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Light vector and pseudoscalar mesons

Light meson SU(3) [u, d, s] multiplets (octet + singlet):

uu dd

ss

uddu

usds

sdsu

• Vector mesons

meson quark content mass (MeV)

ρ+/ρ− ud̄ /dū 775

ρ0 (uū− dd̄)/
√
2 775

K∗+/K∗− us̄ /sū 892

K∗0/K̄∗0 ds̄ /sd̄ 896

ω (uū+ dd̄)/
√
2 783

ϕ ss̄ 1019

☞ approximate SU(3) symmetry

☞ very good isospin SU(2) symmetry

mρ0 −mρ± = (−0.7± 0.8) MeV, mK∗0 −mK∗± = (6.7± 1.2) MeV
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Light vector and pseudoscalar mesons

Light meson SU(3) [u, d, s] multiplets (octet + singlet):

uu dd

ss

uddu

usds

sdsu

• Pseudoscalar mesons

meson quark content mass (MeV)

π+/π− ud̄ /dū 140

π0 (uū− dd̄)/
√
2 135

K+/K− us̄ /sū 494

K0/K̄0 ds̄ /sd̄ 498

η ∼ (uū+ dd̄− 2ss̄)/
√
6 548

η′ ∼ (uū+ dd̄+ ss̄)/
√
3 958

☞ very good isospin SU(2) symmetry

mπ± −mπ0 = (4.5936± 0.0005) MeV, mK0 −mK± = (3.937± 0.028) MeV

☞ Why are the pions so light? Pseudo-Nambu-Goldstone bosons of the
spontaneous breaking of chiral symmetry: SU(2)L × SU(2)R → SU(2)V
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QCD symmetries

LQCD =
∑

f=
u,d,s,
c,b,t

q̄f (iD̸ −mf )qf − 1

4
Ga

µνG
µν,a +

g2sθ

64π2
ϵµνρσGa

µνG
a
ρσ

• Exact: Lorentz-invariance, SU(3)c gauge, C (and P , T for θ = 0 w/ real mf )

• Approximate:

☞ Spontaneously broken chiral
symmetry:
SU(Nf )L × SU(Nf )R

SSB−→
SU(Nf )V

☞ Heavy quark spin symmetry (HQSS)

☞ Heavy quark flavor symmetry (HQFS)

☞ Heavy aiquark-diquark symmetry
(HADS)
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Chiral symmetry
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Chiral symmetry (1)

• Masses of the three lightest quarks u, d, s are small
⇒ approximate chiral symmetry

• Chiral decomposition of fermion fields:

ψ =
1

2
(1− γ5)ψ +

1

2
(1 + γ5)ψ ≡ PLψ + PRψ = ψL + ψR

☞ Properties: (γ5)2 = 1, {γ5, γµ} = 0

☞ PL
2 = PL, PR

2 = PR,
PLPR = PRPL = 0, PL + PR = 1

• For massless fermions, left-/right-handed fields do not interact with each other

L[ψL, ψR] = iψ̄LD̸ψL + iψ̄RD̸ψR −m
(
ψ̄LψR + ψ̄RψL

)
gluon

ψR ψR

mass

ψR ψL
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Chiral symmetry (2)

• Decompose LQCD into L0
QCD, the QCD Lagrangian in the 3-flavor chiral limit

mu = md = ms = 0, and the light quark mass term:

LQCD = L0
QCD − q̄Mq , q = (u, d, s)T , M = diag(mu, md, ms)

• L0
QCD = iq̄LD̸qL + iq̄RD̸qR + . . .

is invariant under U(3)L×U(3)R transformations:

L0
QCD(Gµν , q

′, Dµq
′) = L0

QCD(Gµν , q, Dµq)

q′ = RPRq + LPLq = RqR + LqL

R ∈ U(3)R, L ∈ U(3)L

• Parity: q(t, x⃗)
P→ γ0q(t,−x⃗)

⇒ qR(t, x⃗)
P→ PRγ

0q(t,−x⃗) = γ0PLq(t,−x⃗) = γ0qL(t,−x⃗)
qL(t, x⃗)

P→ γ0qR(t,−x⃗)
• U(3)L × U(3)R = SU(3)L × SU(3)R × U(1)L × U(1)R
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Chiral symmetry (3)

• U(3)L × U(3)R = SU(3)L × SU(3)R × U(1)V × U(1)A

• {e−iαa
ATaγ5}(αa

A ∈ R) do not form a group (the closure property not satisfied).

Baker-Compbell-Hausdorff formula: eXeY = eX+Y+ 1
2 [X,Y ]+...; (γ5)2 = 1
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Chiral symmetry (4)

• Decompose U(3)L × U(3)R = SU(3)L × SU(3)R × U(1)V × U(1)A :

18 conserved (Noether) currents for massless QCD at the classical level

Jµ,a
L,R = q̄L,Rγ

µλ
a

2
qL,R , Jµ,0

L,R = q̄L,Rγ
µqL,R, (λa : Gell-Mann matrices)

• rewritten in terms of vector (V = L+R) and axial vector (A = R− L) currents

V µ,a = q̄γµ
λa

2
q , Aµ,a = q̄γµγ5

λa

2
q

∂µV
µ,a = 0 , ∂µA

µ,a = 0

• U(1)V : baryon or quark number conservation

V µ,0 = q̄γµq, ∂µV
µ,0 = 0

• U(1)A: explicitly broken by quantum effects, anomaly

Aµ,0 = q̄γµγ5q, ∂µA
µ,0 =

Nfg
2
s

32π2
ϵµνρσGa

µνG
a
ρσ

⇒ the θ-term, |θ̄| ≲ 10−10 (θ̄ ≡ θ + arg detM) ⇒ strong CP problem

• Is SU(3)L × SU(3)R realized in hadron spectrum?
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Wigner–Weyl v.s. Nambu–Goldstone

• Noether’s theorem: continuous symmetry ⇒ conserved currents

Let Qa be symmetry charges: Qa =
∫
d3x⃗ Ja,0(t, x⃗), ∂µJ

a,µ = 0

• Qa is the symmetry generator: g = eiα
aQa

, H : Hamiltonian, thus

gHg−1 = H ⇒ [Qa, H] = 0,

[Qa, H]|0⟩ = QaH|0⟩︸ ︷︷ ︸
=0

−HQa|0⟩ = 0

• Wigner–Weyl mode: Qa|0⟩ = 0 or equivalently g|0⟩ = |0⟩
degeneracy in mass spectrum

• Nambu–Goldstone mode: g|0⟩ ≠ |0⟩, spontaneously broken (hidden)
Qa|0⟩ ≠ 0: new states degenerate with vacuum (HQa|0⟩ = 0), massless
Goldstone bosons

☞ spontaneously broken continuous global symmetry ⇒ massless GBs
☞ the same quantum numbers as Qa|0⟩ ⇒ spinless
☞ #(GBs) = #(broken generators)
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Fate of SU(3)L×SU(3)R (1)

Vector and axial charges:

Qa
V = Qa

L +Qa
R, Qa

A = Qa
R −Qa

L, [Qa
V,A, H

0
QCD] = 0

here H0
QCD: QCD Hamiltonian in the chiral limit.

Under parity transformation: qR → γ0qL, qL → γ0qR

Jµ,a
L → Ja

R,µ, Jµ,a
R → Ja

L,µ

⇒ PQa
V P

−1 = Qa
V , PQa

AP
−1 = −Qa

A

For an eigenstate of H0
QCD, |ψα⟩ = b†α|0⟩: H0

QCD|ψα⟩ = E|ψα⟩ with
P |ψα⟩ = ηP |ψα⟩, then

H0
QCDQ

a
A|ψα⟩ = Qa

AH
0
QCD|ψα⟩ = EQa

A|ψα⟩,
P Qa

A|ψα⟩ = P Qa
AP

−1P |ψα⟩ = −ηPQa
A|ψα⟩

Parity doubling: Qa
A|ψα⟩ = Qa

Ab
†
α|0⟩ =

[
Qa

A, b
†
α

]
|0⟩︸ ︷︷ ︸

=(ta)αβb
†
β−|0⟩

+b†αQ
a
A|0⟩ has the same mass

but opposite parity
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Fate of SU(3)L×SU(3)R (2)

• But, in the hadron spectrum:

mNucleon, P=+ = 939 MeV ≪ mN∗(1535), P=− = 1535 MeV,

mπ, P=− = 139 MeV ≪ ma0(980), P=+ = 980 MeV

• No parity doubling in hadron spectrum ⇒

Qa
A|0⟩ ≠ 0, or eiα

aQa
A |0⟩ ≠ |0⟩

Nambu–Goldstone mode (hidden symmetry):

In QCD, SU(3)L×SU(3)R is spontaneously broken down to SU(3)V

• GBs should have JP = 0−
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SSB in linear σ model (1)

• Linear σ model with an O(4) symmetry

LLSM =
1

2
∂µΦ

T∂µΦ− V (Φ),

V (Φ) =
λ

4

(
ΦTΦ− v2

)2
, with ΦT = (σ, π1, π2, π3)

• σ = πa = 0 is not a minimum of V (Φ) for v2 > 0

There is a continuum of degenerate vacua: ΦT
minΦmin = v2

Choose Φmin = (v, 0, 0, 0), vacuum is only invariant under O(3) rotations

spontaneous symmetry breaking: O(4) → O(3)

• Perturb around Φmin = (v, 0⃗), let Φ = Φmin + (σ′, π1, π2, π3)
T , then

LLSM =
1

2
∂µπa∂

µπa +
1

2
∂µσ

′∂µσ′ − λ

4

(
σ′ 2 + πaπa + 2vσ′)2

☞ Goldstone bosons (GBs): πa’s are massless

☞ σ′ is massive: m2
σ′ = 2λv2

☞ mσ′ and 5 interaction terms described by only 2 parameters
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SSB in linear σ model (2)

LLSM =
1

2
∂µπa∂

µπa +
1

2
∂µσ

′∂µσ′ − λ

4

(
σ′ 2 + πaπa + 2vσ′)2

Only 2 parameters, important for cancellation!

Examples: tree-level scattering amplitudes

• π3(p1)π3(p2) → π3(p3)π3(p4) (individually large terms!)

iA = + + +

= −i6λ +
i(−2iλv)2

s− (2λv2)
+

i(−2iλv)2

t− (2λv2)
+

i(−2iλv)2

u− (2λv2)

= −i6λ+
i

2λv2
(2λv)2

(
3 +

s+ t+ u

2λv2

)
+O

(
p4π
m4

σ

)
= O

(
p4π
m4

σ

)
pπ : a generic momentum of GBs

Mandelstam variables: s = (p1 + p2)
2, t = (p1 − p3)

2, u = (p1 − p4)
2,

s+ t+ u =
∑

i p
2
i
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SSB in linear σ model (3)

• π3σ
′ → π3σ

′

Exercise: Show that at tree-level

A(π3σ
′ → π3σ

′) = O
(

p2
π

m2
σ

)
Lessons from the linear σ model:

☞ SSB happens when there is a degeneracy of the vacuum

☞ nonvanishing VEV of some Hermitian operator, here ⟨σ⟩ = v

☞ SSB ⇒ massless GBs (πa), # = dim(O(4))− dim(O(3)) = 3

☞ GBs decouple at vanishing momenta!
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Derivative coupling

Symmetry implies a derivative coupling for GBs, i.e.,

GBs do not interact at vanishing momenta

• Consider GB πa: ⟨πa|Qa
A|0⟩ =

∫
d3x ⟨πa|Aa

0(x)|0⟩ ≠ 0

Lorentz invariance ⇒
〈
πa(q)|Aa

µ(0)|0
〉
= −iqµFπ

• Consider the matrix element

⟨ψ1|Aa
µ(0)|ψ2⟩ =

Aaµ

ψ1 ψ2
+

ψ1 ψ2

Aaµ

πa

T

= Ra
µ + Fπq

µ 1

q2
T a

Current conservation ⇒ qµAa
µ = 0, thus

qµRa
µ + FπT

a = 0 ⇒ lim
qµ→0

T a = 0

• ⇒ GBs couple in a derivative form !!
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SSB in QCD

• Hamiltonian invariant under a group G = SU(Nf )L × SU(Nf )R,

vacuum invariant under its vector subgroup H = SU(Nf )V .

Qa
V |0⟩ = 0, Qa

A|0⟩ ≠ 0

• Nonvanishing chiral condensate: ⟨q̄q⟩ = ⟨0 |(q̄LqR + q̄RqL)| 0⟩ ≠ 0

• SSB ⇒ massless pseudoscalar Goldstone bosons

#(GBs) = dim(G)− dim(H) = N2
f − 1

for Nf = 3, 8 GBs: π±, π0,K±,K0, K̄0, η

for Nf = 2, 3 GBs: π±, π0

Pions get a small mass due to explicit symmetry

breaking by tiny mu,d (a few MeV)

Mπ ≪Mother hadron

also, ms ≫ mu,d ⇒ MK ≫Mπ

• Mechanism for SU(Nf )L × SU(Nf )R → SU(Nf )V in QCD not well understood
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Chiral perturbation theory
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Low-energy effective field theory (EFT)

S. Weinberg, “Phenomenological Lagrangians”, Physica 96A (1979) 327

Translation:
☞ The most general effective Lagrangian, up to a given order, consistent with the

symmetries of the underlying theory
⇒ results consistent with the underlying theory (with unitarity satisfied only
perturbatively)!

☞ The degrees of freedom can be different from those of the underlining theory
⇒ we can work with hadrons directly for low-energy QCD, really effective!
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Low-energy EFT (2)

However, the “most general” means

• an infinite number of parameters ⇒ intractable (?)
• nonrenormalizable (in contrast to, e.g., QED and QCD)

Solution: systematic expansion with a power counting
• only a finite number of parameters at a given order, can be determined from

☞ experiments
☞ lattice calculations for QCD

• renormalize order by order
• existence of a small (dimensionless) quantity, e.g.,

separation of energy scales, E ≪ Λ ⇒ expansion in powers of (E/Λ)
Neutron decay (n→ pe−v̄e): weak interactions for |q2| ≪M2

W (decoupling EFT)

e2

2 sin2 θW

1

M2
W − q2

=
e2

2M2
W sin2 θW

(
1 +

q2

M2
W

+ . . .

)
=

4GF√
2

+O
(

q2

M2
W

)
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Low-energy EFT (3)

• Pro: model-independent, controlled uncertainty

• Con: number of parameters increases fast when going to higher orders

Things need to be remembered for an EFT:

• separation of energy scales:
systematic expansion with a power counting

• symmetry constraints from the full theory

For low-energy QCD, we consider

☞ (approximate) chiral symmetry of light quarks
⇒ CHiral Perturbation Theory (non-decoupling EFT)
full theory ⇒ EFT via spontaneous symmetry breaking (SSB)

generation of new light degrees of freedom

☞ heavy quark symmetry: spin and flavor
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Chirl perturbation theory (CHPT) as low-energy EFT for QCD

CHPT: a low energy EFT for QCD:

• an example for a non-decoupling EFT:

degrees of freedom are different from those of the underlying theory

• a theory for the Goldstone bosons of SU(Nf )L × SU(Nf )R → SU(Nf )V

• most general Lagrangian with the same global symmetries as QCD

How do the Goldstone bosons transform under SU(Nf )L × SU(Nf )R?
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Nonlinear realization of chiral symmetry (1)

Weinberg (1968); Coleman, Wess, Zumino (1969); Callan, Coleman, Wess, Zumino (1969)

To study the transformation properties of the Goldstone bosons (GBs)
• Assume G

SSB−→ H , we have GBs

Φ = (ϕi, . . . , ϕn), n = dim(G)− dim(H)

• Recall for SSB, g|0⟩ ≠ |0⟩ produces massless GBs
g|0⟩ = gh|0⟩ since the vacuum is invariant under h ∈ H

GBs are defined up to the equivalence g ∼ gh, i.e., GBs live in the coset space
G/H

• Left coset of H with respect to g ∈ G: gH = {gh|h ∈ H}
coset space G/H : set of all left cosets {gH|g ∈ G}

☞ Two left cosets either completely overlap or completely disjoint

If g1h1︸︷︷︸
∈g1H

= g2h2︸︷︷︸
∈g2H

, then g1h1H︸ ︷︷ ︸
=g1H

= g2h2H︸ ︷︷ ︸
=g2H

☞ dim(G/H) = dim(G)− dim(H)

• GBs live in the coset space G/H :
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Nonlinear realization of chiral symmetry (2)

• Cosets either completely overlap or completely disjoint

⇒ free to choose the set of representative elements / set of coordinates on G/H

E.g., for h1,2 ∈ H , we can choose either gh1 or gh2 to represent the coset gH

• Transformation properties of the GBs uniquely determined
once the set of rep. elements have been chosen:

Parameterizing GBs by u ∈ G/H

transformation under g ∈ G

g u = u′ h(g, u)

since any element of the coset {u′h(g, u)|h(g, u) ∈ H} can be used

⇒ Nonlinear transformation of GBs

u
g∈G→ u′ = g u h−1(g, u)
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Application to QCD (1)

For QCD, G = SU(Nf )L × SU(Nf )R
SSB−→ H = SU(Nf )V

• g = (gL, gR) ∈ SU(Nf )L × SU(Nf )R for gL ∈ SU(Nf )L , gR ∈ SU(Nf )R

g1g2 = (gL1
, gR1

)(gL2
, gR2

) = (gL1
gL2

, gR1
gR2

)

• Choice of a representative element inside each left coset is free

(gL, gR)H = (gLg
†
R, 1) (gR, gR)︸ ︷︷ ︸

∈H=SU(Nf )V

H = (gLg
†
R, 1)H

☞ Goldstone bosons can be parameterized by

U = gLg
†
R = exp

(
i
ϕ

F ′

)
here, ϕ =

∑8
a=1 λaϕa for SU(3), and τ⃗ · π⃗ for SU(2)

λa: Gell-Mann matrices, τi(i = 1, 2, 3): Pauli matrices

ϕa (πi) : Goldstone boson fields

F ′ : dimensionful constant (to be determined later)
Feng-Kun Guo (fkguo@itp.ac.cn) CHPT 14 July 2025 25 / 81



Application to QCD (2)

• Acting g = (L, R) ∈ G on the coset (U,1)H

g (U,1)H = (LU, R)H = (LU R†R, R)H = (LU R†,1) (R, R)︸ ︷︷ ︸
∈SU(Nf )V

H

⇒ transformation property of U :

U
g→ LU R†

One can also parametrize the GBs such that U
g→ RU L†. Any one is okay if

used consistently.

• For g ∈ H = SU(Nf )V , we have R = L

U → LU L† ⇒ ϕ→ LϕL†

i.e., GB fields transform linearly under SU(Nf )V
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CHPT at leading order
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Construction of the effective Lagrangian for GBs (1)

Aim: reproduce low-energy structure of QCD

• Effective Lagrangian invariant under G = SU(Nf )L × SU(Nf )R (and C, P )

U
G→ LU R†, U

C→ UT , U
P→ U†

• What does "low-energy" mean here?

Goldstone boson fields (contained in U ) as the only degrees of freedom

⇒ energy range restricted to well below 1 GeV

(separation of energy scales, more see later)

• Low energies: expand in powers of momenta ( = number of derivatives)

• Lorentz invariance ⇒ only even number of derivatives are allowed

L = L(0) + L(2) + L(4) + . . .

• L(0)? U is unitary, UU† = 1, hence

⟨(UU†)n⟩ = const. , ⟨. . .⟩ ≡ Trflavor[. . .]

⇒ Leading non-trivial term is L(2)
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Construction of the effective Lagrangian for GBs (2)

• Leading term of the effective Lagrangian is L(2)

just one single term (nonlinear σ model):

L(2) =
F 2

4
⟨∂µU∂µU†⟩ with U = exp

(
iϕ

F ′

)

ϕ SU(2) =

(
π0

√
2π+

√
2π− −π0

)
, ϕ SU(3) =

√
2


ϕ3√
2
+ ϕ8√

6
π+ K+

π− − ϕ3√
2
+ ϕ8√

6
K0

K− K̄0 − 2ϕ8√
6
,


i.e. ϕ SU(2) = τaπa, ϕ SU(3) = λaϕa, with τa(a = 1, 2, 3) and λa(a = 1, 2, . . . , 8)

the Pauli and Gell-Mann matrices, respectively

• L(2) is invariant under SU(Nf )L × SU(Nf )R:

⟨∂µU∂µU†⟩ → ⟨∂µU ′∂µU ′†⟩
= ⟨L∂µUR†R∂µU†L†⟩ = ⟨∂µU∂µU†⟩

Note that
〈
U∂µU†〉 = 0, therefore

〈
U∂µU

†〉 〈U∂µU†〉 is not present.
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The low-energy constant F

• Expand U in powers of ϕ, U = 1 + iϕ
F ′ − ϕ2

2F ′2 + . . .

⇒ canonical kinetic terms L(2) = ∂µπ
+∂µπ− + ∂µK

+∂µK− + . . .

for F ′ = F

• Calculate the Noether currents Lµ
a , Rµ

a from L(2) ⇒

V µ
a = Rµ

a + Lµ
a = i

F 2

4
⟨λa
[
∂µU,U†]⟩

Aµ
a = Rµ

a − Lµ
a = i

F 2

4
⟨λa
{
∂µU,U†}⟩

• Expand the currents in powers of ϕ, Aµ
a = −F∂µϕa +O

(
ϕ3
)

⟨0|Aµ
a(x)|ϕb(p)⟩ = ipµF e−ip·x δab

⇒ F is the pion decay constant in the chiral limit

F ≈ Fπ

Fπ = 92.2 MeV measured in the leptonic decay of the pion π+ → ℓ+νℓ
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PCAC

So far, only considered chiral limit mu = md = ms = 0.

For non-zero quark masses,

• the singlet vector current still conserved (baryon number conservation)

∂µVµ = 0

• vector currents V a
µ conserved when mu = md = ms= m (i.e., M = m1)

∂µV a
µ = i q̄

[
M,

λa

2

]
q

• Aa
µ not conserved any more: Partially Conserved Axial Current (PCAC)

∂µAa
µ = i q̄

{
M,

λa

2

}
q
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Explicit symmetry breaking: quark masses

• In the chiral limit mu = md = ms = 0

☞L(2) =
F 2

4

〈
∂µU∂

µU†〉 contains no terms ∝M2ϕ2

☞ theory for massless Goldstone bosons, but pions have nonvanishing masses

• In nature, u, d, s quark masses are small (mu,d,s ≪ ΛQCD), but non-zero

☞ chiral symmetry explicitly broken

Lm = −q̄RmqL − q̄LmqR

☞ if symmetry breaking is weak ⇒
a perturbative expansion in the quark masses

• Effective Lagrangian is still an appropriate tool to systematically derive all
symmetry relations

CHiral Perturbation Theory (CHPT):

double expansion in low momenta and quark masses
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Explicit symmetry breaking: the spurion trick (1)

Spurion in 3 steps: very useful trick for explicit symmetry breaking

1. Introduce a spurion field (e.g. quark mass, electric charge, γµ, . . . ) with
a transformation property so that the symmetry breaking term in the full
theory is invariant

2. Write down invariant operators in EFT including the spurion field

3. Set the spurion field to the value which it should take
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Explicit symmetry breaking: the spurion trick (2)

• Apply the spurion trick to quark masses:

L QCD = L0
QCD−q̄LMqR − q̄RM†qL

☞ Treat M as a complex spurion field

M → M′ = LMR†

☞ Then construct Lagrangian invariant under SU(Nf )L × SU(Nf )R

L eff = L eff(U, ∂U, ∂
2U, . . . ,M)

☞ This procedure guarantees that chiral symmetry is broken in exactly the
same way in the effective theory as it is in QCD

L2 =
F 2

4

[
⟨∂µU∂µU†⟩+ 2B⟨MU† +M†U⟩

]
with U → LUR†

• The spurion trick is very useful to construct EFT operators with a given symmetry
transformation property
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LO chiral Lagrangian with the mass term (1)

L(2) =
F 2

4

[
⟨∂µU∂µU†⟩+ 2B⟨MU† +M†U⟩

]
• At LO [SU(3)]:

M2
π± = B(mu +md)

M2
K± = B(mu +ms)

M2
K0 = B(md +ms)

• Gell-Mann–Oakes–Renner (GMOR) relation:

M2
GB ∝ mq

☞ CHPT can be used to extrapolate lattice re-
sults from large to the physical values of mu,d

(or equivalently pion masses)

GMOR relation on lattice:

ETM Col., JHEP08(2010)097

• Unified power counting for derivative and quark mass expansions:

mq = O
(
p2
)
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LO chiral Lagrangian with the mass term (2)

L(2) =
F 2

4

[
⟨∂µU∂µU†⟩+ 2B⟨MU† +M†U⟩

]
• Flavor-neutral states ϕ3, ϕ8 are mixed:

B

2

(
ϕ3

ϕ8

)T (
mu +md

1√
3
(mu −md)

1√
3
(mu −md)

1
3 (mu +md + 4ms)

)(
ϕ3

ϕ8

)

• Diagonalize with (
π0

η

)
=

(
cos ϵπ0η sin ϵπ0η

− sin ϵπ0η cos ϵπ0η

)(
ϕ3

ϕ8

)

• Exercise: derive the π0η mixing angle:

ϵπ0η =
1

2
arctan

( √
3(md −mu)

2ms −mu −md

)
≃

√
3

2

md −mu

2ms −mu −md
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LO chiral Lagrangian with the mass term (3)

• Mass eigenvalues:

M2
π0 = B(mu +md)−O

(
(mu −md)

2
)

M2
η =

B

3
(mu +md + 4ms) +O

(
(mu −md)

2
)

• At LO w/o electromagnetic effects,

M2
π± =M2

π0 ,

in the isospin limit mu = md:

M2
K± =M2

K0 (of course!)

• Gell-Mann–Okubo (GMO) mass formula for pseudoscalars:

4M2
K = 3M2

η +M2
π

⇒ a LO relation, fulfilled in nature at 7% accuracy
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LO chiral Lagrangian with the mass term (4)

Exercise: One possible solution of the strong CP problem is the Peccei-Quinn (PQ)
mechanism which introduces a global U(1) symmetry, called the PQ symmetry. Axion
is the pseudo-Goldstone boson of the spontaneous breaking of this symmetry. Its
properties can be studied in CHPT by changing the quark mass matrix M to
MeiXa/fa with a the axion field, fa the axion decay constant, and X satisfying
⟨X⟩ = 1. Consider the LO mass term of the SU(2) version of CHPT with axion,

L(2)
a =

F 2

2
B⟨MeiXa/faU† + h.c.⟩,

where h.c. represents the Hermitian conjugated term.
1) show that there will be no a-π0 mixing if we choose X = M−1/⟨M−1⟩;
2) show that the axion mass squared is given by

m2
a =

F 2M2
π

f2a

mumd

(mu +md)2
.
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Quark mass ratios

• Unknown parameter B prevents quark mass determination

• Quark mass ratios:
mu

md
=
M2

K+ −M2
K0 +M2

π+

M2
K0 −M2

K+ +M2
π+

≈ 0.67

ms

md
=
M2

K0 +M2
K+ −M2

π+

M2
K0 −M2

K+ +M2
π+

≈ 22

• Sizable mu/md, but why no large isospin violation in nature?

☞ (md −mu)/ms (see π0η mixing angle) is small

☞ (md −mu)/ΛQCD is small

• Pion mass difference due to md −mu:

M2
π0 =M2

π+

{
1− (md −mu)

2

8m̂(ms − m̂)
+ . . .

}
this leads to Mπ+ −Mπ0 ≈ 0.2 MeV

vs. (Mπ+ −Mπ0) exp ≈ 4.6 MeV
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Electromagnetic effects

• Two sources of isospin symmetry breaking:

☞ mu ̸= md

☞ electromagnetic effects, Qu(=
2
3 ) ̸= Qd(= − 1

3 ) (in units of e)

• Coupling of L(2) to external vector (vµ) / axial vector (aµ) currents via covariant

derivative straightforward:

∂µU −→ DµU = ∂µU − i[vµ, U ] + i{aµ, U}

〈
DµUD

µU†〉 contains π+

γ

, but misses, e.g.,
π+

u

d̄

• Including photons only through the minimal substitution does not generate the

most general e.m. effects

⇒ has to include chirally invariant local operators of O
(
e2
)

for virtual photons
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Virtual photons (1)

• Using the spurion trick for quark electric charge matrix Q = e diag
(
2
3 ,− 1

3 ,− 1
3

)
as for the quark mass term:

L em = −q̄QA̸q −→ −q̄LQLA̸qL − q̄RQRA̸qR

☞ Pretend QL,R transform as:

QL 7−→ LQLL
† , QR 7−→ RQRR

†

☞ Construct terms invariant under SU(3)L × SU(3)R

☞ Set QL = QR = Q in the end

• Power counting: QL,R = O (p)

• Only one term at O
(
e2
)
= O

(
p2
)

L(2)
em = C

〈
QLUQRU

†〉
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Virtual photons (2)

• Contribution to the meson masses:

M2
π± = B(mu +md) +

2Ce2

F 2
, M2

K± = B(mu +ms) +
2Ce2

F 2

no contributions to neutral meson masses or π0η mixing

• Dashen’s theorem: (
M2

π+ −M2
π0

)
em

=
(
M2

K+ −M2
K0

)
em

in the chiral limit

• Constant C fixed: C =
F 2
π

2e2
(
M2

π+ −M2
π0

)
• Improved quark mass ratio

mu

md
=

M2
K+ −M2

K0 + 2M2
π0 −M2

π+

M2
K0 −M2

K+ +M2
π+

= 0.56 instead of 0.67

• The π0-η mixing angle can be constructed:

ϵπ0η ≃
√
3

2

md −mu

2ms −mu −md
≃

√
3

2

M2
K0 −M2

K± −M2
π0 +M2

π±

M2
K0 +M2

K± −M2
π0 −M2

π±
≃ 0.0099
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Representation invariance

• Freedom to choose coordinates on coset space G/H

• Haag’s theorem on field redefinition: Haag (1958); Coleman, Wess, Zumino (1969)

If fields ϕ and χ are related nonlinearly by a local function as

ϕ = χF [χ] with F [0] = 1,

then the same physical observables (on-shell S-matrices) can be obtained using

either field ϕ with Lagrangian L[ϕ] or χ with L[χF [χ]].
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ππ scattering (1)

In the chiral limit, L(2) =
F 2

4
⟨∂µU∂µU†⟩

Amplitude for π+(p1)π
−(p2) → π0(p3)π

0(p4): A(s, t, u)

• Exponential representation:

U = exp
iϕ

F

with ϕ = τ⃗ · π⃗, π0 = π3, π± = 1√
2
(π1 ∓ iπ2) for SU(2).

A(s, t, u) =
s

F 2

☞ parameter-free prediction

☞ in accordance with Goldstone theorem: vanishes at zero-momentum

• Square-root representation:

U =
1

F

(√
F 2 − π⃗′ 2 + iτ⃗ · π⃗′

)
calculating with π⃗′ as the pion fields gives the same scattering amplitude.
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ππ scattering (2)

Exercise: Calculate the amplitude and show that the two representations are related

by the following field redefinition:

π⃗′ = π⃗
F

|π⃗| sin
( |π⃗|
F

)
= π⃗ + nonlinear terms, here |π⃗| ≡

√
π⃗2

Hint: The following relations of Pauli matrices might be useful:

[τa, τ b] = 2iϵabcτ c, {τa, τ b} = 2δab1,

τ⃗ · A⃗τ⃗ · B⃗ = A⃗ · B⃗1+ iτ⃗ · (A⃗× B⃗), exp(iτ⃗ · π⃗) = cos(|π⃗|)1+ i
τ⃗ · π⃗
|π⃗| sin(|π⃗|),

Tr(τa) = 0, Tr(τaτ b) = 2δab, Tr(τaτ bτ c) = 2iϵabc,

Tr(τaτ bτ cτd) = 2(δabδcd + δadδbc − δacδbd)

• The amplitude with the quark mass term included reads

A(s, t, u) =
s−M2

π

F 2
π Weinberg (1966)
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ππ scattering (3)

• Pions: isospin I = 1. From particle basis to isospin basis (|I, I3⟩), choosing

phase convention:

|π+⟩ = −|π; I = 1, I3 = 1⟩, |π0⟩ = |π; 1, 0⟩, |π−⟩ = |π; 1,−1⟩, then

|π+π−⟩ = −
(

1√
6
|ππ; 2, 0⟩+ 1√

2
|ππ; 1, 0⟩+ 1√

3
|ππ; 0, 0⟩

)
,

|π0π0⟩ =
√

2

3
|ππ; 2, 0⟩ − 1√

3
|ππ; 0, 0⟩,

|π+π0⟩ = − 1√
2
(|ππ; 2, 1⟩+ |ππ; 1, 1⟩) ,

|π0π+⟩ = − 1√
2
(|ππ; 2, 1⟩ − |ππ; 1, 1⟩) .

• Crossing symmetry (recall s = (p1 + p2)
2, t = (p1 − p3)

2, u = (p1 − p4)
2):

Let T (s, t, u) denotes the amplitude for A(p1)B(p2) → C(p3)D(p4), then

T (t, s, u) : A(p1)C̄(−p3) → B̄(−p2)D(p4)

T (u, t, s) : A(p1)D̄(−p4) → C(p3)B̄(−p2)
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CG coefficients

http://pdg.lbl.gov/2018/reviews/rpp2018-rev-clebsch-gordan-coefs.pdf
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ππ scattering (4)

• Isospin symmetry: isospin is conserved (for strong interaction with mu = md)

A(s, t, u) = Tπ+π−→π0π0(s, t, u) =
1

3

(
T I=0(s, t, u)− T I=2(s, t, u)

)
,

A(t, s, u) = Tπ+π0→π+π0(s, t, u) =
1

2

(
T I=1(s, t, u) + T I=2(s, t, u)

)
,

A(u, t, s) = Tπ+π0→π0π+(s, t, u) =
1

2

(
T I=2(s, t, u)− T I=1(s, t, u)

)
.

• Crossing symmetry + isospin symmetry ⇒ isospin amplitudes

T I=0(s, t, u) = 3A(s, t, u) +A(t, s, u) +A(u, t, s)

T I=1(s, t, u) = A(t, s, u)−A(u, t, s)

T I=2(s, t, u) = A(t, s, u) +A(u, t, s)
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ππ scattering (5)

• S-wave scattering lengths (unit: M−1
π ): aI0 =

1

32π
T I(s = 4M2

π , t = u = 0)

a00 =
7M2

π

32πF 2
π

= 0.16, a20 = − M2
π

16πF 2
π

= −0.045

• How do the LO predictions compare with data?

☞ Precise measurements from NA48/2 (Ke4 decays & K± → π0π0π±)

B.Bloch-Devaux, Kaon09

a00 = 0.2210± 0.0047stat ± 0.0015syst

a20 = −0.0429± 0.0044stat ± 0.0016syst

a00 − a20 = 0.2639± 0.0020stat ± 0.0004syst

☞ from DIRAC (life time of π+π− atom) B.Adeva et al., PLB704(2011)24∣∣a00 − a20
∣∣ = 0.2533+0.0080

−0.0078

∣∣
stat

+0.0078
−0.0073

∣∣
syst
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CHPT with matter fields
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Including matter fields

• So far, EFT for (pseudo-)Goldstone bosons

• Matter fields (fields which are not Goldstone bosons) can be included as well, e.g.
☞ baryon CHPT:

nucleons [SU(2)] / baryon ground state octet [SU(3)]

☞ SU(2) kaon CHPT:

kaons treated as matter fields rather than GBs

☞ heavy-hadron CHPT:

heavy-flavor (charm, bottom) mesons and baryons

. . .

• Feature:

a new mass scale: mass of the matter field, non-vanishing in the chiral limit

mN

∣∣
mq=0

= O
(
mN

∣∣
mq=mphys.

q

)
will cause a problem in power counting

• At low-energies, 3-momenta remain small ∼Mπ , derivative expansion is feasible
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Transformation of matter fields

• Proceed as before

☞ need to know how matter fields transform under SU(Nf )L × SU(Nf )R

☞ construct effective Lagrangians according to increasing number of momenta

• Transformation properties of matter fields:

☞ well-defined transformation rule under the unbroken SU(Nf )V

☞ not necessarily form representations of SU(Nf )L × SU(Nf )R:

transformation of matter fields under SU(Nf )L × SU(Nf )R

not uniquely defined,

related by field redefinition (again: representation invariance)

Two examples:

❶ Baryon CHPT

❷ Heavy meson CHPT (see backup slides)
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Baryon CHPT at LO
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Baryon CHPT: transformation of baryon fields (1)

Consider the SU(3) case, the baryon ground state octet:

B =


Σ0
√
2
+ Λ√

6
Σ+ p

Σ− −Σ0
√
2
+ Λ√

6
n

Ξ− Ξ0 − 2Λ√
6


transform under the global unbroken H = SU(3)V as

B
V ∈H−→ V B V †

• Representation invariance:

free to choose how B transforms under SU(3)L × SU(3)R as long as it reduces

to the above under SU(3)V

• Example:

describe the baryons by B1 or B2, under g = (L,R) ∈ SU(3)L × SU(3)R

B1
g→ LB1 L

†, B2
g→ LB2R

†

both transform as an octet under (V, V ) ∈ SU(3)V
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Baryon CHPT: transformation of baryon fields (2)

• Example:

describe the baryons by B1 or B2, under g = (L,R) ∈ SU(3)L × SU(3)R

B1
g→ LB1 L

†, B2
g→ LB2R

†

both transform as an octet under (V, V ) ∈ SU(3)V

• Related to each other through field redefinition:

B2 = B1U = B1 +
i

F
B1ϕ+ . . . , U = exp

(
i

F
ϕ

)
g→ LU R†

• But B1,2 are inconvenient: not parity (P ) “invariant"

L(L†) needs to be replaced by R(R†) under parity ⇒
B1(t, x⃗)

P→U†γ0B1(t,−x⃗)U g→RU†γ0B1(t,−x⃗)UR†
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Baryon CHPT: transformation of baryon fields (3)

• An elegant/convenient way:

introduce u = exp

(
iϕ

2F

)
or u2 = U

it transforms under g ∈ SU(3)L × SU(3)R as (recall U
g→ LU R†)

u
g→ Luh†(L,R, ϕ)=h(L,R, ϕ)uR†

h(L,R, ϕ): space-time dependent nonlinear function, called compensator field

For for SU(3)V transformations (L = R), reduces to h(L,R, ϕ) = L = R

• We can construct B = u†B1u, it transforms as

B
g→ hB h†

h is invariant under parity, i.e. h(t, x⃗)
P→ h(t,−x⃗) ⇒ B

P→ γ0B

• For the SU(2) case, proton and neutron form an isospin doublet N = (p, n)T ,

construct N such that
N

g→ hN
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Building blocks of the meson–baryon Lagrangian

• Useful to introduce combinations of u whose transformations only involve h:

Γµ =
1

2

[
u†(∂µ − i lµ)u+ u(∂µ − i rµ)u†

]
uµ = i

[
u†(∂µ − i lµ)u− u(∂µ − i rµ)u†

]
Γµ: chiral connection, vector; uµ: chiral vielbein, axial vector

Γµ g→ hΓµh† + h ∂µh†, uµ
g→ huµh†

• Introduce a covariant derivative:

DµB = ∂µB + [Γµ, B] , DµN = (∂µ + Γµ)N

which transform as the baryon fields under SU(Nf )L × SU(Nf )R

DµB
g→ hDµB h†, DµN

g→ hDµN

Note: For matter fields H in anti-fundamental representation of SU(Nf )V , the

chirally covariant derivative becomes DµH = ∂µH −HΓµ

• Include the quark mass term χ = 2B(s+ i p) = 2BM+ . . . by introducing

χ+ = u†χu† + uχ†u, χ+ → hχ+h
†

All fields transform in terms of h, convenient to construct the effective Lagrangians
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The leading-order meson–baryon chiral Lagrangian

L(1)
πN = N̄

(
iγµDµ −m+

gA
2
γµγ5u

µ
)
N

L(1)
ϕB =

〈
B̄ (iγµDµ −m)B

〉
+
D

2

〈
B̄γµγ5{uµ, B}

〉
+
F

2

〈
B̄γµγ5[u

µ, B]
〉

Remark:

• in meson CHPT, Lagrangian has even powers of momenta (Lorentz invariance)

• here, due to Dirac structures, odd powers possible

New parameters:

• m: nucleon (baryon) mass in the chiral limit

• gA: expand uµ = lµ − rµ +O (ϕ) ⇒ axial vector coupling

known from neutron beta decay, gA = 1.27

• D/F : two axial vector couplings in SU(3), can be determined from semileptonic

hyperon decays (D ≈ 0.804, F ≈ 0.463), SU(2) constraint

D + F = gA

n

p

e−
v̄e
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Intermediate summary

• Lagrangians need to respect the global symmetries of QCD, explicit symmetry

breaking can be included using the spurion technique

• The LO mesonic chiral Lagrangian invariant under SU(Nf )L × SU(Nf )R

L(2) =
F 2

4

[
⟨∂µU∂µU†⟩+ 2B⟨MU† +M†U⟩

]
with U = eiϕ/F

GMOR relation: M2
π ∝ mq

• Physical observables do not change under nonlinear field redefinition satisfying:

ϕ = χF [χ] with F [0] = 1

• Under SU(Nf )L × SU(Nf )R, matter fields do not have a unique transformation

law, convenient to introduce the compensator field h, and use a field transforming

in the same way under SU(Nf )V , e.g.,

if X
V ∈H−→ V X V †, then choose X

g∈G−→ hXh†
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CHPT at NLO
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Unitarity of S-matrix

• Probability conservation ⇒ unitarity of the S-matrix

S S† = S†S = 1

T -matrix: S = 1+ i T ⇒ T − T † = i T T †

thus, unitarity dictates a relation for the partial-wave scattering amplitude tℓ:

Im tℓ(s) = σ(s)|tℓ(s)|2

here σ(s): two-body phase space factor

• From the LO CHPT, the ππ scattering amplitude A(s, t, u) =
s−M2

π

F 2
,

no imaginary part! ⇒ unitarity is broken
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Going to higher orders

• Perturbative unitarity: imaginary part given by loops

Im t
(2)
ℓ (s) = 0, Im t

(4)
ℓ (s) = σ(s)|t(2)ℓ (s)|2, . . .

• Symmetries do not forbid higher order terms in effective Lagrangians:

more derivatives, more insertion of quark masses

• More derivatives ⇒ non-renormalizable

. . . , if we include in the Lagrangian all of the infinite number of interactions

allowed by symmetries, then there will be a counterterm available to cancel

every ultraviolet divergence. In this sense, . . . , non-renormalizable theories

are just as renormalizable as renormalizable theories, as long as we include

all possible terms in the Lagrangian.

S.Weinberg, The Quantum Theory of Fields, Vol.1

• Q: How should we deal with the infinite number of terms?

A: Power counting is needed: organize the infinite number of terms according to

power of the expansion parameter, finite number of terms up to a given order
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Necessity of higher order Lagrangian from renormalization

Consider the example of ππ scattering

• At LO, O
(
p2
)
: two derivatives or one quark mass insertion

= O
(
p2
)

• One-loop with two O
(
p2
)

vertices:

=

∫
d4q

q1q2q3q4
(q2 −M2

π)[(p− q)2 −M2
π ]

= O
(
p4+4−4

)
= O

(
p4
)

• The loop is divergent, divergence absorbed by the counterterms in the O
(
p4
)

Lagrangian

How can we construct the higher order Lagrangian?
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Building blocks

• Powerful to include external fields

⇒ incorporate electroweak interactions, quark masses:

LQCD = L0
QCD + q̄γµ (vµ + γ5aµ) q − q̄ (s+ iγ5p) q

= L0
QCD + q̄Lγ

µlµqL + q̄Rγ
µrµqR − q̄L(s+ ip)qR − q̄R(s− ip)qL

lµ = vµ − aµ, rµ = vµ + aµ left-/right-handed sources

Fµν
R = ∂µrν − ∂νrµ − i[rµ, rν ], Fµν

L = ∂µlν − ∂ν lµ − i[lµ, lν ]

χ = 2B(s+ ip) = 2BM+ . . . scalar/pseudoscalar sources

• Transformation laws for the building blocks:

U → LU R†, χ→ LχR†,

Fµν
L → LFµν

L L†, Fµν
R → RFµν

R R†

• Another set of building blocks: uµ, χ± and fµν± . fµν± = uFµν
L u† ± u†Fµν

R u

They all transform as O → hO h†
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Construction of higher order chiral Lagrangian

• We need a counting scheme (more see later):

U ∼ O
(
p0
)

small momentum / derivative ∼ O (p)

light quark masses χ ∼ O
(
p2
)

⇐M2
GB ∼ mq

external fields lµ, rµ ∼ O (p) ⇐ DµU = ∂µU − ilµU + iUrµ

• At a given order, write down the most general Lagrangian allowed by symmetries

(for θ = 0):

chiral symmetry, P , C and T

most general ⇒ be able to absorb all divergences at the same order
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SU(3) chiral Lagrangian at NLO

• SU(3) chiral Lagrangian at O
(
p4
)

Gasser, Leutwyler (1985)

L(4) = L1⟨DµU
†DµU⟩2 + L2⟨DµU

†DνU⟩⟨DµU†DνU⟩
+L3⟨DµU

†DµUDνU
†DνU⟩+ L4⟨DµU

†DµU⟩⟨χ†U + χU†⟩
+L5⟨DµU

†DµU(χ†U + χU†)⟩+ L6⟨χ†U + χU†⟩2

+L7⟨χ†U − χU†⟩2 + L8⟨χ†Uχ†U + χU†χU†⟩
−i L9⟨Fµν

L DµUDνU
† + Fµν

R DµU
†DνU⟩+ L10⟨U†Fµν

L UFRµν⟩
+2 contact terms

• L1,...,10: low-energy constants (LECs)

• NLO SU(2) chiral Lagrangian contains 7 terms: ℓ1,...,7 Gasser, Leutwyler (1984)
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Low-energy constants

• One loop diagrams with vertices from L(2) are of O
(
p4
)
,

divergences should be absorbed by counterterms in L(4),

can be derived using background field method with heat kernel technique, for

detailed derivations, see the attached file chpt_heat_kernel_renormalization.pdf

• Low-energy constants generally contain two parts:

Li = Lr
i (µ) + Γi × divergence

renormalized LECs Lr
i (µ) are finite, scale-dependent

• Scale dependence of LECs cancel the one from loop integrals

⇒ physical observables are scale-independent !

• Lr
i ’s are independent of light quark masses by construction, parameterize the

short-distance physics

Values not fixed by chiral symmetry:

☞ extracted using experimental data

☞ estimated with models such as resonance saturation Ecker et al (1989)

☞ using lattice simulations Flavour Lattice Averaging Group (FLAG) (2019)
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Chiral Lagrangian at higher orders

Leff = L(2) + L(4) + L(6) + . . .

• Number of terms allowed by the symmetries increases very fast

• How many LECs are contained in these for SU(N ), N = (2, 3)?

L(2) contains (2, 2) constants (F , B)

L(4) contains (7, 10) constants Gasser, Leutwyler (1984, 1985)

L(6) contains (53, 90) constants Bijnens, Colangelo, Ecker (1999)

• Why different for SU(2) / SU(3)?

same most general SU(N ) Lagrangian, but

matrix-trace relations [Cayley–Hamilton] render some of the structures redundant.

Example: Cayley–Hamilton relation for 2× 2 matrices A,B,

{A,B} = A ⟨B⟩+B ⟨A⟩+ ⟨AB⟩ − ⟨A⟩ ⟨B⟩
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Weinberg’s power counting

Weinberg (1979)
• Consider an arbitrary Feynman diagram with L

loops, I internal lines, Vd vertices of order d:

A ∝
∫
(d4p)L

1

(p2)I

∏
d

(pd)Vd

• The chiral dimension of A
D = 4L− 2I +

∑
d

dVd

• Use topological identity for L to eliminate I , L = I −∑dVd + 1

D =
∑
d

Vd(d− 2)+2L+ 2

☞ Lowest order is O
(
p2
)
, i.e. d ≥ 2 ⇒ rhs is a sum of non-negative numbers

☞ For a given order D, there is only a finite number of combinations of L and

Vd

☞ Each loop is suppressed by two orders in the momentum expansion
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Power counting – example: ππ scattering (1)

D =
∑
d

Vd(d− 2) + 2L+ 2

• D = 2

☞ L = 0, lowest order tree-level diagram only

• D = 4

☞ L = 0, tree-level diagram with one insertion from L(4)

V4 = 1, Vd>4 = 0

☞ L = 1, one-loop diagram with only d = 2 vertices

Vd>2 = 0
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Power counting – example: ππ scattering (2)

D =
∑
d

Vd(d− 2) + 2L+ 2

• D = 6

☞ L = 0, tree-level diagram with one insertion from L(6)

☞ L = 0, tree-level diagram with two insertions from L(4)

☞ L = 1, one-loop diagram with one insertion from L(4)

☞ L = 2, two-loop diagram with Vd = 2 vertices
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Chiral symmetry breaking scale Λχ

L eff =
F 2

4

(〈
DµUD

µU† + χU† + χ†U
〉
+

1

Λ2
χ

L̃(4) +
1

Λ4
χ

L̃(6) + . . .

)
• What is the scale Λχ?

☞ hard energy scale where the momentum expansion definitely fails

☞ uncertainty estimate: higher-order corrections are suppressed by ∼ p2/Λ2
χ

⇒ how big?

• Estimate with resonance masses:

The only dynamical degrees of freedom are the GBs, no resonances

⇒ CHPT must fail once the energy reaches the resonance region: a perturbative

momentum expansion cannot generate a pole

Λχ ≈ M res

Lowest narrow resonance Mρ ≈ 770 MeV,

typically M res ∼ 1 GeV
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Chiral symmetry breaking scale Λχ (2)

L eff =
F 2

4

(〈
DµUD

µU† + χU† + χ†U
〉
+

1

Λ2
χ

L̃(4) +
1

Λ4
χ

L̃(6) + . . .

)
• Naturalness argument: Manohar, Georgi (1984)

Compare

∝
(
p2

F 2

)2∫
d4q

(2π)4
1

(q2)2
dim.reg∝ 1

(4π)2
p4

F 4
logµ

∝ F 2

Λ2
χ

p4

F 4
ℓ̃i(µ)

• Scale-dependent LEC ℓ̃i(µ) compensates for logµ dependence of the loop graph

• If no accidental fine-tuning (naturalness), ℓ̃i(µ) should be at least of similar size

as the shift induced by change in scale µ ⇒

Λχ ≈ 4πF ≈ 1.2 GeV

• Using the naturalness assumption, the size of Lr
i in L(4): ∼ O

(
1

(4π)2

)
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Meson masses at NLO (1)

Take the pion mass as an example of NLO calculations.

• Mass: pole in the two point correlation function

At LO, M2
π =M2 ≡ B(mu +md)

• Higher orders: self-energy

i δab∆π(p) =

∫
d4xe−ipx

〈
0
∣∣T [πa(x)πb(0)

]∣∣ 0〉
=

=
i

p2 −M2 + iϵ
+

i

p2 −M2 + iϵ
[−iΣ(p2)] i

p2 −M2 + iϵ
+ . . .

=
i

p2 −M2 − Σ(p2) + iϵ
=

i Zπ

p2 −M2
π + iϵ

+ non-singular terms

☞ Mπ : physical pion mass, solution of the equation

M2
π −M2 − Σ(M2

π) = 0

☞ Exercise: show that the wave function renormalization constant is

Zπ =
1

1− Σ′(M2
π)

, with Σ′(M2
π) ≡

dΣ(p2)

dp2

∣∣∣∣
p2=M2

π
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Meson masses at NLO (2)

• Self-energy contains two parts:

π,K, η tadpole loops and counterterms in L(4)

Assuming isospin symmetry (mu = md = m̂), the pion mass at NLO:

M2
π = M2

[
1 +

I(M2)

2F 2
−

I(M2
η,2)

2F 2
+

8M2

F 2
(2L8 − L5) +

24M2
η,2

F 2
(2L6 − L4)

]
here M2 = 2Bm̂, M2

η,2 = 2
3
B(2m̂+ms)

• Loop is divergent, in dimensional regularization (good for preserving symmetry)

I(M2) = iµ4−d

∫
ddl

(2π)d
1

l2 −M2 + iϵ
=

M2

16F 2

(
λ+ log

M2

µ2

)
λ =

2

d− 4
− [log(4π) + Γ′(1) + 1], divergent for d = 4 !

On the other hand, Li’s are divergent either Li = Lr
i +

Γi

32π2
λ

Γ4 =
1

8
, Γ5 =

3

8
, Γ6 =

11

144
, Γ8 =

5

48

Useful formulae in dim.reg.: the Peskin & Schroeder QFT book, App. A.4, p.807
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Meson masses at NLO (3)

• Self-energy contains two parts:

π,K, η tadpole loops and counterterms in L(4)

Assuming isospin symmetry (mu = md = m̂), the pion mass at NLO:

M2
π = M2

[
1 +

I(M2)

2F 2
−

I(M2
η,2)

2F 2
+

8M2

F 2
(2L8 − L5) +

24M2
η,2

F 2
(2L6 − L4)

]
here M2 = 2Bm̂, M2

η,2 = 2
3
B(2m̂+ms)

• Renormalization: divergences from LECs (i.e., counterterms) and loops cancel

out (as well as the µ-dependence)
⇒ the pion mass is finite and µ-independent

M2
π = M2

[
1 +

1

32π2F 2
M2 log

M2

µ2
− 1

96π2F 2
M2

η,2 log
M2

η,2

µ2

+
8M2

F 2
(2Lr

8 − Lr
5) +

24M2
η,2

F 2
(2Lr

6 − Lr
4)

]
• M2

π vanishes in chiral limit, loop correction does not generate a non-zero mass

• Chiral logarithm: non-analytic in the light quark masses
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Quark mass ratios revisited (1)

• Calculate pion/kaon masses beyond leading order:

M2
π+ = B(mu +md)

[
1 +O (m̂,ms)

]
M2

K+ = B(mu +ms)
[
1 +O (m̂,ms)

]
• Form dimensionless ratios:

M2
K

M2
π

=
ms + m̂

mu +md

[
1 + ∆M +O

(
m2

q

)]
(M2

K0 −M2
K+)strong

M2
K −M2

π

=
md −mu

ms − m̂

[
1 + ∆M +O

(
m2

q

)]
∆M =

8(M2
K −M2

π)

F 2
π

(2Lr
8 − Lr

5) + chiral logs

• Double ratio Q2 particularly stable:

Q2 =
m2

s − m̂2

m2
d −m2

u

=
M2

K

M2
π

M2
K −M2

π

(M2
K0 −M2

K+)strong

[
1 +O

(
m2

q)
)]
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Quark mass ratios revisited (2)

• Leutwyler’s ellipse: Leutwyler (1996)(
mu

md

)2

+
1

Q2

(
ms

md

)2

= 1

• Recall Dashen’s theorem:

(M2
K+ −M2

K0)em = (M2
π+ −M2

π0)em +O
(
e2mq

)
QDashen = 24.2

• Value extracted from lattice simulations FLAG, arXiv:2411.04268 [hep-lat]

Nf = 2 + 1: 23.3± 0.5

Nf = 2 + 1 + 1: 22.5± 0.5

• From η → 3π decays: Q = 22.1± 0.7 Anisovich, Leutwyler (1996); Colangelo et al. (2018)

• New proposal: map Dalitz plots of η′ → ηπ+π−, η′ → ηπ−π0 to unit disc, then

using BESIII data can lead to a similar precision Guevara, FKG, H.-J. Jing, arXiv:2502.02837
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ππ scattering beyond LO

• S-wave scattering lengths:

a00 a20

LO 0.16 −0.045 Weinberg (1966)

NLO (one-loop) 0.20± 0.01 −0.042± 0.002 Gasser, Leutwyler (1983)

NNLO (two-loop) 0.217± . . . −0.041± . . . Bijnens et al. (1996)

NNLO + Roy eq. 0.220± 0.005 −0.0444± 0.0010 Colangelo et al. (2001)

• Compare again with the modern data from NA48/2

(Ke4 decays & K± → π0π0π±) B.Bloch-Devaux, Kaon09

a00 = 0.2210± 0.0047stat ± 0.0015syst

a20 = −0.0429± 0.0044stat ± 0.0016syst
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Exercises

2-5) Derive the π0η mixing angle:

ϵπ0η =
1

2
arctan

( √
3(md −mu)

2ms −mu −md

)
≃

√
3

2

md −mu

2ms −mu −md
.

2-6) One possible solution of the strong CP problem is the Peccei-Quinn (PQ) mechanism

which introduces a global U(1) symmetry, called the PQ symmetry. Axion is the pseudo-

Goldstone boson of the spontaneous breaking of this symmetry. Its properties can be

studied in CHPT by changing the quark mass matrix M to MeiXa/fa with a the axion

field, fa the axion decay constant, and X satisfying ⟨X⟩ = 1. Consider the LO mass term

of the SU(2) version of CHPT with axion,

L(2)
a =

F 2

2
B⟨MeiXa/faU† + h.c.⟩,

where h.c. represents the Hermitian conjugated term.

1) show that there will be no a-π0 mixing if we choose X = M−1/⟨M−1⟩;
2) show that the axion mass squared is given by m2

a =
F2M2

π
f2
a

mumd
(mu+md)

2 .
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Exercises

2-7) Show that the leading order chiral amplitude for π+(p1)π
−(p2) → π0(p3)π

0(p4)

in the chiral limit is given by

A(s, t, u) =
s

F 2

and show that the exponential and square-root representations are related by the

following field redefinition:

π⃗′ = π⃗
F

|π⃗| sin
( |π⃗|
F

)
= π⃗ + nonlinear terms, here |π⃗| ≡

√
π⃗2.

2-8) The pion mass is given by the pole of the pion propagator,

i δab∆π(p) =
i

p2 −M2 − Σ(p2) + iϵ
=

i Zπ

p2 −M2
π + iϵ

+ non-singular terms,

where Σ(p2) is the pion self-energy. Show that the wave function renormalization

constant is

Zπ =
1

1− Σ′(M2
π)

, with Σ′(M2
π) ≡

dΣ(p2)

dp2

∣∣∣∣
p2=M2

π
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Further Reading: Heavy meson CHPT
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Transformations of heavy meson fields (1)

For SU(3), the charmed meson ground state flavor anti-triplet (a: light flavor index):

Pa =
(
D0, D+, D+

s

)
a
, P ∗

a =
(
D∗0, D∗+, D∗+

s

)
a

[(
cū, cd̄, cs̄

)]
Let H denote heavy mesons. It transforms under the global unbroken SU(3)V as

H
V ∈SU(3)V−−−−−−→H V †

• Representation independence:

free to choose how H transforms under SU(3)L × SU(3)R as long as it reduces

to the above under SU(3)V

• Example:

describe the heavy mesons by H1 or H2, under

g = (L,R) ∈ SU(3)L × SU(3)R

H1
g→ H1 L

†, H2
g→ H2R

†

both transform as an anti-triplet under (V, V ) ∈ SU(3)V
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Transformations of heavy meson fields (2)

• Example:

describe the heavy mesons by H1 or H2, under

g = (L,R) ∈ SU(3)L × SU(3)R

H1
g→ H1 L

†, H2
g→ H2R

†

both transform as an anti-triplet under (V, V ) ∈ SU(3)V

• Related to each other through field redefinition:

H2 = H1U = H1 +
i

F
H1ϕ+ . . . , U = exp

(
i

F
ϕ

)
g→ LU R†

• But H1,2 are inconvenient: complicated parity transformation (P )

L(L†) needs to be replaced by R(R†) under parity ⇒
H1,a(t, x⃗)

P→ γ0H1,b(t,−x⃗)γ0Uba
g→ γ0H1,b(t,−x⃗)γ0UbaR

†

[recall for a spinor: ψ(t, x⃗)
P→ γ0ψ(t,−x⃗)]
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Transformations of heavy meson fields (3)

• An elegant/convenient way:

introduce
u = exp

(
iϕ

2F

)
or u2 = U

it transforms under g ∈ SU(3)L × SU(3)R as (recall U
g→ LU R†)

u
g→ Luh†(L,R, ϕ)=h(L,R, ϕ)uR†

h(L,R, ϕ): space-time dependent nonlinear function, called compensator field.

From the above definition, we can express h in terms of L,R,U :

h =
√
LUR†R

√
U† =

√
RU†L†L

√
U

• For for SU(3)V transformations (L = R = V ), reduces to h(L,R, ϕ) = V

• We can construct H = H1u or H = H2u
†, it transforms as

H
g→ H h†

Under parity transformation h(t, x⃗)
P→ h(t,−x⃗), and H(t, x⃗)

P→ γ0H(t,−x⃗)γ0 .
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Building blocks of the chiral Lagrangian

• Useful to introduce combinations of u whose transformations only involve h:

Γµ =
1

2

[
u†(∂µ − i lµ)u+ u(∂µ − i rµ)u†

]
uµ = i

[
u†(∂µ − i lµ)u− u(∂µ − i rµ)u†

]
Γµ: chiral connection, vector; uµ: chiral vielbein, axial vector

Γµ g→ hΓµh† + h ∂µh†, uµ
g→ huµh†

• Introduce a covariant derivative:

DµH = ∂µH −H Γµ

which transform the same way as H under SU(Nf )L × SU(Nf )R

DµH
g→ DµH h†

• Include the quark mass term χ = 2B(s+ i p) = 2BM+ . . . by introducing

χ+ = u†χu† + uχ†u, χ+ → hχ+h
†

All fields transform in terms of h, convenient to construct the effective Lagrangians
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Simplified two-component notation

The superfield for pseudoscalar and vector heavy mesons: ((4) means 4-component)

H(4)
a =

1 + /v

2
[P ∗µ

a γµ − Paγ5]

In the rest frame of heavy meson, vµ = (1,0). We take the Dirac basis

γ0 =

1 0

0 −1

 , γi =

 0 σi

−σi 0

 , γ5

0 1

1 0

 .

Simplifications:
1 + /v

2
=

1 + γ0

2
=

1 0

0 0


H(4)

a =

0 −(Pa + P ∗
a · σ)

0 0

 , H̄(4)
a =

 0 0(
P †
a + P ∗†

a · σ
)

0


Thus, it is convenient to simply use the two-component notation

Ha = Pa + P ∗
a · σ, H(4)

a → −Ha, H̄(4)
a → H†

a
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Heavy meson CHPT at LO

The LO Lagrangian [O (p)]:

L(1)
HM = −iTr

[
H̄avµ(DµH)a

]︸ ︷︷ ︸
kinetic term+Dπ scattering+...

+
g

2
Tr
[
H̄aHbγµγ5

]
uµba︸ ︷︷ ︸

terms for D∗→Dπ+...

☞ invariant under Lorentz transformation, chiral symmetry, parity

☞ Tr: trace in the spinor space, a, b: indices in the light flavor space

• The chirally covariant kinetic term:

−iTr
[
H̄(4)

a vµ(DµH)(4)a

]
= iTr

[
H†

a

(
∂0Ha −HbΓ

0
ba

)]
= 2i

(
P †
a∂

0Pa + P ∗i †
a ∂0P ∗i

a

)
+

−i
4F 2

(
P †
aPb + P ∗†

a · P ∗
b

) [
ϕ, ∂0ϕ

]
ba︸ ︷︷ ︸

scattering between (D,D∗,B̄,B̄∗) and GBs(π,K,η)

+ . . .

Universality of the LO, O (p), scattering amplitudes: completely determined by

chiral symmetry (strength in term of F )! the Weinberg–Tomozawa term
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Axial coupling

• The axial coupling term (uk = − 1
F ∂

kϕ+ . . .):

g

2
Tr
[
H̄(4)

a H
(4)
b γµγ5

]
uµba = −g

2
Tr
[
H†

aHbσ
i
]
uiba

= −g
2
Tr
[(
P ∗i †
a σi + P †

a

) (
P ∗j
b σj + P †

b

)
σk
]
ukba

=
g

F
P †
aP

∗i
b ∂

iϕba︸ ︷︷ ︸
term for D∗→Dπ

+
g

F
P ∗i †
a Pb∂

iϕba + i
g

F
ϵijkP ∗i †

a P ∗j
b ∂kϕba︸ ︷︷ ︸

D∗D∗π coupling

+O
(
ϕ3

F 3

)

• Decay amplitude:

A(D∗+ → D0π+) =
i
√
2g

F
ε(λ) · qπ

√
MD∗MD︸ ︷︷ ︸

accounts for NR normalizationand the two-body decay width

Γ(D∗+ → D0π+) =
1

8π

|qπ|
M2

D∗

1

3

∑
λ

|A|2 =
g2MD|qπ|3
12πF 2MD∗

where we used
∑

λ ε
i
(λ)ε

j
(λ) = δij
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Determination of g

• Measured D∗ widths: PDG2018

Γ(D∗0) < 2.1 MeV, Γ(D∗±) = (83.4± 1.8) keV

B(D∗+ → D0π+) = (67.7± 0.5)%, B(D∗+ → D+π0) = (30.7± 0.5)%

• The two-body decay width

Γ(D∗+ → D0π+) =
g2MD|qπ|3
12πF 2MD∗

⇒ |g| ≃ 0.57

For D∗0, with measured branching fraction B(D∗0 → D0π0) = (64.7± 0.9)%,

we can predict:

Γ(D∗0 → D0π0) =
g2MD|qπ|3
24πF 2MD∗

⇒ Γ(D∗0) = (55.3± 1.4) keV

• HQFS: g should be approximately the same in bottom sector with

a relative uncertainty of ∼ O
(

ΛQCD
mc

− ΛQCD
mb

)
∼ O (20%)

Lattice QCD results:

gb = 0.492± 0.029 ALPHA Collaboration, Phys. Lett. B 740 (2015) 278

gb = 0.56± 0.03± 0.07 RBC and UKQCD Collaborations, Phys. Rev. D 93 (2016) 014510
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Mass splittings among heavy mesons (2)

• Light quark mass-dependent terms in two-component notation:

Lχ = −λ1Tr
[
H†

aHb

]
χ+,ba − λ′1Tr

[
H†

aHa

]
χ+,bb

here, χ+ = u†χu† + uχ†u = 4BM− B

2F 2

{
ϕ, {ϕ,M}

}
+ . . .

☞ SU(3) mass differences:

M
D+

s
−MD+ = 4λ1B(ms −md) = 4λ1

(
M2

K± −M2
π±

)
⇒ λ1 ≃ 0.11 GeV−1

☞ Isospin splitting induced by md −mu:

(MD0 −MD+)quark mass = 4λ1B(mu −md)

= 4λ1
(
M2

K± −M2
K0 −M2

π± +M2
π0

)
= −2.3 MeV

Exp. value: MD0 −MD+ = −(4.77± 0.08) MeV

=
(
MD0 −MD+

)
quark mass

+
(
MD0 −MD+

)
e.m.

• Lχ also contributes to scattering between a heavy meson and the lightest

pseudoscalar mesons (GBs)
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Baryon CHPT at NLO
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Baryon CHPT beyond LO

• CHPT is useful in the low-energy region

• Remember:

the nucleon mass does not vanish in the

chiral limit (Mπ = 0)

mN

∣∣
Mπ=0

∼ mN

∣∣
Mπ=Mphys.

π

∼ Λχ = O (1 GeV)

⇒ a large mass scale ≫ low-momenta, Mπ

2.5

3.0

0 0.5 1 1.5

r 0
M
N

(r0mπ)
2

preliminary �t
(unconstrained)

Combined �t
data: r0σ

(volume-corrected) data: r0MN
physical point (r0≡0.501 fm)

G.Bali et al., Lattice2013

• As a result, the power counting of baryon CHPT is different:

☞ q2 −m2 =
(
q0 +

√
q⃗ 2 +m2

)(
q0 −

√
q⃗ 2 +m2

)
= O (p)

☞ LπN = L(1)
πN + L(2)

πN + L(3)
πN + . . . not only even powers
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Weinberg’s power counting for baryon CHPT (1)

• Consider an arbitrary L-loop 1-baryon diagram

with V ππ
d meson–meson vertices of order d,

V πN
d′ meson–baryon vertices of order d′,

and Iπ(IN ) internal meson (baryon) lines.

• Chiral dimension D is

D = 4L− 2Iπ − IN +
∑
d

V ππ
d d+

∑
d′

V πN
d′ d′

☞ Again, topological relation: L = Iπ + IN −∑d V
ππ
d −∑d′ V πN

d′ + 1

☞ Baryon number conservation ⇒ ∑
d′ V πN

d′ = IN + 1

• We get

D = 2L+ 1 +
∑
d

V ππ
d (d− 2) +

∑
d′

V πN
d′ (d′ − 1)
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Weinberg’s power counting for baryon CHPT (2)

D = 2L+ 1 +
∑
d

V ππ
d (d− 2) +

∑
d′

V πN
d′ (d′ − 1)

Note again: d ≥ 2, d′ ≥ 1 ⇒ D ≥ 1

• Therefore,

O
(
p1
)
, O
(
p2
)
: tree-level only

O
(
p3
)
, O
(
p4
)
: tree-level + one-loop

O
(
p5
)
, O
(
p6
)
: tree-level + one-loop + two-loop

. . .

• But, the problem is it does not naively work :

e.g., O
(
p2
)

receives contribution from any loop diagram if we use dimensional

regularization with the MS scheme (subtracting λ = 2
d−4

− [log(4π) + Γ′(1) + 1])!
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Problem of power counting in baryon CHPT (1)

• In Goldstone boson sector, all masses are small quantities: M ∼ p≪ Λχ

• With baryons, loop integration picks up momenta of order mN ∼ Λχ

• Schematically, Gasser, Sainio, Švarc (1988)

☞ “One no longer has a one-to-one mapping between the loop and small-

momentum expansion” Bernard, Kaiser, Kambor, Meißner (1992)

☞ Higher-order loops renormalize lower-order couplings
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Problem of power counting in baryon CHPT (2)

• To see the problem, consider the nucleon self-energy

ΣN ∼ M2IπN (p2N ) + . . .

IπN (p2N ) = µ4−di

∫
ddl

(2π)d
1

[(pN − l)2 −m2 + iϵ] (l2 −M2 + iϵ)

=
1

16π2

[
λ −1︸︷︷︸

=O(1)

+O (M)

]

⇒ nucleon mass to O
(
p3
)
: mN = m−4c1M

2︸ ︷︷ ︸
from L(2)

πN

+

breaks power counting︷ ︸︸ ︷
3g2AM

2m

32π2F 2
−3g2AM

3

32πF 2︸ ︷︷ ︸
from one-loop

• Solutions:

☞ Heavy baryon CHPT Jenkins, Manohar (1991); Bernard, Kaiser, Kambor, Meißner (1992)

☞ Infrared regularization Becher, Leutwyler (1999)

☞ Extended on-mass-shell scheme Gegelia, Japaridze (1999); Fuchs et al. (2003)
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Heavy baryon CHPT (1)

• mN ≫Mπ ⇒ in low-momentum region, treat nucleons as heavy

• Analogous to heavy quark effective theory, decompose baryon momentum

according to (nearly on-shell)

pµ = mNvµ︸ ︷︷ ︸
large

+ kµ︸︷︷︸
residual

, v2 = 1 , v · k ≪ mN

• Decompose the nucleon field into large (Nv) and small (nv) components

N(x) = e−imv·x[Nv(x) + nv(x)],

with Nv = eimv·x 1
2 (1+̸v)N(x), nv = eimv·x 1

2 (1−̸v)N(x)

• Using the EOM for nv(x) ∝ 1
mNv(x), we can eliminate nv .

L(1)
πN becomes:

L(1)
πN = N̄

(
iγµDµ −m+

gA
2
γµγ5u

µ
)
N

= N̄v

(
iv · D + gAS · u

)
Nv +O

(
m−1

N

)
Sµ = i

2γ5σµνv
ν : Pauli-Lubanski spin vector
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Heavy baryon CHPT (2)

• Nucleon mass gone from L(1)
πN , nucleon propagator becomes

i

v · k + iϵ

the mass scale m was eliminated!

• 1/mN corrections can be constructed systemati-

cally on Lagrangian level

Thus, heavy baryon CHPT is a two-fold expansion

in

(
p

Λχ

)n

,

(
p

mN

)n

(but treated as one)

• Power counting works as in the meson sector:

each loop only contributes at one momentum

power
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Infrared (IR) regularization

P

k

P − k
P

a = k2 −M2 + iϵ , b = (P − k)2 −m2 + iϵ

H =
1

i

∫
ddk

(2π)d
1

ab
=

∫ 1

0

dz
1

i

∫
ddk

(2π)d
1

[(1− z)a+ zb]2

• The integral can be separated into two parts:

H = I +R, I =

∫ ∞

0

dz . . . , R = −
∫ ∞

1

dz . . .

☞ IR singular part I : generated by momenta of order of the pion mass

obeys power counting

contains the chiral physics like chiral logs etc

☞ IR regular part R: generated by momenta of order of the nucleon mass

violates power counting

polynomial in pion mass and external momenta

⇒ can be absorbed into redefinition of LECs

• Practical recipe: replace any one-loop integral by the IR singular part
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Extended on-mass-shell regularization

• Idea: Perform additional subtractions beyond the MS scheme so that

renormalized diagrams satisfy the power counting

• Method: Expand loop integrand in small quantities, and subtract those power

counting violating terms

• Similar to the IR regularization:

power counting violating terms are analytic in Mπ and external momenta

⇒ can be absorbed in a renormalization of the counterterms
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Large Nc
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Large Nc (1)

• SU(Nc): Nc quark colors, N2
c − 1 gluons; Nc regarded as a parameter of QCD

proposed by ’t Hooft NPB72(1974)461

extension to baryons by Witten NPB160(1979)57 [strongly recommended reading]

• Large Nc limit keeping ΛQCD independent of Nc requires g2sNc ≡ λ = O
(
N0

c

)
:

αs(µ) =
4π(

11Nc

3 − 2Nf

3

)
log µ2

Λ2
QCD

,

• At leading order, we can approximate N2
c − 1 by N2

c or SU(Nc) by U(Nc);

double-line representation of gluons:

here most diagrams are taken from Lucha, Melikhov, Sazdjian, arXiv:2012.02542
Feng-Kun Guo (fkguo@itp.ac.cn) CHPT 14 July 2025 22 / 25



Large Nc (2)

• Planar diagrams: can be mapped on a plane.

Each order contains infinite diagrams, e.g., gluon self-energies

The next-to-leading diagrams (a) and (b) contain a quark loop, topologically a

hole, suppressed by O
(
N−1

c

)
• Nonplanar diagrams: suppressed. E.g., consider the 2-point correlation function:

⟨jk̄l(x)j†k̄l(y)⟩ with jk̄l = q̄a,kq
a
l , where a: color index, k, l: flavor indices

characterized by a topological invariant: number of handles

• General formula of the large Nc behavior for a diagram: N2−B−2H
c ,

where B: number of holes; H : number of handles
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Mesons in large Nc

• The leading diagrams of the 2-point correlation function for a meson contain only

2 quark lines: sum of infinite ordinary mesons, Mn = O
(
N0

c

)
, Fn = O

(√
Nc

)
∫
d4xeip·x⟨j(x)j†(0)⟩ =

∑
n

i F 2
n

p2 −M2
n + i ϵ

= O (Nc) , Fn ≡ ⟨0|j|n⟩

• Leading three-meson coupling scales as O
(
N

−1/2
c

)
, meson decay width scales

as O
(
N−1

c

)
: consider a 3-point correlation function

• Leading meson-meson scattering amplitude scales as O
(
N−1

c

)
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OZI rule

• OZI (Okubo-Zweig-Iizuka) rule: drawing only quark lines, any diagrams that can

be separated into color-singlet clusters are suppressed

⟨ū(y)u(y) ū(x)u(x)⟩ = −⟨Su(y, x)Su(x, y)⟩+ ⟨Su(y, y)⟩ ⟨Su(x, x)⟩

• For three light quark flavors, mesons generally form nonets of U(3), rather than

octets and singlets separately of SU(3); e.g., ω: ūu+ d̄d; ϕ: s̄s

• Meson decays:

ϕ decays into KK̄, amplitude for the decay to ππ is relatively suppressed by

N−1
c (and by isospin breaking);

widths of c̄c below open-charm thresholds are small since decays into light

hadrons violate the OZI rule

• Meson-meson scattering:

the scattering of mesons with different quark flavors violates the OZI rule;

e.g., D+
s π

+ → D+
s π

+
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