

in general d dimensions. For example, its (color-ordered) minimal tree-level form factor can

be given as

F (0)
Oe

(1, 2, 3, 4) = 2δe1e2p1p2p3e3e4p3p4p1 + 2δe1e4p1p4p2e2e3p2p3p4 , (1.3)

which is a non-trivial function of Lorentz product of momenta and polarization vectors in d

dimensions. The main goal of this paper is to study the classification of such operators and

their one-loop renormalization.

Unlike the four fermion operators in (1.1), due to the insertion of covariant derivatives

and different ways of Lorentz contractions, the gluonic evanescent operators like (1.2) exhibit
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first explain the one-loop computation of full-color form factors using the unitarity method,

then we discuss the renormalization and obtain the anomalous dimensions of the complete set

of evanescent operators with dimension 10. A summary and discussion are given in Section 4

followed by a series of appendices. Several technique details in the operator construction are
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2.2 Definition of evanescent operators

Given the above preparation, we now introduce evanescent operators. An operator is called

an evanescent operator, if the tree-level matrix elements of this operator have non-trivial

results in general d dimensions but all vanish in four dimensions. In terms of form factors, we

can give a more practical definition: for an evanescent operator Oe
L of length-L, its tree-level

form factors with arbitrary numbers of external on-shell states, are all zero in four dimensions,

but it has a non-trivial minimal form factor in general d dimensions, namely

F(0)
Oe

L,n≥L

∣

∣

4-dim
= 0 , F(0)

Oe
L,L

∣

∣

d-dim
̸= 0 . (2.18)

Here we would like to emphasize that the vanishing of minimal form factors in four dimensions

is not enough to fully characterize the property of an evanescent operator, and its higher-point

non-minimal form factors are also required to vanish in four dimensions. If an operator is

not an evanescent operator, i.e. its form factors do not vanish in four dimensions, we call it

a physical operator.

Let us review the example of evanescent operator mentioned in the introduction (1.2).

Using the map (2.9), one can obtain its color-ordered minimal form factor as (1.3), which we

reproduce here

F (0)
Oe

(1, 2, 3, 4) = 2δe1e2p1p2p3e3e4p3p4p1 + 2δe1e4p1p4p2e2e3p2p3p4 , (2.19)

where the δ functions are Gram determinants defined as follows. We define the generalized

Kronecker symbol as

δµ1..µn
ν1...νn = det(δµν ) =

∣

∣

∣

∣

∣

∣

∣

δµ1
ν1 . . . δµ1

νn
...

...

δµn
ν1 . . . δµn

νn

∣

∣

∣

∣

∣

∣

∣

. (2.20)

Given two lists of Lorentz vectors {ki}, {qi}, i = 1, .., n, the generalized δ function is defined

as follows:

δk1,...,knq1,...,qn = det(ki · qj) . (2.21)

It is easy to see that

1. If there is a pair of {ei, pi} contained in {ki} or {qi}, (2.21) is invariant under the gauge
transformation ei → ei + α pi. Thus (1.3) is manifestly gauge invariant.

2. The rank of the matrix ki · qj is determined by the smaller one of the number d and n.

If d = 4, then (2.21) vanishes for n > 4. Thus (1.3) is manifestly zero for d = 4.

Therefore, the minimal form factor (1.3) is nonzero in general d dimensions but vanish in

four dimensions. Alternatively, one may also compute the minimal form factor using the

four-dimensional rule (2.12) and find it vanishing. Furthermore, one can show that the non-

minimal form factors are also zero in four dimensions (which will be discussed later). Thus

we can conclude that Oe is an evanescent operator.
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dimension goes to its physical value (usually four dimensions)
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Evanescent operator (“倏逝算符”)：
Vanishing in 4 dimension but non-zero in d = 4 − 2ϵ

Length-4 basis counting



For example,          contains 

Evanescent operators

Evanescent operators are important for renormalization 
beyond one-loop order.

convenient order to renormalize the form factors of a given operator is from lower-point ones

to higher-point ones. In this way, one can use the mixing matrix elements associated with

lower-length operators as input in the renormalization of a higher-point form factor. This not

only simplifies the computation but also provides a check for the computation.

In the MS scheme, the Z matrices have the blockwise structures

 
Z(1)
pp Z(1)

pe

0 Z(1)
ee

!
,

 
Z(2)
pp Z(2)

pe

Z(2)
ep Z(2)

ee

!
, (3.28)

where the block Z(1)
ep vanishes. This is due to the fact that the fact that the form factor of an

evanescent operator is one order higher in the ✏ expansion. According to (3.15) and (3.16),

the dilatation matrices have similar blockwise structures
 
D(1)

pp D(1)
pe

0 D(1)
ee

!
,

 
D(l)

pp D(l)
pe

D(l)
ep D(l)

ee

!
. (3.29)

Note that starting from two loops, all four blocks of Z and D matrices are in general non-

vanishing.

 
Z(1)
pp Z(1)

pe

0 Z(1)
ee

!
,

 
Z(l)
pp Z(l)

pe

Z(l)
ep Z(l)

ee

!
, l � 2 (3.30)

3.3.2 Finite renormalization scheme

We give an introduction for the finite renormalization scheme in this subsection. To distin-

guish from the MS scheme, we use Ẑ and D̂ to denote the Z matrix and dilatation matrix in

the finite renormalization scheme. The most important feature of the finite renormalization

scheme is that the block D̂(l)
ep in the dilatation matrix is O(✏) at all orders. Therefore in the

✏ ! 0 limit, the dilatation matrix take the block upper triangular form [3, 4, 7]:

 
D̂(l)

pp D̂(l)
pe

0 D̂(l)
ee

!
. (3.31)

We will see that this simplifies the calculation of physical anomalous dimensions.

In the finite renormalization scheme, the renormalization of physical operators are the

same as the ones in the MS scheme and we have

Ẑ(l)
pp = Z(l)

pp , Ẑ(l)
pe = Z(l)

pe . (3.32)

While the renormalization of evanescent operators is di↵erent. This scheme takes into account

the fact that the form factor of an evanescent operator is one order higher in the ✏ expansion,

and the mixing from evanescent to physical operators is finite and should also be subtracted.

In other words, one will modify the RHS of (3.26)-(3.27) by taking into account some “finite”
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and the mixing from evanescent to physical operators is finite and should also be subtracted.

In other words, one will modify the RHS of (3.26)-(3.27) by taking into account some “finite”
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but the lower-loop evanescent operator result are needed. 

Again, Ẑ(2) j

i

��
fin

only contributes to the block Z(2)
ep . At the two-loop order, one can check the

divergent mixing to the physical operators in Ẑ 0(2) j

i
should be the same as in Ẑ(2) j

i

��
div

. From

(3.16), one can see that Ẑ(2) j

i

��
fin

contributes to the O(✏) of the two-loop dilatation matrix,

therefore it does not contribute to the calculation of the two-loop anomalous dimensions (it

begins to contribute at the three-loop order).

As mentioned at the beginning of this subsection, the key feature of the finite renormal-

ization scheme is that the dilatation matrix has the form of (3.31) under the limit ✏ ! 0.

At the one-loop order, this is straightforward since Ẑ(1)
ep is finite, thus D̂(1)

ep ⇠ O(✏). At the

two-loop order, the leading divergence of Ẑ(2)
ep is of O(1/✏), and the relation (3.17) still applies

to the leading divergences (which is one order higher in the ✏-expansion than usual cases)

[1, 4]:

Ẑ(2)
ep | 1

✏�part =
1

2

�
Ẑ(1)
ep Ẑ(1)

pp + Ẑ(1)
ee Ẑ(1)

ep

�
� �0

2✏
Ẑ(1)
ep . (3.39)

Using (3.39) and (3.16), it should then be clear that D̂(2)
ep is also O(✏). Note that the block

Ẑ(1)
ep which is finite is necessary in this cancellation. We check that our explicit two-loop

calculations indeed confirm this structure.

Since block upper triangular form (3.31), the physical anomalous dimensions are just the

eigenvalues of the D̂pp. This does not mean that evanescent operators have no e↵ect on the

physical anomalous dimensions. At the two-loop order, the e↵ect of the evanescent opera-

tors on D̂(2)
pp comes from the term (�2✏Ẑ(1)

pe Ẑ
(1)
ep ) according to (3.16). Obviously, evanescent

operators should be renormalized up to the one-loop order in the calculation of the two-loop

physical anomalous dimensions.

We point out here that anomalous dimensions are scheme dependent, due to the non-

vanishing beta function in the pure YM theory, and therefore, the results in the finite renor-

malization scheme are di↵erent from the ones in the MS scheme. On the other hand, at the

conformal fixed point, anomalous dimensions should be independent of the renormalization

scheme. A detailed discussion of the scheme dependence of anomalous dimensions will be

given in Section 5.2.

4 Calculation of bare form factors

In this section, we consider the computation of bare form factors up to the two-loop order.

In Section 4.1, we give an overall description of our calculation. In Section 4.2, we discuss

two methods for integral tensor reduction in detail.

4.1 Unitarity-IBP method

The main strategy of our calculation is based on a combination of the unitarity method [17–

19] and the IBP reduction [20, 21]. This strategy has been applied to compute form factors

(and Higgs amplitudes) in [28–30] and for pure gluon amplitudes in [31–33]. The numerical

IBP method by cuts was also studied in [34–39].
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• Is Yang-Mills Theory Unitary in Fractional Spacetime Dimension?

The answer is NO. 

YM theory is non-unitary in non-integer spacetime dimensions, 
due to the existence of evanescent operators.

Evanescent operators



Similar complex AD was observed in phi^4 theory starting at dim-23 operators.
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• Is Yang-Mills Theory Unitary in Fractional Spacetime Dimension?

The answer is NO. 

YM theory is non-unitary in non-integer spacetime dimensions, 
due to the existence of evanescent operators.

Evanescent operators

4

conjugation as well as Lorentz structures. The Z-matrix
will take a blockwise structure, and the ADs can be cal-
culated within each sector.

The complex anomalous dimensions start to appear in
a sector at dimension 12, where the operators are

@⌫@⇢

h
�
12456⌫
3789µ⇢

⇣
tr(D1F23F45D6F78F9µ) + Rev.)

⌘i
, (13)

@⌫@⇢

h
�
1
4�

2356⌫
789µ⇢

⇣
tr(D1F23F45D6F78F9µ) + Rev.)

⌘i
,

@⌫@⇢

h
�
1
4�

2356⌫
789µ⇢

⇣
tr(D1F23D4F56F78F9µ) + Rev.)

⌘i
,

@⌫@⇢

h
�
1
4�

2357⌫
689µ⇢

⇣
tr(D1F23D4F56F78F9µ) + Rev.)

⌘i
,

@⌫@⇢

h
�
1
4�

2367⌫
589µ⇢

⇣
tr(D1F23F45D6F78F9µ) + Rev.)

⌘i
,

@⌫@⇢

h
�
1
4�

2378⌫
569µ⇢

⇣
tr(D1F23D4F56F78F9µ) + Rev.)

⌘i
,

@⌫@⇢

h
�
1
5�

2347⌫
689µ⇢

⇣
tr(D1F23D4F56F78F9µ) + Rev.)

⌘i
,
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h
�
2
4�

1567⌫
389µ⇢
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tr(D1F23F45D6F78F9µ) + Rev.)

⌘i
,

where “Rev.” denotes reversion within the trace. Note
that the first operator in (13) is the only dimension-12
operator containing a tensor degree-6 Kronecker sym-
bol and is responsible for the existence of a negative
norm state. We mention that we have focused on oper-
ators that are Lorentz scalars. An alert reader may find
that the above operators are actually total derivatives
of dimension-10 tensor-2 operators. We will see in (15)
below that the eigenvalue equation for these eight opera-
tors is not factorizable (with rational coe�cients), which
implies that their Z matrix cannot be decomposed into
smaller blocks. Thus there should exist eight dimension-
10 tensor-2 primary operators which give the same eight
anomalous dimensions.

The one-loop dilatation matrix of this sector is the
left-upper part of the following matrix: (the full matrix
is the dilatation matrix of a dimension-12 sector in the
Yang-Mills scalar theory, which will be described soon.)
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(14)

The one-loop ADs are given by the eigenvalue equation:

x
8
�

257x7

6
+

27281x6

36
�

191654x5

27
+

3001838x4

81

�
24366124x3

243
+

21495296x2

243
+

101673536x

729

�
175325696

729
= 0 (15)

with �
(1)
⇤ = x

2�0
. Remarkably, two of the �

(1)
⇤ ’s are com-

plex with numerical values:

0.90386± 0.181142 i . (16)

This provides further concrete evidence that pure YM
theory is non-unitary in non-integer dimensions [20].
We also compute the ADs for higher dimensional oper-

ators and find more complex ones. For the length-4 op-
erators up to �0 = 16, we observe an interesting pattern:
the number of complex ADs is exactly twice the number
of negative-norm states, which is summarized in Table II.
This kind of match is not a general feature though; for
example, the relation breaks down for the dimension-12
length-5 operators where there are 8 negative-norm states
but only 14 complex ADs. More details will be given in
[21].
We further mention that the one-loop results already

give important implications for the property at high
loops. In particular, for a sector of operators that has
no complex AD and also has no degeneracy of ADs at
one loop, this sector will not have any complex AD at
higher loop orders. This may be understood by following
a standard perturbative calculation in quantum mechan-
ics, see e.g. [22].
To study the complex ADs in a model with mass fields,

we add Nf scalar fields to the YM

LYMS = LYM +

NfX

i
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2
D

µ
�
a

i
Dµ�

a

i
, (17)

where Nf is the number of flavors and the scalars are in
the adjoint representation with a = 1, . . . , N2

c
� 1. The

theory is called as the Yang Mills scalar theory (YMS).
The one-loop beta function is di↵erent from YM and one
should change the �0 in (9) to

�
YMS
0 =

11

3
�

Nf

6
. (18)

For Nf = 22, the one-loop beta function vanishes and for
Nf > 22, the fixed point becomes an IR one and is at
d < 4.
One can get a sector by enlarge the one in (13) by 2

more flavor singlet operators
X
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One-loop mixing matrix

4

(namely, (Z(1)) p
e = 0) [13], one can safely divide oper-

ators into evanescent and physical sectors and compute
their one-loop ADs separately. Our calculation shows
that the one-loop complex ADs, which only happen in
the evanescent sectors, begin to appear at canonical di-
mension 12. This is consistent with the fact that negative
norm states start at this dimension as discussed in the
last section. The operator basis can be further classified
into small sectors according to their parity under charge
conjugation as well as Lorentz structures. The Z-matrix
will take a blockwise structure, and the ADs for opera-
tors in di↵erent sectors are just eigenvalues of di↵erent
sub-blocks.

As a concrete example, at length four, the lowest di-
mensional sector including complex ADs is a dimension-
12 sector containing eight evanescent operators:
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Note that the first operator in (13) is the only dimension-
12 operator containing a tensor degree-6 Kronecker sym-
bol and is responsible for the existence of a negative
norm state. We mention that we have focused on op-
erators that are Lorentz scalars. An alert reader may
find that the above operators are actually total deriva-
tives of dimension-10 tensor-2 operators. We will see in
(15) below that the eigenvalue equation for these eight
operators is not factorizable (with rational coe�cients),
which implies that their Z matrix cannot be decom-
posed into smaller blocks. Thus there should exist eight
dimension-10 tensor-2 primary operators which give the
same anomalous dimensions.

The one-loop Z-matrix of this sector reads
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(14)

The one-loop ADs �
(1)
⇤ are roots of the following eigen-

value equation:
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77948684
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195122885985

3429742096
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which is a non-trivial degree-8 polynomial equation. Re-
markably, two of the roots are complex with numerical
values:

1.90386± 0.181142 i . (16)

This provides further concrete evidence that pure YM
theory is non-unitary in non-integer dimensions [21].
We also compute the ADs for higher dimensional oper-

ators and find more complex ones. For the length-4 op-
erators up to �0 = 16, we observe an interesting pattern:
the number of complex ADs is exactly twice the number
of negative-norm states, which is summarized in Table II.
This kind of match is not a general feature though; for
example, the relation breaks down for the dimension-12
length-5 operators where there are 8 negative-norm states
but only 14 complex ADs. More details will be given in
[18].
Finally, we mention that the one-loop results already

give important implications for the property at high
loops. In particular, for a sector of operators that has
no complex AD and also has no degeneracy of ADs at
one loop, this sector will not have any complex AD at
higher loop orders. This may be understood by following
a standard perturbative calculation in quantum mechan-
ics, see e.g. [22].

DISCUSSION

In this paper, we provide concrete evidence showing that
the pure YM theory is non-unitarity in fractional space-
time dimensions d = 4 + ✏. In particular, we find that
YM evanescent operators provide negative-norm states
and also generate complex anomalous dimensions, gener-
alizing the previous study for the scalar theory in [10, 11].
As mentioned in the introduction, the pure YM the-

ory is expected to have a UV conformal fixed point. If
we couple YM with a su�ciently large number of matter
fields (see e.g. [23]), the asymptotic freedom can disap-
pear and the theory has an IR conformal fixed point at
4 � ✏. We expect that the unitarity violation still ex-
ists in such cases. First, there are also negative-norm
states corresponding to evanescent operators containing
a rank-5 Kronecker symbol with the norm proportional to
(d�4). Second, for the ADs, the operator mixing matrix
will enlarge in general because of the appearance of new

A pair of complex 
eigenvalues:

Dim-12 evanescent operators
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(namely, (Z(1)) p
e = 0) [13], one can safely divide oper-

ators into evanescent and physical sectors and compute
their one-loop ADs separately. Our calculation shows
that the one-loop complex ADs, which only happen in
the evanescent sectors, begin to appear at canonical di-
mension 12. This is consistent with the fact that negative
norm states start at this dimension as discussed in the
last section. The operator basis can be further classified
into small sectors according to their parity under charge
conjugation as well as Lorentz structures. The Z-matrix
will take a blockwise structure, and the ADs for opera-
tors in di↵erent sectors are just eigenvalues of di↵erent
sub-blocks.
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Note that the first operator in (13) is the only dimension-
12 operator containing a tensor degree-6 Kronecker sym-
bol and is responsible for the existence of a negative
norm state. We mention that we have focused on op-
erators that are Lorentz scalars. An alert reader may
find that the above operators are actually total deriva-
tives of dimension-10 tensor-2 operators. We will see in
(15) below that the eigenvalue equation for these eight
operators is not factorizable (with rational coe�cients),
which implies that their Z matrix cannot be decom-
posed into smaller blocks. Thus there should exist eight
dimension-10 tensor-2 primary operators which give the
same anomalous dimensions.

The one-loop Z-matrix of this sector reads
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The one-loop ADs �
(1)
⇤ are roots of the following eigen-

value equation:
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which is a non-trivial degree-8 polynomial equation. Re-
markably, two of the roots are complex with numerical
values:

1.90386± 0.181142 i . (16)

This provides further concrete evidence that pure YM
theory is non-unitary in non-integer dimensions [21].
We also compute the ADs for higher dimensional oper-

ators and find more complex ones. For the length-4 op-
erators up to �0 = 16, we observe an interesting pattern:
the number of complex ADs is exactly twice the number
of negative-norm states, which is summarized in Table II.
This kind of match is not a general feature though; for
example, the relation breaks down for the dimension-12
length-5 operators where there are 8 negative-norm states
but only 14 complex ADs. More details will be given in
[18].
Finally, we mention that the one-loop results already

give important implications for the property at high
loops. In particular, for a sector of operators that has
no complex AD and also has no degeneracy of ADs at
one loop, this sector will not have any complex AD at
higher loop orders. This may be understood by following
a standard perturbative calculation in quantum mechan-
ics, see e.g. [22].

DISCUSSION

In this paper, we provide concrete evidence showing that
the pure YM theory is non-unitarity in fractional space-
time dimensions d = 4 + ✏. In particular, we find that
YM evanescent operators provide negative-norm states
and also generate complex anomalous dimensions, gener-
alizing the previous study for the scalar theory in [10, 11].
As mentioned in the introduction, the pure YM the-

ory is expected to have a UV conformal fixed point. If
we couple YM with a su�ciently large number of matter
fields (see e.g. [23]), the asymptotic freedom can disap-
pear and the theory has an IR conformal fixed point at
4 � ✏. We expect that the unitarity violation still ex-
ists in such cases. First, there are also negative-norm
states corresponding to evanescent operators containing
a rank-5 Kronecker symbol with the norm proportional to
(d�4). Second, for the ADs, the operator mixing matrix
will enlarge in general because of the appearance of new
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Exact solutions

quantum spin chain. The latter may be related to a string picture.

4

21世纪的新机遇

p大科学装置实验：新发现 p格点 QCD：高性能 p理论进展：新方法

Ø 超出预期的数十个强子，统一描述？

S. Dürr et al. [BMW], Science 322 (2008) 1224

Ø 基态强子质量的精确计算

Ø 质子自旋起源的精确计算；…
Y.-B. Yang (团队成员) et al. [χQCD], Phys.
Rev. Lett. 118 (2017) 102001

!"#态

N. Beisert et al., Lett. Math. Phys. 99 (2012) 3

Ø ! = # 超对称 YM 理论的严

格求解

Ø 正定性、幺正性、解析性等

限制的自举方法

Ø 有限体积 Lüscher 公式；…

弱耦合

弦论⇒强耦合

非微扰
严格解

Planar N=4 SYM is exactly solvable:



N=4 SYM

4d QFTs

N=4 
SYM

2d theories

Ising
model

An exactly solvable 4d 
QFT (at least in large Nc)



N=4 SYM and amplitudes
Introduction to scattering amplitudes 8

massive
massless

sYM
N=4 sYM

planar N=4 sYM

Figure 3. Hierarchy of simplicity in scattering amplitudes for various types of
gauge theory.

in dimensional regularization.

There is a hierarchy of simplicity in the scattering amplitudes for various types of
gauge theory, as sketched in fig. 3. This hierarchy begins to be revealed at one loop. The

outer region of the diagram stands for a generic gauge theory with massive matter fields,

and perhaps massive gauge bosons, if the gauge symmetry is spontaneously broken, as

in electroweak theory. One-loop amplitudes in such a theory generically contain tadpole

integrals. One-particle cuts are nontrivial, and are particularly delicate because of

external-leg contributions [50, 24]. The cut structure of loop integrals containing massive
propagators in the loop is generically somewhat more complicated than the purely

massless case. Massive particles in the loop can be unstable, which usually necessitates

complex masses. When one enters the “massless” ring in fig. 3, corresponding to massless

gauge bosons and matter fields, most of these complications vanish, although there are

still generically rational parts to compute. The ring “sYM” stands for supersymmetric

gauge theories. Their one-loop amplitudes can be constructed from four-dimensional
unitarity cuts alone, i.e. there are no non-trivial rational parts [23].

Moving further inward in fig. 3, we arrive at N = 4 sYM. As mentioned earlier,

at one loop the coefficients of bubble and triangle integrals now vanish, as well as the

independent rational parts. (There are other gauge theories with vanishing bubble and

triangle coefficients, at least for their n-gluon amplitudes [51, 24].) The theory becomes

conformally invariant. It has been conjectured that the leading singularities — the
multi-loop analogs of the quadruple cuts — are sufficient to determine the amplitudes

at any loop order [18]. In addition, scattering amplitudes have empirically a predictable,

uniform transcendental weight [52, 53]. This weight refers to their construction out of

polylogarithms, logarithms, and Riemann ζ(n) values. For example, the finite (O(ϵ0))

terms in one-loop N = 4 sYM amplitudes are of weight two: They contain some terms

proportional to the polylogarithm Li2, and others which are products of two logarithms,
or proportional to ζ(2), but they do not contain any terms of lower transcendentality.

Lance Dixon 1105.0771

N=4 SYM has also been the main source for modern amplitudes development.

• …

Bern, Dixon, Durban, Kosower 1994;    Witten 2003;    Britto, Cachazo, Feng, Witten, 2004; …

"BCFW recursion relation” and “unitarity methods” were all first developed by 
studying N=4 SYM.



N=4 SYM v.s. QCD
N=4 SYM theory : -> QCD’s maximally supersymmetric cousin

where all fields are the in the adjoint representation of the gauge group SU(Nc).

QCD

ℒN=4 = − 1
2 tr(FμνFμν) + fermions + scalars

ℒQCD = − 1
2 tr(FμνFμν) + quarks

A four-dimensional theory with non-trivial interaction and also many special 
symmetries.



Higgs amplitudes

Operators also appear as interaction vertices in effective 
field theories (EFT)

Higgs boson @ LHC
The dominant production mechanism is the 
gluon fusion through a top quark loop.

p

p

g H
t

Effective gluon-Higgs vertex:

2. pT distribution of Higgs Bosons

At LO, the Higgs boson has no pT and a transverse momentum spectrum for the Higgs

is first generated by the process, gg ! gh, which is an NLO contribution to the gluon

fusion process[48]. As pT ! 0, the partonic cross section for Higgs plus jet production

diverges as 1/p2
T ,
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where �̂0 is the LO gg ! h cross section given in Eq. 90, and s, t and u are the partonic

Mandelstam invariants. The pT spectrum for Higgs plus jet at LO is shown in Fig. 13,

where the contributions from the gg and qg, qg initial states are shown separately. Also

shown is the mt ! 1 limit of the spectrum that is derived from the e↵ective Lagrangian of

Eq. 97 . The e↵ective Lagrangian approximation fails around pT ⇠ 2mt. In this process,

there are several distinct momentum scales (pT , mh, mt), as opposed to gluon fusion where

there is only a single scale (mh/mt) at LO. The expansion in mh
mt

for gg ! gh receives

corrections of O( s
m2

t
,

p2
T

m2
t
) and for pT

>
⇠ 2mt, the EFT large top quark mass expansion

cannot be used to obtain reliable distributions.

NLO, NNLO, and N3LO radiative corrections to Higgs plus jet production have been

calculated[49–52] using the mt ! 1 approximation. The lowest order result of Eq. 117

is then reweighted by a K factor derived in the mt ! 1 limit for each kinematic bin.

The e↵ects of the higher order corrections are significant and increase the rate by a factor

of around 1.8 as shown in Fig. 14. The singularity of the LO result at pT = 0 is clearly

visible in Fig. 14 and we note that after the inclusion of the NLO corrections, the pT

spectrum no longer diverges as pT ! 0.

The terms which are singular as pT ! 0 can be isolated and the integrals performed

explicitly. Considering only the gg initial state[53],
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where z ⌘ m2
h/S, �0 = (33 � 2nlf )/6, and nlf = 5 is the number of light flavors. Clearly

when pT << mh, the terms containing the logarithms resulting from soft gluon emission

can give a large numerical contribution. The logarithms of the form ↵n
s logm(m2

h/p
2
T ) can

32

Higgs + multi-gluon scattering is a form factor

A(qH,1g,2g, …, ng) = F𝒪=tr(F2)(1g,2g, …, ng)

ℒHEFT = c0Htr(F2)+𝒪(1/m2
t )



Maximal Transcendentality Principle 

N=4 SYM QCD

Maximally transcendental parts are equal between two theories!

H
g

g

g

Brandhuber, Travaglini, GY 2012

N=4 SYM 3-point 
form factor of stress-
tensor supermultiplet

  Higgs plus 3-gluon 
amplitudes 

2. pT distribution of Higgs Bosons

At LO, the Higgs boson has no pT and a transverse momentum spectrum for the Higgs

is first generated by the process, gg ! gh, which is an NLO contribution to the gluon

fusion process[48]. As pT ! 0, the partonic cross section for Higgs plus jet production
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where �̂0 is the LO gg ! h cross section given in Eq. 90, and s, t and u are the partonic

Mandelstam invariants. The pT spectrum for Higgs plus jet at LO is shown in Fig. 13,

where the contributions from the gg and qg, qg initial states are shown separately. Also

shown is the mt ! 1 limit of the spectrum that is derived from the e↵ective Lagrangian of

Eq. 97 . The e↵ective Lagrangian approximation fails around pT ⇠ 2mt. In this process,

there are several distinct momentum scales (pT , mh, mt), as opposed to gluon fusion where

there is only a single scale (mh/mt) at LO. The expansion in mh
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for gg ! gh receives

corrections of O( s
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) and for pT
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cannot be used to obtain reliable distributions.

NLO, NNLO, and N3LO radiative corrections to Higgs plus jet production have been

calculated[49–52] using the mt ! 1 approximation. The lowest order result of Eq. 117

is then reweighted by a K factor derived in the mt ! 1 limit for each kinematic bin.

The e↵ects of the higher order corrections are significant and increase the rate by a factor

of around 1.8 as shown in Fig. 14. The singularity of the LO result at pT = 0 is clearly

visible in Fig. 14 and we note that after the inclusion of the NLO corrections, the pT

spectrum no longer diverges as pT ! 0.

The terms which are singular as pT ! 0 can be isolated and the integrals performed

explicitly. Considering only the gg initial state[53],
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where z ⌘ m2
h/S, �0 = (33 � 2nlf )/6, and nlf = 5 is the number of light flavors. Clearly

when pT << mh, the terms containing the logarithms resulting from soft gluon emission

can give a large numerical contribution. The logarithms of the form ↵n
s logm(m2

h/p
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T ) can
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Gehrmann, Jaquier, Glover, Koukoutsakis 2011

“maximal transcendentality principle” Kotikov, Lipatov, Onishchenko, Velizhanin 2004



Maximal Transcendentality Principle

DµW = ∂µW − igYM[Aµ, W] . (25)

这类算符的反常量纲γ(j)在QCD中是非常重要的物理量。它决定了强子态中夸克、胶
子等部分子的分布函数f(x,Q2)（通过著名的DGLAP方程）：

γ(j) =

∫ 1

0

xj−1W (x) ,
d

d logQ2
f(x,Q2) =

∫ 1

x

dy

y
W (x/y)f(y,Q2) . (26)

d

d logQ2
f(j, Q2) = γ(j)f(j, Q2) . (27)

在Kotikov和Lipato等人的工作中，他们通过研究N = 4SYM中BFKL方程的性质以及
和DGLAP方程的关系，基于一些假设，提出了一个从QCD结果中推导N = 4中twist-
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∞
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另外，在散射振幅方面，研究发现所有的结果都具有最大超越性。具体地说，
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8 总总总结结结和和和展展展望望望

在这个报告里我们介绍了

A 报报报告告告中中中的的的问问问题题题
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• Such a relation was first observed for 
anomalous dimension of twist-2 operators

Kotikov, Lipatov 2001; Kotikov, Lipatov, 
Onishchenko, Velizhanin 2004

Lev Lipatov 
1940-2017

N=4 SYM QCD

The maximally transcendental parts are equal in two theories.

Conjecture for certain quantities

• Also for certain Wilson lines [Li, Manteuffel, Schabinger, Zhu 2014]
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Maximal transcendental part of 
Higgs amplitudes:
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∑
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∑
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2 − ζ2J2) − log4(uvw)
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Riemann zeta value:

Transcendental numbers and 
functions in QFT

1. 常见的超越数和超越函数有哪些，那一类的函数会出现在费曼积分中？

2. 物理量中会出现这类函数的物理原因是什么？

3. 这些函数是否有什么联系，是否有有效的方法计算它们，或者是否有方法简化已
知的结果？

4.
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如果我们将n做解析延拓，那么得到的就是黎曼ζ函数，和著名的黎曼猜想有直接的联
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当k为偶数时，ζ数正比于π2k:

ζ2k =
(−1)k+1B2k(2π)2k

2(2k)!
, (5)

2

其中B2k代表伯努利数：

B2 =
1

6
, B4 = − 1

30
, B6 =

1

45
, ... . (6)

对奇数k情形人们还了解不多，只知道ζ3是无理数，是否是超越数目前都没有证
明。

多多多重重重对对对数数数函函函数数数（（（Polylogarithm）））

多重对数函数，英文称为Polylogarithm，定义为

Lik(z) =
∞
∑

n=1

zn

nk
, (7)

或者以递推的积分形式定义为

Lik(z) =

∫ z

0

Lik−1(t)

t
dt , Li1(z) = − log(1− z) . (8)

『『『多多多重重重』』』推推推广广广

多重ζ数，multiple zeta value (MZV):

ζk1,...,km =
∞
∑

n1>...>nm>0

1

nk1
1 ...nkm

m

, k1 > 1 . (9)

多重多重对数函数，multiple polylogarithm (MPL):

Lik1,...,km(z1, ..., zm) =
∞
∑
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zn1

1 ...znm
m

nk1
1 ...nkm

m

. (10)

5 为为为什什什么么么物物物理理理学学学中中中的的的会会会出出出现现现超超超越越越函函函数数数

我们回到量子场论中的S-矩阵。通过大量计算的直接结果显示，超越函数往往是构
成这些量的基本单元。我们之前看到的例子中就包含了多重对数函数。是否有更直观
的说明为什么S-矩阵和上面提到的超越函数有这样紧密的关系呢？

S-矩阵工程（S-matrix program）是前QCD时期人们为了解释强相互作用而提出
的一套方法，这一方法不需要知道物理的细节（拉氏量），而只需通过一些基本的
物理假设。这一方法在近些年来越来越受到人们的重视，许多新的结果都是在这一
思路上发展出来的。其中，最重要的两点物理性质是幺正性（unitarity）和解析性
（analyticity）：（1）S-矩阵满足幺正性；（2）S-矩阵是一个解析函数，而其极点或
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Ref: C. Duhr “Mathematical aspects of scattering amplitudes” arXiv:1411.7538



Form factor / Wilson line and 
dual conformal symmetry



Amplitudes               minimal surface of Light-like Wilson loops

Amplitudes / Wilson loop duality

T-duality

N=4 SYM               Type IIB string theory in
AdS/CFT

AdS5 ⇥ S5

[Alday and Maldacena 2007]



Form factors picture

T-duality

N=4 SYM               Type IIB string theory in
AdS/CFT

AdS5 ⇥ S5

[Alday and Maldacena 2007]Form factors as minimal surfaces in one period

Y-system formulation (Maldacena and Zhiboedov in AdS3; Gao and GY in AdS5)



Form factor / Wilson loop duality
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FIG. 5. Periodic Wilson line in the dual momentum space.

s12 = s23 = s13 = 0, which means that the integrand
is trivially zero, since every numerator in the integrand
contains at least two sij factors (this applies also to the
lower-loop cases). In the lightlike limit, on the other
hand, form factors are simplified yet still have non-trivial
dependence on q. Note that there are in general some
diagrams with numerators proportional to q2 and they
no longer contribute in the limit. As an example, at two-
loop level, two trivalent topologies survive in the q2 ! 0
limit as shown in Figure 6, where the second one is a
cross-box two-loop integral.

To set up the discussion of the dual conformal sym-
metry, we use the dual coordinates in momentum space
which are given by the periodic Wilson line configuration
[46–48]. For the three-point form factor, the (periodic)
dual coordinates are defined as in Figure 5

xi � xi+1 = pi , xi � xi = xi � x̄i = q , (7)

where q is the period of the periodic Wilson lines. Note
that the previously used zone variable x4 in Figure 3
corresponds to x̄1 with x14 = x11̄ = q [55]. One can
perform a special conformal transformation on the dual
coordinates as

�bx
µ
i =

1

2
x2
i b

µ
� (xi · b)x

µ
i , (8)

where bµ is a conformal boost vector.
The aforementioned symmetry can be now stated as

follows: the four-dimensional planar form factor inte-
grand, denoted as I(`) ⌘ I

(`)
|leading-Nc & q2=0&D=4, satis-

fies the directional dual conformal invariance (DDCI) by
taking bµ / qµ, namely

�qI(`) = 0 . (9)

Similar DDCI symmetry was also considered for the non-
planar four- and five-point amplitudes in [56, 57]. It
is worthwhile pointing out that for form factors, the
bµ / qµ direction together with the q2 = 0 condition
is special: it preserves precisely the periodic Wilson line
configuration, and this also suggests that �q is an exact
symmetry for the form factor integrand.

To give a few more details, the integrand I(`) con-
tains the integration measure and a rational function R
of proper distances x2

ij as

I(`) = (
Y

a

d4xa)⇥R(x2
ij) , (10)

p1

p2

p3 xa xb

x1

x3

x2

x̄1

`1

`2
x̄b

p1

p2p3

xa xb

x1

x3

x2x̄1

FIG. 6. Two-loop topologies contributing to the q2 ! 0 limit.

FIG. 7. Examples of di↵erent planar projections for the same
topology.

where the measure and the proper distance transform as

�q
�
d4xa

�
= �4 (q · xa) d

4xa , (11)

�qx
2
ij = �q · (xi + xj)x

2
ij . (12)

Note that the proper distance can include x̄i or xi. In
principle, it is straightforward to verify (9) using (11)–
(12) and Leibniz rules. Two important remarks, however,
are in order here.
First, the appearance of q-interior topologies requires a

proper definition of the dual coordinates. To do this, one
can practically pull the q-leg to infinity, which introduces
a cut in the plane. This cut will divide several faces (or
zones) into two pieces, and the periodic dual variables x
and x̄ should be defined respectively on the two sides of
the cut. For example, in the second diagram in Figure 6,
we can define x1, x̄1 on the two sides of the dot line and
all momenta and propagators can be represented by the
dual coordinates {x1, x2, x3, x̄1, xa, xb}, such as

`1 = xa�xb , `2 = xa� x̄b = xa�xb+(x1� x̄1) . (13)

We also comment that the special conformal transforma-
tion �q is independent of the way how the q-leg is pulled
to the infinity.
Second, some topologies are special in the sense that

they have di↵erent planar projections. This means that
for any one of these special topologies, there can be
more than one ways of drawing this topology on a two-
dimensional plane. Two examples are shown in Fig-
ure 7 [58]. Di↵erent planar projections have distinct
parametrizations and will give di↵erent results after ap-
plying the special conformal transformation �q. As a re-
sult, to check the DDCI, it is important to distinguish
contributions from di↵erent planar projections and to in-
clude them all—usually one finds all planar projections
and distributes the integrand equally among them.
We have explicitly checked that the DDCI symmetry

is valid for three-point form factors up to four loops, and
we stress that the symmetry will not be a↵ected by the
free parameters in CK-dual integrands.

Weak coupling picture at one loop:
Brandhuber, Spence, Travaglini, GY 2010

Fin

Strong coupling T-duality implies the duality:
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we can define x1, x̄1 on the two sides of the dot line and
all momenta and propagators can be represented by the
dual coordinates {x1, x2, x3, x̄1, xa, xb}, such as

`1 = xa�xb , `2 = xa� x̄b = xa�xb+(x1� x̄1) . (13)

We also comment that the special conformal transforma-
tion �q is independent of the way how the q-leg is pulled
to the infinity.
Second, some topologies are special in the sense that

they have di↵erent planar projections. This means that
for any one of these special topologies, there can be
more than one ways of drawing this topology on a two-
dimensional plane. Two examples are shown in Fig-
ure 7 [58]. Di↵erent planar projections have distinct
parametrizations and will give di↵erent results after ap-
plying the special conformal transformation �q. As a re-
sult, to check the DDCI, it is important to distinguish
contributions from di↵erent planar projections and to in-
clude them all—usually one finds all planar projections
and distributes the integrand equally among them.
We have explicitly checked that the DDCI symmetry

is valid for three-point form factors up to four loops, and
we stress that the symmetry will not be a↵ected by the
free parameters in CK-dual integrands.

Dual periodic WL picture

No exact dual conformal symmetry for general q.



Form factor / Wilson loop duality

q xi − xi+1 = pi
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FIG. 5. Periodic Wilson line in the dual momentum space.

s12 = s23 = s13 = 0, which means that the integrand
is trivially zero, since every numerator in the integrand
contains at least two sij factors (this applies also to the
lower-loop cases). In the lightlike limit, on the other
hand, form factors are simplified yet still have non-trivial
dependence on q. Note that there are in general some
diagrams with numerators proportional to q2 and they
no longer contribute in the limit. As an example, at two-
loop level, two trivalent topologies survive in the q2 ! 0
limit as shown in Figure 6, where the second one is a
cross-box two-loop integral.

To set up the discussion of the dual conformal sym-
metry, we use the dual coordinates in momentum space
which are given by the periodic Wilson line configuration
[46–48]. For the three-point form factor, the (periodic)
dual coordinates are defined as in Figure 5

xi � xi+1 = pi , xi � xi = xi � x̄i = q , (7)

where q is the period of the periodic Wilson lines. Note
that the previously used zone variable x4 in Figure 3
corresponds to x̄1 with x14 = x11̄ = q [55]. One can
perform a special conformal transformation on the dual
coordinates as

�bx
µ
i =

1

2
x2
i b

µ
� (xi · b)x

µ
i , (8)

where bµ is a conformal boost vector.
The aforementioned symmetry can be now stated as

follows: the four-dimensional planar form factor inte-
grand, denoted as I(`) ⌘ I

(`)
|leading-Nc & q2=0&D=4, satis-

fies the directional dual conformal invariance (DDCI) by
taking bµ / qµ, namely

�qI(`) = 0 . (9)

Similar DDCI symmetry was also considered for the non-
planar four- and five-point amplitudes in [56, 57]. It
is worthwhile pointing out that for form factors, the
bµ / qµ direction together with the q2 = 0 condition
is special: it preserves precisely the periodic Wilson line
configuration, and this also suggests that �q is an exact
symmetry for the form factor integrand.

To give a few more details, the integrand I(`) con-
tains the integration measure and a rational function R
of proper distances x2

ij as

I(`) = (
Y

a

d4xa)⇥R(x2
ij) , (10)

p1

p2

p3 xa xb
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x3

x2

x̄1

`1

`2
x̄b
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p2p3

xa xb

x1

x3

x2x̄1

FIG. 6. Two-loop topologies contributing to the q2 ! 0 limit.

FIG. 7. Examples of di↵erent planar projections for the same
topology.

where the measure and the proper distance transform as

�q
�
d4xa

�
= �4 (q · xa) d

4xa , (11)

�qx
2
ij = �q · (xi + xj)x

2
ij . (12)

Note that the proper distance can include x̄i or xi. In
principle, it is straightforward to verify (9) using (11)–
(12) and Leibniz rules. Two important remarks, however,
are in order here.
First, the appearance of q-interior topologies requires a

proper definition of the dual coordinates. To do this, one
can practically pull the q-leg to infinity, which introduces
a cut in the plane. This cut will divide several faces (or
zones) into two pieces, and the periodic dual variables x
and x̄ should be defined respectively on the two sides of
the cut. For example, in the second diagram in Figure 6,
we can define x1, x̄1 on the two sides of the dot line and
all momenta and propagators can be represented by the
dual coordinates {x1, x2, x3, x̄1, xa, xb}, such as

`1 = xa�xb , `2 = xa� x̄b = xa�xb+(x1� x̄1) . (13)

We also comment that the special conformal transforma-
tion �q is independent of the way how the q-leg is pulled
to the infinity.
Second, some topologies are special in the sense that

they have di↵erent planar projections. This means that
for any one of these special topologies, there can be
more than one ways of drawing this topology on a two-
dimensional plane. Two examples are shown in Fig-
ure 7 [58]. Di↵erent planar projections have distinct
parametrizations and will give di↵erent results after ap-
plying the special conformal transformation �q. As a re-
sult, to check the DDCI, it is important to distinguish
contributions from di↵erent planar projections and to in-
clude them all—usually one finds all planar projections
and distributes the integrand equally among them.
We have explicitly checked that the DDCI symmetry

is valid for three-point form factors up to four loops, and
we stress that the symmetry will not be a↵ected by the
free parameters in CK-dual integrands.

Dual periodic WL picture

For lightlike q, one expects an exact dual conformal symmetry:

q2 = 0

The first non-trivial lightlike FF is the 4-point FF.
q



Number of independent variables

The first non-trivial lightlike FF is the 4-point FF.

Amplitudes: 3n - 15

FF (           ): 3n + 4 - 10 - 1 = 3n - 7q2 ≠ 0

FF (           ): 3n - 7 -1 -1 = 3n - 9q2 = 0

Conformal
 group

Counting the degree of freedom:

q



A bootstrap computation

q



Ansatz 
in master integrals Physical constraints Solution of 

coefficients

ℱ(l),ansatz = ∑
i

Ci I(l)
i

ℱ(l) = ∑
i

Ci I(l)
i

Based on the fact:  
any amplitude or form factor can be expanded in a set of integral basis

Consider one-loop amplitudes:

What we really want

Master-integral bootstrap



Master-integral bootstrap

Ansatz Physical constraints Solution

ℱ(l),ansatz = ∑
i

Ci I(l)
i

ℱ(l) = ∑
i

Ci I(l)
i

Guo, Wang, GY  2021A bootstrap strategy to compute amplitudes or form factors:

IR divergences, 
Collinear limits, 
Spurious pole 
cancellation,
Unitarity cuts, 
etc

Remarks:  
the method does not rely on special symmetries of the theory 
and can be applied to general theories.



Bootstrapping the two-loop FF
q

Based on the one-loop results:

We propose the ansatz at two loops:

UT master integrals:  Abreu, Chicherin, Dixon, Gehrmann, Henn, 
Herrmann, Lo Presti, Mitev, Page, Papadopoulos, Tommasini, Sotnikov, 
Wasser, Wever, Zeng, Zhang, Zoia

Pure functions



Bootstrapping the two-loop FF

Guo, Wang, GY  2209.06816



Bootstrapping the two-loop FF

Guo, Wang, GY  2209.06816

IR and collinear properties are sufficient to determine 
the two-loop lightlike FF up to finite order!



Dual conformal symmetry

The finite remainder depends only on three ratios:

3

Constraints Parameters left

Starting ansatz 590⇥ 2

Symmetries 168

IR (Symbol) 109

Collinear limit (Symbol) 43

IR (Function) 39

Collinear limit (Function) 21

Keeping up to ✏0 order or via unitarity 0

TABLE I: Solving for parameters via master bootstrap.

where f (2)(✏) = �2⇣2�2⇣3✏�2⇣4✏2. The finite remainder
function R has the nice collinear behavior

R
LL,(2)
4

pi k pi+1
�������! R

LL,(2)
3 = �6⇣4 , (10)

where as mentioned in the introduction, the remainder of
the three-point lightlike FF is a transcendental number.

We first apply the IR and collinear constraints at the
symbol level as in (7), and we are able to reduce the
number of free parameters to 43. Then we consider the
master integrals at the function level. It is su�cient to
compute the integrals numerically with high precision,
using [57], as well as the packages Di↵Exp [68] or AM-
Flow [69]. We find the IR and collinear constraints at
the function level can fix further 22 parameters.

Remarkably, it turns out that the remaining 21 degrees
of freedom all contribute to O(✏) order. These terms can
be safely ignored if one is only interested in up to the
finite order of the two-loop FF. In other words, the two-
loop finite remainder is uniquely fixed by the IR and
collinear constraints.

As important cross-checks, we have also applied a
spanning set of D-dimensional unitarity cuts [46–48] and
find full consistency with the bootstrap result. This not
only verifies the ansatz form (5) but also fixes the co-
e�cients of the remaining 21 degrees of freedom. We
summarize the parameters after each constraint in Ta-
ble I.

IV. TWO-LOOP REMAINDER

The two-loop finite remainder R
LL,(2)
4 presents several

nice properties.
First, all the terms which are proportional to the B fac-

tor (4) cancel in the two-loop finite remainder function,
namely,

G
(2)
2 = G

(1)
1 (✏)G(1)

2 (✏) +O(✏) . (11)

This is consistent with the dual Wilson line picture,
which has no parity-odd contribution. See a similar can-
cellation for the six-gluon amplitude in [70].
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x̄1

x̄2
x̄3

x4 x4 x̄4

q
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p2 p3

p4
q ¯̄x1

¯̄x2

FIG. 2: Dual periodic Wilson line.

Second, the remainder function only depends on three
ratio variables

u1 =
s12
s34

, u2 =
s23
s14

, u3 =
s123s134
s234s124

, (12)

which are directional dual conformal invariant in the dual
momentum space (xi+1 � xi = pi) [71] as shown in Fig-
ure 2. This is precicely a consequence of the DDCS men-
tioned in the introduction, defined as the special confor-
mal transformation along the lightlike q direction in the
dual x space:

�qx
µ
i =

1

2
x2
i q

µ
� (xi · q)x

µ
i , (13)

see also [35–37]. Thus our result provides an explicit
check of the DDCS for the integrated lightlike FF. A nu-
merical check is also given in Appendix C.
Third, the symbol of the two-loop remainder has a

very simple structure. As a function of transcendentality-
degree four, its symbol can be expressed as

S(RLL,(2)
4 ) =

1283X

i=1

c̃i wi1 ⌦ wi2 ⌦ wi3 ⌦ wi4 , (14)

where wi are symbol letters, and c̃i are pure numbers.
Nicely, the set of wi has only nine elements:

wi 2 {ua , 1� ua , x1234 , x234q , x123q}, (15)

where a = 1, 2, 3 and

xijkl =
hi|j|k|l|i]

[i|j|k|l|ii
. (16)

It is easy to check that they are closed under the action
of the dihedral group D4. Note that the x variables are
also functions of ui in (12) (see Appendix B).
If we expand ui in sij , there are 13 symbol letters ap-

pearing in the remainder, in contrast to 31 letters in the
masters as reviewed in Appendix B. The variables asso-
ciated to each entry are as follows: i) the first entry
contains only si,i+1 and si,i+1,i+2 for i = 1, .., 4; ii) the
second entry contains all symbol letters; iii) the third en-
try is free from the letters s12� s34 and s23� s14; iv) the
last entry is free from s12�s34, s23�s14, x123q and x234q.
The DDCS certainly imposes constraints on the possible
letters; for example, the two letters x124q and x134q break
the symmetry and are thus not allowed.
The full two-loop symbol is provided in the ancillary

file.

xi − xi+1 = pi

Guo, Wang, GY  2209.06816

which satisfies precisely the dual conformal symmetry

δqRLL,(2)
4 = 0



Other 4-point form factors

Ansatz Physical constraints Solution

ℱ(l),ansatz = ∑
i

Ci I(l)
i

ℱ(l),ansatz = ∑
i

Ci I(l)
i

IR, collinear limits, 
unitarity-cut, etc

The same strategy has been used to compute four-point 
form factors of length-3 operators:

F(2)
tr(ϕ3)(1

ϕ,2ϕ,3ϕ,4g) F(2)
tr(F3)(1

g,2g,3g,4g)
Guo, Wang, GY 2021 Guo, Jin, Wang, GY 2022



Proof of MTP for form factors

Ansatz Physical constraints Solution

ℱ(l),ansatz = ∑
i

Ci I(l)
i

ℱ(l),ansatz = ∑
i

Ci I(l)
i

Theory-
independent 
constraints

Theory-
independent 

results

IR, collinear limits, 
unitarity-cut, etc

IR and collinear are universal at MT level, 
and some unitarity cuts are also universal.



Physical constraints

Unitarity cut

There are universal cuts that involve only gluon states and thus are 
also universal for general gauge theories.

i

j k

l

(a)

�

� +

+

�

�

+

+

i�

j

k

l

(b)

�

� +

+

�

�

+

+

4+

3�

1�

2�

(c)

4+

�+ � +

�

� +

+

1�

2�

3�

(d)

Figure 14: The unitarity cuts which are same for general gauge theories.

To be concrete, we consider four types of unitarity cuts shown in Figure 14. These cuts are

special in the sense that they can only allow internal gluon configuration, therefore, the

coe�cients of the master integrals which can be detected by these cuts must be the same for

any gauge theory that contains a Yang-Mills sector. The master integrals detected by these

cuts are listed below:

cut-(a) : I(2)
dBox2a

, I(2)
dBox2b

, I(2)
dBox2c

, I(2)
BPa

, I(2)
BPb

, I(2)
TP

for all orderings of external particles.

cut-(b) : I(2)
BubBox0

for all orderings of external particles.

cut-(c) : I(2)
dBub

(1, 2; 1, 2, 4), I(2)
TT0

(4, 1, 2), I(2)
TBox0

(2, 3, 4).

cut-(d) : I(2)
TT1a

(4, 1, 2), I(2)
dBox1a

(2, 3, 4), I(2)
TBox0

(4, 1, 2).

Since these master integrals are determined by the pure YM theory, they cannot occur

in �(2)

M.T.
. By inspecting their relation with the remaining building blocks in (5.39), we find

that �(2)

M.T.
only depends on two functions of G̃3,� and can be given as

�(2)

M.T.
= B4

⇣
x1G̃

(2)

3,1
+ x2G̃

(2)

3,3

⌘
+ (p1 $ p3) . (5.55)

The two free parameters x1,2 can be fixed by the coe�cients of I(2)
TBox0

(1, 4, 3) and I(2)
dBox1a

(1, 4, 3),

which have coe�cients B5(�3

4
x1 + x2) and 1

4
B5x1 respectively in the above formula. Since

they are free from µ-terms, it is enough to apply a four-dimensional unitarity cut to fix them.

5.4.2 Two-loop result of N = 4 SYM

Now we can consider the form factor result in N = 4 super Yang-Mills. Since we have already

obtained the pure YM result, it will be enough to compute �(2),N=4

M.T.
given in (5.55). As we

discussed before, we will consider a four-dimensional cut as in Figure 13 with the ordering of

external particles chosen as (ijkl) = (2341), which is given in Figure 15. This cut can fix the

coe�cients of I(2)
TBox0

(1, 4, 3) and I(2)
dBox1a

(1, 4, 3).

– 42 –

ℒN=4 = − 1
2 tr(FμνFμν) + fermions + scalars

ℒQCD = − 1
2 tr(FμνFμν) + quarks

N=4 QCDGluonsAdjoint fermions, 
scalars

Fundamental 
quarks



Proof of MTP for form factors

Ansatz Physical constraints Solution

ℱ(l),ansatz = ∑
i

Ci I(l)
i

ℱ(l),ansatz = ∑
i

Ci I(l)
i

Theory-
independent 
constraints

Theory-
independent 

results

IR, collinear limits, 
unitarity-cut, etc

The master-integral bootstrap provides a proof of MTP for various 
form factors.

IR and collinear are universal at MT level, 
and some unitarity cuts are also universal.

Guo, Jin, Wang, GY  2205.12969



Summary

• IR divergences • UV renormalization • Finite remainder

Scattering Amplitudes Correlation Functions

Form Factors

O

O1

O2 O3

Figure 1: Form factors provide a bridge between amplitudes and correlation functions.
By imposing on-shell unitarity cuts (indicated by the red dash lines), the amplitudes are
building blocks in form factors, and so are form factors in correlation functions.

It should be fair to say that among these developments, one of the most important ideas is
the use of on-shell methods, such as the spinor helicity formalism [11, 12, 13, 14], the tree-
level recursion relations [15, 16] and the (generalized) unitarity methods [17, 18, 19]. While
scattering amplitudes are central physical quantities in quantum field theory, there are
other important objects, such as gauge invariant operators. Computing their anomalous
dimensions and correlation functions has also been an important subject. A question
that one may ask is: can the modern advances of scattering amplitudes be applied to
more general observables such as anomalous dimensions and correlation functions? At
first sight the answer seems to be negative, because unlike amplitudes, gauge invariant
operators are o↵-shell, therefore, the on-shell methods seem not applicable. Fortunately,
this problem can be overcome with the help of form factors.

Form factors are the matrix elements between on-shell asymptotic states and gauge
invariant operators. The explicit definition of a n-point form factor can be given as

FO,n =

Z
d
D
x e

�iq·x
h1 · · ·n|O(x)|0i = (2⇡)D�(D)

⇣
q �

nX

i=1

pi

⌘
h1 · · ·n|O(0)|0i, (1)

where pi are the on-shell momenta of n asymptotic particle states, and O is a local
operator. By Fourier transformation, q =

P
i pi is the o↵-shell momentum carried by the

operator. Therefore, form factors are partially on-shell and partially o↵-shell quantities,
and they provide a natural bridge connecting the worlds of amplitudes and correlations
functions, as illustrated in Figure 1.

In this review we will give an introduction to form factors in N = 4 super-Yang-
Mills theory (SYM). N = 4 SYM has been the primary model for the discovery and the
developments of AdS/CFT correspondence [20, 21, 22]. It has also been a very important
experimental ground for the modern amplitude developments. The idea of unitarity cut
method was first applied to compute one-loop amplitudes in N = 4 SYM in 1994 by Bern,
Dixon, Durban and Kosower [17, 18]. In 2003 Witten’s groundbreaking work provided a

3

Form factors provide a framework to study many interesting 
physical quantities using powerful on-shell amplitude methods:

New hidden structure of form factor.


