Introduction to Parton Distribution Function

Tie-Jiun Hou 侯铁君

微扰量子场论及其应用前沿讲习班 2025.0713, 济南

Reference

- Jianwei Qiu, Introduction to Quantum Chromodynamics, 2018
- Marco Stratmann, Lectures on Perturbative QCD or from basic principles to current applications, 2005
- Davison E. Soper, Basics of QCD Perturbation Theory, hep-ph/0011256
- Francis Halzen and Alan D. Martin, Quark and Leptons: An introductory Course in Modern Particle Physics.

Other Reference

- R. Keith Ellis, W. J. Stirling, B. R. Webber, QCD and Collider Physics
- John Collins, Foundations of Perturbative QCD
- Particle Data Group

Discovery of Strong Interaction

1908-1913: Rutherford gold foil experiments

It shows nucleus is positively charged. Most of the positive charge and mass concentrate at the tiny center of atom, which we call nucleus

1932: Chadwick discovers the neutron

Strong nuclear force, the force binding proton and neutron

Finding of Internal Structure of Proton

Immanuel Estermann and Otto Stern (1933) measured the proton's anomalous magnetic moment

$$\mu_p = g_p \left(\frac{e\hbar}{2m_p}\right)$$

$$g_p = 2.792847356(23) \neq 2!$$

 $\mu_n = -1.913 \left(\frac{e\hbar}{2m_p}\right) \neq 0!$

Otto Stern Nobel Prize 1943

Proton is not pointlike and has internal structure!

The Naive quark model

• Flavor SU(3) – assumption:

Physical states for u, d, s, neglecting any mass difference, are represented by 3-eigenstates of the fund'l rep'n of flavor SU(3)

• Good quantum numbers to label the states:

$$J_{3} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad J_{8} = \frac{1}{2\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

Isospin: $\hat{I}_{3} \equiv J_{3}$ Hypercharge: $\hat{Y} \equiv \frac{2}{\sqrt{3}}J_{8}$
Basis vectors - Eigenstates:
 $\begin{pmatrix} 1 \end{pmatrix}$ $\begin{pmatrix} 0 \end{pmatrix}$

Murray Gell-Mann

$$v^{1} \equiv \begin{pmatrix} 1\\0\\0 \end{pmatrix} \Longrightarrow u = \left|\frac{1}{2}, \frac{1}{3}\right\rangle \qquad v^{2} \equiv \begin{pmatrix} 0\\1\\0 \end{pmatrix} \Longrightarrow d = \left|-\frac{1}{2}, \frac{1}{3}\right\rangle \qquad v^{3} \equiv \begin{pmatrix} 0\\0\\1 \end{pmatrix} \Longrightarrow s = \left|0, -\frac{2}{3}\right\rangle$$

Slide from Jianwei Qiu, 2018

The Naive quark model

Group theory says:

 $q(u,d,s) = \mathbf{3}, \ \bar{q}(\bar{u},\bar{d},\bar{s}) = \bar{\mathbf{3}}, \ \text{of flavor SU(3)}$

 $3\otimes \overline{3} = 8\oplus 1$ \implies 1 flavor singlet + 8 flavor octet states

There are three states with $I_3 = 0, Y = 0$: $u\bar{u}, d\bar{d}, s\bar{s}$

□ Physical meson states (L=0, S=0):

$$\begin{array}{ll} \diamondsuit \text{ Octet states:} & A = \frac{1}{\sqrt{2}}(u\bar{u} - d\bar{d}) & \Longrightarrow \pi^{0} \\ & B = \frac{1}{\sqrt{6}}(u\bar{u} + d\bar{d} - 2s\bar{s}) & \Longrightarrow \eta_{8} \\ & \diamondsuit \text{ Singlet states:} & C = \frac{1}{\sqrt{3}}(u\bar{u} + d\bar{d} + s\bar{s}) & \Longrightarrow \eta_{1} \end{array} \xrightarrow{\eta, \eta'} \eta, \eta' \xrightarrow{K^{+}} \eta, \eta' \\ \end{array}$$

The Naive quark model Group theory says:

♦ Flavor: 3 ⊗3 ⊗ 3 = 10_S ⊕ 8_{M_S} ⊕ 8_{M_A} ⊕ 1_A S: symmetric in all 3 q, M_S : symmetric in 1 and 2, M_A : antisymmetric in 1 and 2, A : antisymmetric in all 3

 $\Rightarrow \text{ Spin:} \qquad \mathbf{2} \otimes \mathbf{2} \otimes \mathbf{2} = \mathbf{4}_S \oplus \mathbf{2}_{M_s} \oplus \mathbf{2}_{M_A} \implies S = \frac{3}{2}, \frac{1}{2}, \frac{1}{2}$

□ Physical baryon states:

How many colors?

Slide from Fabio Maltoni, 2020

Experimental Search for Quarks in the Quark Model

- In e⁺e⁻ collisions (e.g., at SLAC), no single quark has ever been observed in the final state—only jets.
- Millikan's oil drop experiment always found integer electric charges; no particles with fractional charge have been detected.
- Rutherford-like scattering off protons: high-energy e-p collisions probe internal structure.
- Jets are composed of mesons and baryons, which are all color-neutral.

Quark confinement \rightarrow Color confinement.

Deep Inelastic Scattering: Evidence of Internal Structure for Proton

- $e^- + p
 ightarrow e^- + X$ At low Q region, the data points agree with elastic Mott scattering.
 - At high Q region, the data points, corresponding to inelastic scattering, indicating the internal structure of proton.

Bjorken scalling

$$rac{d^2\sigma}{d\Omega dE'} = rac{lpha^2}{4E^2 \sin^4(heta/2)} \left[2W_1(Q^2,
u) \sin^2(heta/2) + W_2(Q^2,
u) \cos^2(heta/2)
ight]$$

- E: incoming electron energy
- θ : electron scattering angle
- $Q^2 = -q^2$: momentum transfer squared
- $\nu = E E'$: energy transferred to the proton
- W_1, W_2 : structure functions (functions of Q^2 and u) $W_1(Q^2,
 u) o F_1(x)$ $u W_2(Q^2,
 u) o F_2(x)$

The SLAC data show that, νW_2 is approximately constant over a wide range of Q² at fixed x. It suggest the high energy photo found approximate free pointlike particle inside proton.

Figures from Halzem&Martin

The $f_i(x)$ represent the probability to find a parton i carries a fraction x of the proton's momentum p (leading order perspective).

E, **p**:

What holds the quarks together? The birth of QCD (1973) Quark Model + Yang-Mill gauge theory

DIS experiment

- Approximate scaling in middle x region.
- Scale violation in small x region (~ log Q^2)
- **SLAC** (Stanford Linear Accelerator Center)
- e⁻e⁺/e⁻p(fixed target)
- Dates of operation: 1966-2006
- Maximum energy: 50 GeV

HERA(Hadron-Electron Ring Accelerator)

- e⁻(e⁺)p
- Dates of operation: 1992-2007
- E_{cm} = 320 GeV

What kind of interaction between quarks?

- The $\pi 0 \rightarrow 2\gamma$ decay and the e^+e^- \rightarrow hadrons / $\mu^+\mu^-$ ratio
 - \rightarrow reveal that quarks carry three color charges.
 - → According to Noether's theorem, conservation laws imply the existence of an internal symmetry.
 - \Rightarrow This motivates the idea of a gauge symmetry associated with color.
- The discovery of the Δ^{++} (uuu) baryon
 - → requires 3 identical quarks to carry different colors, due to the Pauli exclusion principle.
 - → This means quarks can change color, and color exchange occurs locally in interactions.
 - \Rightarrow Therefore, the gauge symmetry must be local, not global.
- Bjorken scaling suggests that partons behave as approximately free particles at high energies. But small logarithmic deviations (scaling violation) are observed, especially in small-x region.
 - \rightarrow These deviations imply a running coupling constant.
 - \Rightarrow Only non-Abelian gauge theories predict this behavior.

These facts collectively imply that the strong interaction between quarks is best described by a local non-Abelian gauge theory!

Experimental Evidence for QCD

Three-jet event observed by TASSO at PETRA (1979)

17

The observation of 3-jet events(PETRA, 1979) confirmed the existence of the gluon and supported the idea that QCD is a local gauge theory.

The angular distributions and cross sections in 4-jet events(PETRA, 1981-1984) revealed the presence of gluon self-interactions, consistent only with a non-Abelian gauge theory.

Evidence of SU(3) as Gauge Group of Strong Interaction

Figures from Z.Phys.C59(1993)357-368

Evidence of SU(3) as Gauge Group of Strong Interaction

At ee collider like LEP:

The differential cross section can be expressed as a sum of three terms in which the colour factors appear only as coefficients accompanying groupindependent kinematic functions

$$\sigma_{q\bar{q}gg} = \sigma_0 \left[F_A(y_{ij}) + \left(1 - \frac{1}{2} \frac{C_A}{C_F} \right) F_B(y_{ij}) \right]$$

$$+\frac{\mathbf{C}_{A}}{\mathbf{C}_{F}} F_{C}(y_{ij}) \bigg],$$

$$\sigma_{q\bar{q}q\bar{q}} = \sigma_{0} \left[\frac{\mathbf{T}_{R}}{\mathbf{C}_{F}} F_{D}(y_{ij}) + \left(1 - \frac{1}{2} \frac{\mathbf{C}_{A}}{\mathbf{C}_{F}} \right) F_{E}(y_{ij}) \right]$$

$$\sigma_{0} = \frac{4 \pi \alpha^{2}}{3 s} N_{C} \sum_{k=1}^{n_{f}} e_{k}^{2} \qquad T_{R} = T_{F} n_{f}$$

qq̄ (2jets), qq̄g (3jets) and qq̄,q ' q̄ ' (4jets), qq̄gg (4jets) 19 Figure from F. JEGERLEHNER, 2008

Evidence of SU(3) as Gauge Group of Strong Interaction

Figures from F. JEGERLEHNER, 2008

Quantum Chromo-dynamics (QCD)

= A quantum field theory of quarks and gluons =

□ Fields: $\psi_i^f(x)$ Quark fields: spin-½ Dirac fermion (like electron) Color triplet: $i = 1, 2, 3 = N_c$ Flavor: f = u, d, s, c, b, t

> $A_{\mu,a}(x)$ Gluon fields: spin-1 vector field (like photon) Color octet: $a = 1, 2, ..., 8 = N_c^2 - 1$

QCD Lagrangian density:

$$\mathcal{L}_{QCD}(\psi, A) = \sum_{f} \overline{\psi}_{i}^{f} \left[(i\partial_{\mu}\delta_{ij} - gA_{\mu,a}(t_{a})_{ij})\gamma^{\mu} - m_{f}\delta_{ij} \right] \psi_{j}^{f} \\ -\frac{1}{4} \left[\partial_{\mu}A_{\nu,a} - \partial_{\nu}A_{\mu,a} - gC_{abc}A_{\mu,b}A_{\nu,c} \right]^{2} \\ + \text{ gauge fixing + ghost terms}$$

□ QED – force to hold atoms together:

$$\mathcal{L}_{QED}(\phi, A) = \sum_{f} \overline{\psi}^{f} \left[(i\partial_{\mu} - eA_{\mu})\gamma^{\mu} - m_{f} \right] \psi^{f} - \frac{1}{4} \left[\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} \right]^{2}$$

QCD is much richer in dynamics than QED

Slide from Jianwei Qiu, 2018

Gluons are dark, but, interact with themselves, NO free quarks and gluons

Gauge property of QCD

□ Gauge Invariance:

$$\psi_{i}(x) \to \psi_{j}'(x) = U(x)_{ji} \psi_{i}(x)$$

$$A_{\mu}(x) \to A_{\mu}'(x) = U(x) A_{\mu}(x) U^{-1}(x) + \frac{i}{g} [\partial_{\mu} U(x)] U^{-1}(x)$$
where $A_{\mu}(x)_{ii} = A_{\mu\nu} (x) (t_{\nu})_{ii}$

where
$$A_{\mu}(x)_{ij} \equiv A_{\mu,a}(x)(t_a)_{ij}$$

 $U(x)_{ij} = \left[e^{i\,\alpha_a(x)\,t_a}\right]_{ij}$ Unitary $[\det=1, \operatorname{SU}(3)]$

Color matrices:

$$[t_a, t_b] = i C_{abc} t_c$$

Generators for the fundamental representation of SU3 color

Gauge Fixing:
$$\mathcal{L}_{gauge} = -\frac{\lambda}{2} (\partial_{\mu} A^{\mu}_{a}) (\partial_{\nu} A^{\nu}_{a})$$

Allow us to define the gauge field propagator: $v, b \xrightarrow{\mu, a} G_{\mu\nu}(k)_{ab} = \frac{\delta_{ab}}{k^2} \left[-g_{\mu\nu} + \frac{k_{\mu}k_{\nu}}{k^2} \left(1 - \frac{1}{\lambda} \right) \right]$

with $\lambda = 1$ the Feynman gauge

Slide from Jianwei Qiu, 2018

Quantum Chromo-dynamics (QCD) Interactions: $-iq(t_a)_{ij}\gamma_{\mu}$ $-g\bar{\psi}\gamma^{\mu}A_{\mu,a}t_{a}\psi$ $-gC_{abc}\left[g_{\mu\nu}(p_1-p_2)\gamma\right]$ $rac{1}{2}gC_{abc}(\partial_{\mu}A_{ u.a}\ -\partial_{ u}A_{\mu,a})A^{\mu}_{b}A^{ u}_{c}$ $+ g_{ u\gamma}(p_2 - p_3)_\mu$ $+ g_{\gamma\mu}(p_3 - p_1)_{\nu}$] $\mu_1 a_1$ H2 a2 $-\frac{g^2}{4}C_{abc}C_{ab'c'} \\ * A^{\mu}_b A^{\nu}_c A_{\mu,b'}A_{\nu,c'}$ $-ig^{2}[C_{ea_{1}a_{2}}C_{ea_{3}a_{4}}]$ * $(g_{\mu_1\mu_3}g_{\mu_2\mu_4})$ $-g_{\mu_1\mu_4}g_{\mu_2\mu_3})$ Yu 4 a4 μ, α. + ...] $\partial_{\mu}\bar{\eta}_{a}\left(gC_{abc}A_{b}^{\mu}\right)\eta_{c}$ $gC_{abc}k_{\mu}$

Slide from Jianwei Qiu, 2018

Renormalization Group □ Physical quantity should not depend on renormalization scale µ → renormalization group equation:

$$\mu^2 \frac{d}{d\mu^2} \,\sigma_{\rm Phy}\left(\frac{Q^2}{\mu^2}, g(\mu), \mu\right) = 0 \quad \Longrightarrow \quad \sigma_{\rm Phy}(Q^2) = \sum_n \hat{\sigma}^{(n)}(Q^2, \mu^2) \left(\frac{\alpha_s(\mu)}{2\pi}\right)^n$$

Running coupling constant:

$$\mu \frac{\partial g(\mu)}{\partial \mu} = \beta(g) \qquad \qquad \alpha_s(\mu) = \frac{g^2(\mu)}{4\pi}$$

QCD β function:

$$\beta(g) = \mu \frac{\partial g(\mu)}{\partial \mu} = +g^3 \frac{\beta_1}{16\pi^2} + \mathcal{O}(g^5) \qquad \beta_1 = -\frac{11}{3}N_c + \frac{4}{3}\frac{n_f}{2} < 0 \quad \text{for } n_f \le 6$$

QCD running coupling constant:

$$\alpha_s(\mu_2) = \frac{\alpha_s(\mu_1)}{1 - \frac{\beta_1}{4\pi}\alpha_s(\mu_1)\ln\left(\frac{\mu_2^2}{\mu_1^2}\right)} \Rightarrow 0 \quad \text{as } \mu_2 \to \infty \quad \text{for } \beta_1 < 0$$

Slide from Jianwei Qiu, 2018

Renormalization Group

Asymptotic Freedom

Randall J. Scalise and Fredrick I. Olness

Infrared and collinear divergences **Consider a general diagram:** $p^2 = 0$, $k^2 = 0$ for a massless theory $\diamond k^{\mu} \rightarrow 0 \Rightarrow (p-k)^2 \rightarrow p^2 = 0$ Infrared (IR) divergence $\diamond k^{\mu} \parallel p^{\mu} \Rightarrow k^{\mu} = \lambda p^{\mu}$ with $0 < \lambda < 1$ $\Rightarrow (p-k)^2 \to (1-\lambda)^2 p^2 = 0$ **Collinear (CO) divergence**

IR and CO divergences are generic problemsSlide from Jianwei Qiu, 2018of a massless perturbation theory

Singularity

IR Safe in the Final State – Inclusive cross section $\Box e^+e^- \rightarrow$ hadron total cross section – not a specific hadron!

If there is no quantum interference between partons and hadrons,

 \Box e⁺e⁻ \rightarrow parton total cross section:

$$\sigma_{e^+e^- \to \text{partons}}^{\text{tot}}(s=Q^2) = \sum_n \sigma^{(n)}(Q^2,\mu^2) \left(\frac{\alpha_s(\mu^2)}{\pi}\right)^n \quad \begin{array}{c} \text{Calculable in pQCD} \\ \text{Slide from Jianwei Qiu, 2018} \end{array}$$

IR Divergence in Initial State – DIS revisit

$$x^{\mu} = (t, x^{1}, x^{2}, x^{3}) \xrightarrow{\text{Light cone cor.}} x^{\mu} = (x^{+}, x^{-}, \vec{x}_{T})$$

$$x^{+} = \frac{1}{\sqrt{2}}(t+z) \text{ light-front time } x^{-} = \frac{1}{\sqrt{2}}(t-z) \text{ conjugate light-front time } \vec{x}_{\perp} = (x^{1}, x^{2})$$
In a reference frame where the proton moves very fast and Q>>m_h is big
$$\frac{4 - \text{vector}}{(p^{+}, p^{-}, \vec{p}_{T})} \frac{1}{\sqrt{2}}(m_{h}, m_{h}, \vec{0})}{(q^{+}, q^{-}, \vec{q}_{T})} \frac{1}{\sqrt{2}}(-m_{h}x, \frac{Q^{2}}{m_{h}x}, \vec{0})}{\frac{1}{\sqrt{2}}(-Q, Q, \vec{0})} \xrightarrow{q}$$

IR Divergence in Initial State – DIS revisit

simple estimate for typical time-scale of interactions among the partons inside a fast-moving hadron:

rest frame:
$$\Delta x^+ \sim \Delta x^- \sim \frac{1}{m}$$

Breit frame: $\Delta x^+ \sim \frac{1}{m} \frac{Q}{m} = \frac{Q}{m^2}$ large
 $\Delta x^- \sim \frac{1}{m} \frac{m}{Q} = \frac{1}{Q}$ small

Interactions between partons are spread out inside a fast moving hadron.

IR Divergence in Initial State – DIS revisit

The space-time picture suggests the possibility of separating short and long-distance physics

Figures from Davison E. Soper, 2000

Factorization

► Arb<u>itrary</u> choice on "C" \rightarrow Factorization scheme

-- MS, DIS schemes, etc.

► PDF absorbs collinear divergence

-- Cannot be fully calculated

-- However, its variation with μ_F is given by

DGLAP evolution equation

$$\frac{\partial q_i(x,\mu_F^2)}{\partial \ln \mu_F^2} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{d\xi}{\xi} q_i(\xi,\mu_F^2) P(\frac{x}{\xi})$$

Take derivative with $\ln \mu_F^2$
 $F_2(x,Q^2) = x$
 $e_q^2 \int_x^1 \frac{d\xi}{\xi} q(\xi,\mu_F^2) \times \{\delta(1-\frac{x}{\xi}) + \frac{\alpha_s}{2\pi} P(\frac{x}{\xi}) \ln \frac{Q^2}{\mu_F^2} + C'\}$
 $\frac{\kappa^2 \to 0}{\kappa^2 \to 0}$
PDF is universal! $q(x,\mu_F^2) = q_0(x) + \frac{\alpha_s}{2\pi} \int_x^1 q_0(\xi) \{P(\frac{x}{\xi}) \ln \frac{\mu_F^2}{\kappa^2} + C'\}$
 $\frac{\Lambda^{rbitrary}}{DF}$

The DGLAP evolution equations

The Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) equations

$$\frac{d}{d\ln Q^2} \begin{pmatrix} q \\ g \end{pmatrix} = \begin{pmatrix} P_{q \leftarrow q} & P_{q \leftarrow g} \\ P_{g \leftarrow q} & P_{g \leftarrow g} \end{pmatrix} \otimes \begin{pmatrix} q \\ g \end{pmatrix}$$
$$P_{qg}(z) = T_R \left[z^2 + (1-z)^2 \right], \qquad P_{gq}(z) = C_F \left[\frac{1 + (1-z)^2}{z} \right],$$
$$P_{gg}(z) = 2C_A \left[\frac{z}{(1-z)_+} + \frac{1-z}{z} + z(1-z) \right] + \delta(1-z) \frac{(11C_A - 4n_f T_R)}{6}$$

 P_{qg} , P_{gg} : symmetric $z \leftrightarrow 1 - z$ (except virtuals) P_{qq} , P_{gg} : diverge for $z \rightarrow 1$ soft gluon emission P_{gg} , P_{gg} : diverge for $z \rightarrow 0$ Implies PDFs grow for $x \rightarrow 0$

The QCD-improved parton model

As the probe energy increases, more details of quantum fluctuations, such as sea quarks and gluons, become visible.

valence quark

What do we know by far?

- Hadrons, like baryons and mesons, are composed of quarks and gluons.
- The strong interaction between quarks is described by QCD, a SU(3) local gauge theory.
- Physical observables must be IR safe, such as inclusive cross sections and jet observables.
- Initial-state infrared singularities are absorbed into the Parton Distribution Functions (PDFs).
- The PDFs evolve with energy scale, governed by the DGLAP equation.
- The PDFs have a dual role:
 - They describe the internal structure of hadrons (quarks and gluons).
 - They are an essential, universal input for calculating any hadron collision process.

How can we extract such non-perturbative, yet universal and essential functions for hadron collisions?

$$\sigma = f_a(x_1, \mu^2) \otimes f_b(x_2, \mu^2) \otimes \hat{\sigma}_{ab}(\mu^2)$$
$$\frac{d\sigma}{d\ln\mu^2} = 0$$
$$\frac{\partial f_a(x, \mu^2)}{\partial\ln\mu^2} = \sum_{j=g,q,\bar{q}} P_{a/j}(x, \mu^2) \otimes f_{j/p}(x, \mu^2)$$

$$\sigma = f_a(x_1, \mu^2) \otimes f_b(x_2, \mu^2) \otimes \hat{\sigma}_{ab}(\mu^2)$$
$$\frac{d\sigma}{d\ln\mu^2} = 0$$
$$\frac{\partial f_a(x, \mu^2)}{\partial\ln\mu^2} = \sum_{j=g,q,\bar{q}} P_{a/j}(x, \mu^2) \otimes f_{j/p}(x, \mu^2)$$
$$xf_a(x, Q_0, \{a_1, a_2, \ldots\}) = x^{a_1}(1-x)^{a_2} P_a(x)$$

- PDFs evolve with energy scale.
- With a given parametrized PDFs at specific energy scale Q_0 scale, the PDFs $f(x,\mu^2)$ is determined

 $\boldsymbol{\sigma} = f_a(x_1, \mu^2) \otimes f_b(x_2, \mu^2) \otimes \hat{\boldsymbol{\sigma}}_{ab}(\mu^2)$

How can we extract such non-perturbative, yet universal and essential functions for hadron collisions?

 $\boldsymbol{\sigma} = f_a(x_1, \mu^2) \otimes f_b(x_2, \mu^2) \otimes \boldsymbol{\hat{\sigma}}_{ab}(\mu^2)$

 $W \rightarrow \overline{V}$

p_{T,I} > 25 GeV

p_{T,v} > 25 GeV

m₇ > 40 GeV

DIS

Drell-Yan

- Uncorr. uncertainty

Total uncertainty

luminosity excluded (+1.8%

ATLAS √s = 7 TeV, 4.6 fb

la/dh/ [pb]

460

44

400

380

320

300

'Data

360 - Data

340 CT14

A .IR14

ABM12

HERAPDF2.0

△ MMHT2014

NNDDE2 (

$\boldsymbol{\sigma} = f_a(x_1, \mu^2) \otimes f_b(x_2, \mu^2) \otimes \hat{\boldsymbol{\sigma}}_{ab}(\mu^2)$

W→I⊽

p_ > 25 GeV

p. > 25 GeV

m- > 40 GeV

Statistic

Regression analysis Uncertainty Estimation 108 CDHSW F2 109 CDHSW F3 204 E866pp - 250 LHCb8ZW 245 LHCb7ZW 101 BCDMS F5 104 NMC F2deu/F2 201 E605 102 BCDMS F2 504 CDF2jet - 160 HERA I+II 1.1 1.12 1.14 1.16 1.18 u(x = 0.3, Q = 100 GeV) 2.0 CT18 at 2 GeV g/5 1.5 $x^{*}f(x,Q)$ - ū - c 0.5 0.0 10^{-6} 10^{-4} 10^{-3} 10^{-1} 0.2 0.5 0.9 10-2 х

$$\frac{\partial f_a(x,\mu^2)}{\partial \ln \mu^2} = \sum_{j=g,q,\bar{q}} P_{a/j}(x,\mu^2) \otimes f_{j/p}(x,\mu^2)$$

$$xf_a(x, Q_0, \{a_1, a_2, \ldots\}) = x^{a_1}(1-x)^{a_2}P_a(x)$$

• With a given parametrized PDFs at specific energy scale Q_0 scale, the PDFs $f(x,\mu^2)$ is determined

But....where? Top down or Bottom up?

Evolution of PDFs: valence quark

Content of Proton

What PDF flavors to fit?

Naive quark model

QCD-improved quark model

$u_{valence}, d_{valence}, gluon, sea quarks....$

If we consider flavor SU(3) symmetry, i.e., $m_u = m_d = m_s$ are massless.

$$u_{sea} = \bar{u}_{sea} = d_{sea} = \bar{d}_{sea} = s_{sea} = \bar{s}_{sea}$$

But further experiement shows that,

$$\bar{u}_{sea} \neq \bar{d}_{sea} \neq \bar{s}_{sea}$$

CT18

Valence quark

Valence quark and Sea Quark

Parametrization of PDFs

The choice of input Q₀ scale is tricky:

- Q_0 need to be large enough to away from Λ_{QCD} ,
- Q₀ need to be smaller enough to reduce input PDF flavors

CTEQ 1.3 GeV MSHT 1.0 GeV NNPDF 1.65 GeV $g, u_v, d_v, s, \bar{u}_s = u_s, \bar{d}_s = d_s$ Where $u = u_s + u_s$ and $d = d_s + d_s$

Where
$$u = u_v + u_s$$
, and $d = d_v + d_s$.

Notice that, \overline{u} , \overline{d} and s are considered to have different PDF momentum fraction.

We will back to this later....

u	$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$
$m_u = 2.2^{+0.6}_{-0.4}$ MeV $m_u/m_d = 0.38$ -0.58	Charge $= \frac{2}{3} e I_Z = +\frac{1}{2}$
d	$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$
$m_d = 4.7^{+0.5}_{-0.4} \text{ MeV} m_s/m_d = 17^{-22} \overline{m} = (m_u + m_d)/2 = 3.$	Charge $= -\frac{1}{3} e l_z = -\frac{1}{2}$ 5 $^{+0.7}_{-0.3}$ MeV
5	$I(J^P) = \mathbb{O}(\frac{1}{2}^+)$
$m_s = 96^{+8}_{-4} \text{ MeV}$ Cha $m_s / ((m_u + m_d)/2) =$	$rge = -\frac{1}{3} e \text{ Strangeness} = -1$ 27.3 ± 0.7
C	$I(J^P) = 0(\frac{1}{2}^+)$
$m_c = 1.27 \pm 0.03 \text{ GeV}$ $m_c/m_s = 11.72 \pm 0.24$ $m_b/m_c = 4.53 \pm 0.05$ $m_b-m_c = 3.45 \pm 0.05$	$Charge = \frac{2}{3} e Charm = +1$ GeV
b	$I(J^P) = \mathbb{O}(\frac{1}{2}^+)$
	Charge = $-\frac{1}{3}e$ Bottom = -1
$m_b(\overline{\text{MS}}) = 4.18 \substack{+0.04 \\ -0.03}{}^{+0.04} \\ m_b(1\text{S}) = 4.66 \substack{+0.04 \\ -0.03}{}^{+0.04} \\ \end{array}$	GeV GeV
t	$I(J^P) = 0(\frac{1}{2}^+)$
	$Charge = \frac{2}{3} e Top = +1$
Mass (direct meas Mass (MS from cr Mass (Pole from c	urements) $m = 173.21 \pm 0.51 \pm 0.71$ GeV [a,b] oss-section measurements) $m = 160^{+5}_{-4}$ GeV [a]

Parametrization of PDFs

$$xf(x, \{a_1, a_2, \ldots\}) = x^{a_1}(1-x)^{a_2}P(x)$$

- $x \rightarrow 0$: $f \propto x^{a_1}$, Regge-like behavior
- $x \rightarrow 1$: $f \propto (1 x)^{a_2}$, quark counting rules
- P(x; a₃, a₄, ...): smooth function for intermediate x range, ex: Bernstein polynomial.

$$egin{aligned} b_{
u,n}(x) \ \equiv \ inom{n}{
u} x^
u (1-x)^{n-
u} \
u = 0 \ , \ \dots \ , n \ , \end{aligned}$$

Requirements for PDF parametrization

• Valence quark number sum rule

$$\int_0^1 [u(x) - \bar{u}(x)] dx = 2, \int_0^1 [d(x) - \bar{d}(x)] dx = 1$$

$$\int_0^1 [s(x) - \bar{s}(x)] dx = 0$$

Where $u = u_v + \bar{u}$, $d = d_v + \bar{d}$. $(s(x) - \bar{s}(x))$ can be non-zero.

1

• Momentum sum rule

$$\sum_{a=q,\bar{q},g} \int_0^1 x f_{a/p}(x,Q) dx = 1$$

CT18 NNLO	gluon	u_v	d_v	dbar+ubar
momentum fraction(1.3GeV, %)	38.4	32.5	13.4	12.9

More Requirements for Fitting

- A valid PDF set must not produce unphysical predictions for observables
 - Any concievable hadron cross section σ must be non-negative: σ > 0. This is typically realized by requiring f_{a/p}(x, Q) > 0.
 - Any cross section asymmetry A must lie in the range $-1 \le A \le 1$. This constrains the range of allowed PDF parametrizations.
- PDF parametrization for $f_{i/p}(x, Q)$ must be "flexible just enough" to reach agreement with the data, without reproducing random fluctuation.

 $\boldsymbol{\sigma} = f_a(x_1, \mu^2) \otimes f_b(x_2, \mu^2) \otimes \boldsymbol{\hat{\sigma}}_{ab}(\mu^2)$

DIS

Drell-Yan

la/dh/ [pb]

'Data

Jet

Experimental Data Access to Proton Structure

DIS data

Deep-inelastic lepton-hadron scattering ($e^{\pm}p$, $e^{\pm}n$, νp , $\bar{\nu}p$, ...)

Kinematic variables

- momentum transfer $Q^2 = -q^2$
- Bjorken variable $x = Q^2/(2p \cdot q)$

61

Gauge boson exchange

- neutral current: γ, Z
- charged current: W^{\pm}

- Cross section $\sigma \simeq L^{\mu\nu} W_{\mu\nu}$
 - leptonic tensor $L_{\mu\nu}$ for neutral/charged current
 - hadronic tensor parametrized through structure functions

$$W_{\mu\nu} = e_{\mu\nu} \frac{1}{2x} F_L(x, Q^2) + d_{\mu\nu} \frac{1}{2x} F_2(x, Q^2) + i\epsilon_{\mu\nu\alpha\beta} \frac{p^{\alpha}q^{\beta}}{p \cdot q} F_3(x, Q^2)$$

Slide from Sven-Olaf Moch. 2007

DIS data

NC (neutral-current)

• NC $e^{\pm}p$ cross section

 $\frac{d^2 \sigma^{NC}(e^{\pm}p)}{dx dQ^2} = \frac{2\pi \alpha^2}{xQ^4} \left[(1 + (1-y)^2) F_2 - y^2 F_L \mp (1 - (1-y)^2) x F_3 \right]$

• valence/sea parton distributions $q \pm \bar{q}$

$$F_2 = \sum_q A_q x \left(q + \bar{q}\right) \text{ with } A_q = e_q^2 + \mathcal{O}\left(\frac{Q^2}{Q^2 + M_Z^2}\right)$$
$$F_3 = \sum_q B_q x \left(q - \bar{q}\right) \text{ with } B_q = \mathcal{O}\left(\frac{Q^2}{Q^2 + M_Z^2}\right)$$

DIS data

NC (neutral-current)

- NC $e^{\pm}p$ cross section $\frac{d^2 \sigma^{NC}(e^{\pm}p)}{dx dQ^2} = \frac{2\pi \alpha^2}{xQ^4} [(1 + (1 - y)^2)F_2 - y^2F_L \mp (1 - (1 - y)^2)xF_3]$
 - valence/sea parton distributions $q \pm \bar{q}$

$$F_2 = \sum_q A_q x \left(q + \bar{q}\right) \text{ with } A_q = e_q^2 + \mathcal{O}\left(\frac{Q^2}{Q^2 + M_Z^2}\right)$$
$$F_3 = \sum_q B_q x \left(q - \bar{q}\right) \text{ with } B_q = \mathcal{O}\left(\frac{Q^2}{Q^2 + M_Z^2}\right)$$

CC (charged-current)

• CC $e^{\pm}p$ cross section \longrightarrow flavour separation:

$$\frac{d^2 \sigma^{CC}(e^+ p)}{dx dQ^2} = \frac{G_F^2}{2\pi} \left(\frac{M_W^2}{M_W^2 + Q^2}\right)^2 \left[\bar{u} + \bar{c} + (1 - y)^2 (d + s)\right]$$

 $\frac{d^{-}\sigma^{\smile \smile}(e^{-}p)}{g^{-}} = \frac{G_{F}^{2}}{2\pi} \left(\frac{M_{W}^{2}}{M_{W}^{2}+Q^{2}}\right)^{2} \left(u + c + (1-y)^{2}(\bar{d}+\bar{s})\right)$ Slide from Sven-Olaf Moch, 2007 $dx dQ^{2}$

Final combined DIS cross sections at HERA

41 data sets on NC and CC DIS from H1 and ZEUS are combined into 1 set. 2927 data points are combined into 1307 data points. 165 correlated systematic errors are reanalyzed and calibrated.

H1 and ZEUS

Drell-Yan Process

The Sidney Drell and Tung-Mow Yan(颜东茂) proposed the process at 1970. Drell-Yan process is "clean" in hadron collider.

X

Drell-Yan Process

 $A_{ch}(y)$ constrains PDF ratio at $Q \approx m_w$:

- d/u at $x \to 1$ at Tevatron 1.96 TeV $(p\bar{p})$
- d/u at x > 0.1 and \bar{d}/\bar{u} at $x \sim 0.01$ at the LHC 7TeV(*pp*)

Inclusive jet production

Subprocess fraction

- Jet process is IR safe by including all final state hadron in a jet.
- High-E_T jets are mostly produced in qq scattering; yet most of the PDF uncertainty arises from qg and gg contributions.
- Typical x is of order 2E_T / √s ≥ 0.1; e.g. x ≈ 0.2 for E_T = 200 GeV, √s = 1.8 TeV. At such x, u quark and d quark are known very well, uncertainty arise mostly from gluon.

Inclusive jet production in pp \rightarrow jet + X

- The cross sections span 12 orders of magnitude
- Almost negligible statistical error
- Systematic uncertainties dominate, both from the experiment (up to 90 correlated sources of uncertainty) and NLO theoretical cross section (QCD scale dependence)

Criteria for determining PDFs

$$\chi^2_{global} = \sum_i \frac{\left[D_i - \sum_k \lambda_k \beta_{ki} - T_i(\{a\})\right]^2}{\sigma_i^2} + \sum_k \lambda_k^2.$$

Where

 D_i is the central value of data,

 $T_i(\{a\})$ is the theoretical prediction of the data,

 σ_i^2 is the qudratic sum of the statistical error and uncorrelated error, β_{ki} is the matrix for correlated error,

and λ_k are the nuisance parameters.

The PDF is obtained by minimizing the global χ^2 function respect to shape parameters $\{a\}$ and nuisance parameters $\{\lambda\}$.

Source of PDF uncertainty

Factorization Theorem:

Data =

- Statistical
- > Systematic
- uncorrelated
- correlated
- > χ^2 definition (experimental or t_0)
- Possible tensions among data sets

Extracted with errors, dependent of methodology of analysis

- Non-perturbative parametrization forms of PDFs
- Additional theory prior

PDFs

> Choice of Tolerance (T^2) value

Hard part cross sections (Wilson coeff.)

Theoretical errors:

- Which order: (NLO, NNLO, ..., resummation – BFKL, qT, threshold)
- > Which scale: (μ_F, μ_R)
- Which code: (antenna subtraction, sector decomposition,..., qT, Njettiness,,...)
- Monte Carlo error: (most efficient implementation,...)

Slide from C.-P. Yuan, 2023

PDFs Uncertainty: Hessian Method

One of the main method to estimate the uncertainty of PDFs is the Hessian method.

$$\chi^2 = \chi_0^2 + \sum_{i,j} H_{ij} y_i y_j, \quad H_{ij} = \frac{1}{2} \left(\frac{\partial^2 \chi^2}{\partial y_i \partial y_j} \right)_0$$

Where $y_i = a_i - a_i^0$ with a_i^0 to be the parameters at minimal χ_0^2 .

2-dim (i,j) rendition of d-dim (~16) PDF parameter space

Original parameter basis

Orthonormal eigenvector basis

PDFs Uncertainty: Hessian Method

Let $X = X(\{a_i\})$ to be the observable as a function of fitting parameter. Using the linear approximation of parameter $\{z_i\}$, the symmetry uncertainty of X is,

$$\Delta X = \frac{1}{2} \left(\sum_{i=1}^{N_p} \left[X(\{z_i^+\}) - X(\{z_i^-\}) \right]^2 \right)^{1/2},$$

Where $\{z_1^{\pm}\} = \{\pm T, 0, ...\}, \{z_2^{\pm}\} = \{0, \pm T, 0, ...\}$ and so on. The asymmetry uncertainty of *X* is,

$$\delta^{+}X = \sqrt{\sum_{i=1}^{N_{a}} \left[\max\left(X_{i}^{(+)} - X_{0}, X_{i}^{(-)} - X_{0}, 0\right) \right]^{2}},$$

$$\delta^{-}X = \sqrt{\sum_{i=1}^{N_{a}} \left[\max\left(X_{0} - X_{i}^{(+)}, X_{0} - X_{i}^{(-)}, 0\right) \right]^{2}},$$
Application of Hessian method : Correlation $\cos \varphi \approx 1$ $\cos \varphi \approx 0$ $\cos \varphi \approx -1$ δY δX δX δX δX

In the framework of the Hessian, the correlation between two variables *X* and *Y* can be worked out as.

$$\cos \varphi = \frac{\vec{\nabla} X \cdot \vec{\nabla} Y}{\Delta X \Delta Y} = \frac{1}{4 \Delta X \Delta Y} \sum_{\alpha=1}^{N} \left(X_{\alpha}^{(+)} - X_{\alpha}^{(-)} \right) \left(Y_{\alpha}^{(+)} - Y_{\alpha}^{(-)} \right)$$

where the ΔX and ΔY are their symmetric uncertainties. By this correlation angle φ , the tolerance ellipse is defined by

$$X = X_0 + \Delta X \cos \theta, \ Y = Y_0 + \Delta Y \cos(\theta + \varphi),$$

Application of Hessian method : Sensitivity

- The correlation cosine between PDF *f*(*x*, μ) and theoretical prediction *T_i* contains no information of the experimental uncertainty.
- The correlation cosine $C_f(x_i, \mu_i)$ between PDF $f(x, \mu)$ and residual r_i contains no information of the experimental uncertainty in practice

$$C_f(x_i, \mu_i) = \frac{\vec{\nabla} f(x_i, \mu_i) \cdot \vec{\nabla} r_i}{\Delta f(x_i, \mu_i) \Delta r_i}, \text{ where}$$

$$\chi^2 = \sum_{i}^{N} r_i^2 + \sum_{k} \lambda_k^2, \quad r_i(\vec{a}) = \frac{D_i - \sum_k \lambda_k \beta_{ki} - T_i(\{a\})}{\sigma_i}$$

• Instead, we concern the "sensitivity" $S_f(x_i, \mu_i)$

$$S_f(x_i, \mu_i) = C_f(x_i, \mu_i) \frac{\Delta r_i}{\sqrt{\frac{\sum_{i=1}^{N} r_i^2}{N}}}$$

Application of Hessian method : Sensitivity

The sensitivity S_f(xi , μ i) help us to visualize the potential impact on PDF in x – Q plane. $u(x,\mu)$

Application of Hessian method : Sensitivity

 $g(x,\mu)$

Application of Hessian method : Hessian Updating

ePump error PDF Update Method Package

https://epump.hepforge.org/

Application of Hessian method : Hessian Updating

- New best-fit PDF : $f_{\text{new}}^0 = f^0 + \Delta f \cdot \mathbf{z}$
- New error PDFs: $f^{\pm(r)} = f_{\text{new}}^0 \pm \frac{1}{\sqrt{1+\lambda^{(r)}}} \Delta f \cdot \mathbf{U}^{(r)}$

where $/^{(r)}$ and $\mathbf{U}^{(r)}$ are the eigenvalues and eigenvectors of matrix \mathbf{M}

- Extensions :
 - Best choices for Δf within the linear approximation
 - Dynamical tolerances : $\pm \mathbf{e}^i \mathrel{\triangleright} \pm (T^{\pm i}/T) \mathbf{e}^i$
 - Inclusion of diagonal quadratic terms in expansion of $X_{\alpha}(\mathbf{z})$
 - Direct update of other observables :

$$Y_{\text{new}}^{0} = Y^{0} + \Delta Y \cdot \mathbf{z} \quad , \quad |\Delta Y| = \Delta Y \cdot (\mathbf{1} + \mathbf{M})^{-1} \cdot \Delta Y$$

Lagrange Multiplier Method

Conaider a particular physical quantity, say $X(\{a_i\})$, which is a function of PDFs.

$$F(\lambda, \{a_i\}) = \chi^2(\{a_i\}) + \lambda(X(\{a_i\}) - X(\{a_i^{(0)}\}))$$

By minimizing this function with various fixed λ value, say $\lambda_1, ..., \lambda_j, ..., \lambda_n$, we will obtain *n* parameter sets $\{a_i(\lambda_j)\}$ and corresponding $X(\{a_i(\lambda_j)\})$ and $\chi^2(\{a_i(\lambda_j)\})$. With suitable choice of $\Delta \chi^2$, we obtain the uncertainty of the physical quantity $X(\{a_i\})$.

Taking CT18 as Example Experimental data in CT18 PDF analysis 00 • HERAI+II'15 • ZyCDF2'10 • BCDMSp'89 • HERAB'06 • BCDMSp'90 • HERA-FL'11 • MCPure 72 • CMSTERS'12

CT18 parametrization

- CT18 sample result of exploring various non-perturbative parametrization forms. 81
- There is no data to constrain very large or very small x region.

CT18 PDFs

CT18 PDFs

Momentum Fraction evolution with Q

α_s Extraction from LM Method

Summary

- The parton distribution functions (PDFs) play an essential role in hadron collisions they are both a description of the proton's internal structure and a necessary input for predicting cross sections in QCD processes.
- One of the primary methods for determining PDFs is global analysis, which uses regression techniques to fit a wide range of infrared-safe experimental data.
- The uncertainty of the PDFs is quantified using statistical frameworks, among which the Hessian method remains widely used due to its efficiency and interpretability.